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Abstract

This paper studies the problem of panoramic image re-

flection removal, aiming at reliving the content ambigu-

ity between reflection and transmission scenes. Although

a partial view of the reflection scene is included in the

panoramic image, it cannot be utilized directly due to its

misalignment with the reflection-contaminated image. We

propose a two-step approach to solve this problem, by first

accomplishing geometric and photometric alignment for

the reflection scene via a coarse-to-fine strategy, and then

restoring the transmission scene via a recovery network.

The proposed method is trained with a synthetic dataset and

verified quantitatively with a real panoramic image dataset.

The effectiveness of the proposed method is validated by the

significant performance advantage over single image-based

reflection removal methods and generalization capacity to

limited-FoV scenarios captured by conventional camera or

mobile phone users.

1. Introduction

Single-image reflection removal addresses a severely ill-

posed problem of recovering the transmission T from a

reflection-contaminated or mixture image M. A general

image formation model of M is formulated as [11]

M = Ω⊙T+Φ⊙R, (1)

where ⊙ is the element-wise multiplication operator, Ω

and Φ are the refractive and reflective amplitude coefficient

map, and R is the reflection scene [37]. The major chal-

lenge of this problem is that both T and R are part of dif-

ferent natural scenes, arousing the difficulty to differentiate

the dominant content for M. We call it content ambiguity

in this paper. Early methods address it through content-free

priors, e.g., sparse distribution of reflection gradients [17] or

ghosting cues [27], while state-of-the-art methods leverage
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Figure 1. An example of our testing data and reflection removal

results from our method, IBCLN [14], and KH20 [9].

both content and content-free priors from a large scale of

training data, e.g., LBCLN [14] and Kim et al. [9] (denoted

as ‘KH20’ for brevity). Unfortunately, different distribu-

tions of T and R modeled by low-level or deep priors are

not always observed in real scenarios, especially for strong

reflections with sharp edges. Figure 1 displays an example

where state-of-the-art methods fail to remove strong reflec-

tions.

The content ambiguity could be significantly relieved

if we can (partially) capture the reflection scene. Fortu-

nately, with the development of image stitching technol-

ogy (e.g., [6]), capturing panoramic images (also called

’panorama’) becomes handily available, i.e., by either off-

the-shelf panoramic cameras for professionals (e.g., Ricoh

Theta series and Insta360 Pro series etc.) or camera phones

for casual users (e.g., panorama photography is a stan-

dard function for almost all smartphones nowadays such

as Google Pixel and Apple iPhone etc.). A panoramic im-

age has 360◦ field-of-view (FoV) and naturally contains a

partial view of the reflection scene within a single shot, as
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Figure 2. (a) Camera model of capturing a scene containing a glass plate by a panoramic camera. (b) Captured panoramic image. (c) Glass-

reflected reflection image RG, which is ‘captured’ by the virtual camera. (d) Illustration of the geometric and photometric misalignment.

(e) Panoramic reflection scene RP, which is captured by the real camera.

shown in Figure 2 (b). This motivates us to relieve the con-

tent ambiguity of reflection removal with a panoramic im-

age.

Given a panoramic image, it seems to be straightfor-

ward to solve Equation (1) and remove reflections, since

R has been ‘captured’ and Ω and Φ can be further simpli-

fied (e.g., by assuming they are uniform across each image,

as commonly adopted by previous works [38]). However,

as shown in Figure 2 (a) and (b), the panoramic reflection

scene captured by the real camera (i.e., RP) is not the glass-

reflected reflection image ‘captured’ by the virtual camera

(i.e., RG = Φ ⊙ R). There exists geometric and photo-

metric misalignment between the panoramic view RP and

the glass-reflected view RG, as shown in Figure 2 (c)−(e).

The geometric misalignment is mainly caused by different

positions of the real camera and the virtual one formed by

glass, while the photometric misalignment is aroused from

light attenuation when interacting with glass.

In this paper, we consider reflection removal using a sin-

gle panoramic image. We solve this problem with a two-

step solution including reflection alignment and transmis-

sion recovery. The first step adopts a coarse-to-fine strat-

egy to align RP to RG. The coarse alignment is achieved

by a pre-processing procedure that explicitly considers mis-

alignment factors (Section 3.2), while the fine-grained one

is accomplished by a reflection refinement network which

imposes the mutual information between RP and M (Sec-

tion 3.3). With a precisely aligned RG, the second step uti-

lizes a transmission recovery network to restore T from M

with the guidance of RG (Section 3.4). Our contributions

can be summarized as follows:

• We present the first work to explicitly relieve the

content ambiguity for reflection removal using a

panoramic image.

• We solve the geometric and photometric misalign-

ment between reflection scenes in panoramic and

glass-reflected views, accompanying with high-fidelity

transmission recovery after the alignment.

• We show that our method not only achieves supe-

rior performance advantage over single-image meth-

ods but also generalizes well to casual users without

panoramic cameras.

2. Related Work

A panoramic image is generated by stitching multiple

images from different viewpoints, but it cannot provide mo-

tion or parallax cues as inputs of multi-image reflection

removal methods [11, 42, 21, 25, 20], since the overlap

and correspondence information across different viewpoints

have been lost after merging the panoramic image. More-

over, since a panoramic image can be handily captured in a

single shot, we still focus on the discussion of single-image

reflection removal methods because they address similar

technical problems as panoramic image reflection removal.

Reflection removal. Existing methods for single-image re-

flection removal rely on the assumption of different distri-

butions of transmission and reflection images, i.e., reflec-

tion images are likely to be more blurry and with lower

intensity compared with transmission images. Traditional

methods formulate this assumption in their optimization

pipeline, e.g., image gradient sparsity priors [13], image

gradient smoothness priors [16], ghosting cues [27], image

content [34], and penalty on the gradient of recovered trans-

mission images [1, 46]. For learning-based methods, they

are developed to generalize the knowledge learnt from train-

ing data. They consider the assumption in the procedure of

training data synthesizing, e.g., blur natural images as re-

flection images with a Gaussian kernel [3, 49, 44, 15], di-

rectly capture the out-of-focus reflection images by placing

black cloth behind a piece of glass [36, 38, 50], or render the

out-of-focus reflection image [9]. Both optimization-based

methods and learning-based methods rely on the assump-

tion of different distributions of transmission and reflection

images. However, they could fail to deal with scenarios

where such assumption violates, e.g., when there are strong

reflections with sharp edges or content of two images are

easily confused.

Applications of panoramic images. Thanks to the full

FoV, panoramic images are useful in various computer vi-
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Figure 3. Given a panoramic image containing glass reflections with the mixture image M according to user-provided RoI, the panoramic

reflection scene RP is automatically cropped. Our method settles the geometric and photometric misalignment between the panoramic

reflection scene and the glass-reflected reflection image with a coarse-to-fine strategy. For the coarse alignment, RP is roughly aligned

to the glass-reflected reflection image RG via a pre-processing procedure with the help of M. Then a reflection refinement network for

the fine-grained alignment takes the coarsely aligned R
⋆

P and M as inputs, outputting an aligned reflection image RG. The transmission

recovery network estimates the transmission scene T from M with the guidance of RG and the estimated T is finally warped back to the

panoramic image.

sion applications. Panoramic images provide complete ob-

servation for geometry layouts of scenes, so there are meth-

ods studying scene understanding from a single panoramic

image, e.g., indoor layout estimation [45, 32], indoor depth

reconstruction [33], semantic segmentation, and vehicle de-

tection [12]. Panoramic images also provide complete ob-

servation for environment maps as lighting representation.

Some research attempts to recover the environment map

only from a partial observation, e.g., a 3D structure and a

probability distribution of semantic labels from an RGB-D

image [31], lighting represented by an HDR panoramic im-

age for either indoor [29, 18] or outdoor [48, 7] scenarios.

In this paper, we further investigate how partial views of the

reflection scene in a single panoramic image could be uti-

lized to relieve the content ambiguity of reflection removal.

3. Proposed Method

Given a single panoramic image partially contaminated

by reflections, the proposed method focuses on how to ex-

ploit content cues from the reflection scene to recover the

transmission scene behind glass. Without losing generality,

we ask the user to define a Region-of-Interest (RoI), which

usually contains the reflection-contaminated area. The RoI

is then automatically rectified to obtain the mixture image

M for reflection removal. We then roughly extract and

rectify the region of the panoramic reflection scene RP

from the panoramic image based on glass orientation, which

can be estimated according to the ratio of its two vertical

edges (assuming the glass to be planar and orthogonal to the

ground). We set the cropped regions with a wide FoV (i.e.,

90◦) to avoid the omission of useful content information as

shown in Figure 2 (a). Both of M and RP are resized to

h×w for computation purpose. The reflection-removed re-

sults (transmission scene T) could be visualized as directly

or optionally warped back to the panoramic image.

In this section, we first analyze factors that impact the

geometric and photometric misalignment between RP and

RG in Section 3.1. We then propose a coarse-to-fine strat-

egy to align RP to RG in Section 3.2 and Section 3.3. Fi-

nally, we introduce our transmission recovery network to

recover T from M with the guidance of RG in Section 3.4.

The pipeline of our method is displayed in Figure 3.

3.1. Misalignment Issues

Geometric misalignment. We define the geometric mis-

alignment as the pixel-wise spatial discrepancy caused by

different viewpoints of the real camera and the virtual one,

as illustrated in Figure 2 (a). Besides, as RP is roughly

cropped with a wide FoV, it contains a large proportion of

content that cannot be found from RG, which leaves addi-

tional problems for geometric alignment to solve.

Photometric misalignment. Given RP which has been

well aligned to RG regarding geometry, we define the pho-

tometric misalignment as their pixel-wise difference [37].
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Such misalignment comes from the light attenuation caused

by glass, which is described by the reflective amplitude co-

efficient map Φ [50]. We then represent the relationship

between RP and RG as

RG = Φ⊙RP. (2)

As existing alignment approaches (e.g., RANSAC-

Flow [26]) usually fail to handle above misalignment is-

sues due to the impact of glass1, we propose a coarse-to-

fine alignment strategy to achieve geometric and photomet-

ric consistency for the relief of the content ambiguity.

3.2. Coarse Alignment

Our coarse alignment is achieved by a pre-processing

procedure, where the geometric and photometric alignment

are explicitly considered. We assume the glass orientation

is not too large (i.e., < 30◦), based on our observation

that people usually photograph in front of the glass plate

rather than sideways if they intend to capture the transmis-

sion scene.

3.2.1 Geometric Alignment

We mainly consider the scale discrepancy and the spatial

translation, while leaving the refinement of parallax to our

fine-grained alignment. Because the distance from the cam-

era to the glass plate is generally much smaller than that to

the reflection scene, resulting significant scale discrepancy

and spatial translation with slight parallax.

We employ an ergodic searching and matching method

to deal with the scale discrepancy and spatial translation.

To be specific, we use a sliding window to address spatial

translation. That is, for all patches from RP with differ-

ent spatial positions, we aim at finding the one which best

matches with RG. We use different sizes of sliding win-

dows to consider the scale discrepancy, i.e., each patch of

RP is resized according to a scalar s before matching. De-

note each patch as Rs
i , where i ∈ P represents the position

of the patch on RP, and s ∈ S determines the patch size

(i.e., sh × sw). The geometric alignment is achieved by

finding the best matched patch R
⋆
P

among R
s
i :

R
⋆
P =argmin

Rs

i

{D(Rs
i ,RG)|∀i ∈ P, ∀s ∈ S}, (3)

where R
s
i is scaled to be the same size as RG, D(·) mea-

sures the similarity of Rs
i and RG. We highlight the simi-

larity regarding the global and local image structure:

D(Rs
i ,RG) = Ψ(∇R

s
i ,∇RG) +

1

K

K∑

j=1

Ψ(△jR
s
i ,△jRG),

(4)

1Examples can be found in the supplementary material.

where ∇ is the operator to calculate the image gradient, △j

is the operation to extract the j-th small patch, and Ψ(·) is a

function that measures the correlation between two images.

In our experiment, we use the normalization cross correla-

tion (NCC) [47] as Ψ(·) and set K = 64.

Though RG is not accessible from a single panoramic

image, M is a proper alternate with useful cues for our

alignment algorithm as RG is a component of M. We

also perform photometric alignment (introduced in Sec-

tion 3.2.2) for Rs
i before the geometric alignment to high-

light the role of strong reflections. We set s to be in the

interval of [0.45, 0.85]2 and sample s with the step of 0.05
for the above ergodic searching and matching procedure.

3.2.2 Photometric Alignment

Photometric alignment aims at producing R̂P from RP to

make it show the same photometric distribution as RG. Di-

rectly multiplying RP with Φ based on Equation (2) cannot

output desired results owing to the non-linear in-camera im-

age processing pipeline, especially for regions with strong

reflections. That is, Equation (2) only holds for scene radi-

ance, while it is not valid after the mapping of in-camera

pipeline. Specifically, the dynamic range clipping (due

to saturation) and non-linear mapping (due to radiomet-

ric response functions) [19] of in-camera image processing

pipeline make intensities of RP and RG to be comparative

for regions with large values, though those from RP should

be much larger than those from RG in real scenes.

To this end, we use a paired dataset from [37] with geo-

metrically aligned RP and RG to account for the in-camera

image processing pipeline and the light attenuation together.

The approximated relationship between RP and RG is built

by estimating the non-linear function using fifth-order poly-

nomial fitting as it is a common choice to model the cam-

era’s radiometric response function [22]. We then apply this

relationship to process RP and obtain a reflection scene that

is more similar to RG, in terms of the photometric distribu-

tion, as shown in Figure 3.

3.3. Reflection Refinement

The coarse alignment addresses the majority of the mis-

alignment between RP and RG. However, the slight paral-

lax still exists and the approximation for photometric align-

ment may not generalize well to all scenarios. Inspired

by the fact that M provides useful cues for geometric and

photometric alignment, we further perform the fine-grained

alignment by employing a reflection refinement network,

aiming to align the output of the coarsely aligned R
⋆
P

to

RG. As illustrated in Figure 4, the reflection refinement

network is composed of three modules, i.e., feature ex-

traction, feature fusion, and reflection generation. The re-

2More details about this setup are in the supplementary material.
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Figure 4. Illustration of detailed architectures of the reflection refinement network and the transmission recovery network. The reflection

refinement network takes the coarsely aligned R
⋆

P and M as inputs and outputs an aligned reflection scene R̃G. The transmission recovery

network estimates the transmission scene T by taking M and R̃G as inputs.

finement network is a two-branch neural network, each of

which takes the input of M and R
⋆
P

, respectively.

Feature extraction. Features of inputs are first extracted by

the multi-level image feature pyramids based on the widely-

used VGG-19 network [28], with the last four layers (i.e.,

three fully connected layers and a Softmax layer) being re-

moved to adapt our target of image-to-image translation.

The extracted feature pyramids are then transformed into

hypercolumn features, as they have been proved to be ef-

fective to learn semantic cues for the problem of reflection

removal [49, 40]. To balance the efficiency and effective-

ness, hypercolumn features are condensed by two convolu-

tional blocks, respectively, each of which is composed of a

convolution layer with kernel size 1 × 1 and an activation

layer with the ReLU activation function [23].

Feature fusion. This stage contains three repetitive com-

ponents, each of which consists of a mixture module for

feature exchange and two parallel streams for feature learn-

ing. In the mixture module, features of R⋆
P

are firstly used

to generate a spatial attention map via the spatial attention

module [43] to highlight the spatial information of remark-

able reflections. Features of M are then multiplied to the

spatial attention map, concatenated with the original fea-

tures, and condensed via a convolutional block with ker-

nel size 1 × 1, to obtain features of content cues for re-

flections. For features of R⋆
P

, they are concatenated with

the condensed features of M to produce more content in-

formation regarding the reflection scene while isolating that

from the transmission scene. After condensed by another

convolutional block (kernel size 1 × 1), features of R⋆
P

for

alignment can be acquired. The parallel streams then learn

features that mutually exchange their content information.

We repeat above procedures three times to extract discrimi-

native features for reflection generation.

Reflection generation. This stage contains two genera-

tion streams for refined features of M and R
⋆
P

, respectively.

Each stream generates features of reflections, which is com-

posed of a transposed convolutional block for up-sampling

and two convolutional blocks with a pyramid pooling mod-

ule [40]. The top branch generates the estimated reflection

image denoted as R̃G, while the bottom one obtains an es-

timated gradient map as G̃RG
, which is utilized for loss cal-

culation to better constrain the fine-grained alignment.

Loss functions. Considering pixel-wise similarity and hu-

man perceptions jointly, we train our reflection refinement

network with the following loss function:

Ltotal = ω1Lpixel + ω2Lssim + ω3Lfeat + ω4Lalign. (5)

The weights are empirically set as ω1 = 1, ω2 = 1,

ω3 = 0.1, and ω4 = 0.5 throughout our experiments. The

Pixel loss function Lpixel is defined as the mean square error

(MSE) between the estimated R̃G and its ground truth RG:

Lpixel(R̃G,RG) =
∥∥∥R̃G −RG

∥∥∥
2

2

. (6)

The structural similarity loss function Lssim tackles the

blurry regions caused by the pixel loss and it is defined as:

Lssim(R̃G,RG) = 1− SSIM(R̃G,RG), (7)

where the structural similarity index (SSIM) [39] measures

the similarity of the illuminance, contrast, and structure be-

tween two images. The feature loss function Lfeat is de-

signed to measure the discrepancy of R̃G and RG in feature

space, which is similar to that in [49, 40]:

Lfeat(R̃G,RG) =
∑

i
λi

∥∥∥Φi(R̃G)−Φi(RG)
∥∥∥
1

, (8)

where {λi} are the weights for equilibrium of multi-stage

feature differences, and Φi represents the i-th convolutional

layer in the VGG-19 model [28]. The alignment loss func-

tion Lalign is designed to ensure the guidance via spatial

attention maps from refined features of R⋆
P

to be reliable.

It is accomplished by diminishing the pixel difference be-

tween the estimated gradient of the aligned reflection scene

G̃RG
and the gradient of the ground truth reflection image

GRG
= ∇RG:

Lalign(G̃RG
, GRG

) =
∥∥∥G̃RG

−GRG

∥∥∥
2

2

. (9)
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3.4. Transmission Recovery

As shown in Figure 4, our transmission recovery net-

work recovers the transmission scene with the help of the

estimated reflection image R̃G. As R̃G is expected to con-

tain the geometrically and photometrically aligned content

information with the glass-reflected image, the content am-

biguity in our transmission recovery is supposed to be re-

lieved. Our network uses a similar architecture of [40], ex-

cept that content cues of reflection scenes are embedded.

Note that this architecture can also be replaced by other re-

flection separation methods such as CoRRN [38]. Com-

pared with the architecture in [40], we add a branch to ex-

ploit helpful content information from R̃G. The additional

branch extracts hypercolumn features from R̃G and gener-

ates a spatial attention map to indicate the reflection region.

Then features of M are multiplied with the attention map

and concatenated to their product. A convolutional block

condenses the fused features after the concatenation. The

network repeats above operations once again except for the

attention map, we subtract it by one to avoid the omission

of certain transmission scenes. The fused features will be

processed by the following residual blocks and up-sampling

components of [40], ultimately recovering the distinct and

clean transmission scene. We use the same training loss as

that in [40] to train our transmission recovery network.

3.5. Data Preparation

Training data. Our method is trained using a synthetic

dataset, which contains 5000 sets of data with transmission

scenes, mixture images, reflection images, and unaligned

reflection scenes. Reflection images are generated from re-

flection scenes with manually added photometric and geo-

metric misalignment and blended with transmission scenes

multiplied with a randomly scalar to simulate the light atten-

uation3. Images for synthesis are selected from an indoor

image dataset SUN RGB-D [30] and an outdoor dataset

Cityscapes [2], to cover various real scenarios.

Testing data. We collect two groups of real panoramic im-

ages for evaluation, including 30 sets as PORTABLE and 10

sets as NATURAL dataset. Images in PORTABLE are used

for quantitative evaluation and visual quality comparison,

which are captured by putting a portable glass in the scene.

The corresponding transmission and reflection scenes are

captured in the same way as in [35, 49]. Images in NATU-

RAL are used for visual quality comparison, which are cap-

tured with glass found in different natural scenarios, such as

office buildings. Samples from these two sets are collected

by a single-shot panorama camera Ricoh Theta Z1. We fur-

ther collect a real dataset named PHONE, which only con-

tains mixture images and reflection scenes collected by ca-

3More details about the synthetic data generation are in the supplemen-

tary material.

Table 1. Comparisons of quantitative results in terms of PSNR [8],

SSIM [39], NCC [47], and LMSE [4] on our PORTABLE dataset.

↑ (↓) indicates larger (smaller) values are better. Bold numbers

indicate the best performing results.

Method

Error Metrics

PSNR↑ SSIM↑ NCC↑ LMSE↓

Ours 23.986 0.749 0.926 0.021

IBCLN [15] 20.636 0.709 0.862 0.031

KH20 [9] 20.443 0.711 0.849 0.035

CoRRN [38] 20.539 0.696 0.865 0.033

ERRNet [40] 21.444 0.701 0.87 0.029

sual users with a Huawei P40 Pro+ smartphone, for valida-

tion of the generalization capability of the proposed method.

Implementation details. The reflection refinement net-

work and the transmission recovery network are imple-

mented with PyTorch, a widely-used deep learning frame-

work [24]. These networks are both trained 40 epochs with

Adam [10] optimizer. The weights are initialized as in [5].

The learning rate is set to 10−4 initially and decreases to

10−5 at epoch 30.

4. Experiments

4.1. Comparison with Single­image Methods

We compare our method with four sate-of-the-art meth-

ods for single-image reflection removal4, including IB-

CLN [15], KH20 [9], CoRRN [38], and ERRNet [41]. Fol-

lowing the evaluation for existing reflection removal meth-

ods [35, 40], we utilize PSNR [8], SSIM [39], NCC [47],

and LMSE [4] as error metrics.

As can be found from Table 1, our method achieves

much better quantitative performance regarding all error

metrics compared with state-of-the-art single-image meth-

ods, e.g., 0.749 over 0.709 regarding SSIM [39]. As the vi-

sual quality comparison on PORTABLE dataset in Figure 5

shown, all of these single-image methods fail to address the

content ambiguity, i.e., incorrectly enhance the image con-

tent from reflections due to sharp edges (first row) and fail

to remove strong reflections caused by light sources (sec-

ond row). Our method successfully suppresses strong re-

flections with sharp edges and produces much more faithful

recovery of transmission images. We further conduct ex-

periments on NATURAL dataset as illustrated in Figure 65,

which further demonstrates the effectiveness of the pro-

posed method using a panoramic view.

4The evaluation on the estimation of reflection images can be found in

the supplementary material.
5A demo video displaying reflection removal in panoramic images with

user interaction can be found in the supplementary material.
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Figure 5. Examples of reflection removal results on PORTABLE dataset, compared with IBCLN [14], KH20 [9], ERRNet [40], and

CoRRN [38]. Close-up views are displayed at the bottom of each image. Zoom in for better details.

Original Panorama Ours

ERRNetCoRRN

IBCLN

KH20

Figure 6. Visual quality comparison with state-of-the-art single-image reflection removal methods on NATURAL dataset. Close-up views

are displayed in each image. Zoom in for better details.

4.2. Validation for Coarse­to­fine Alignment

We evaluate the effectiveness of our method in compar-

ison with three variants: 1) ‘coarse only’ method that skips

the fine-grained procedure, 2) ‘fine-grained only’ method

that skips the pre-processing procedure, and 3) ‘no align-

ment’ method that directly takes RP and M as inputs of the

transmission recovery network.

Table 2 reports the quantitative comparison. As can be

observed, both the coarse and fine-grained alignment play

important roles in our method. Compared with the perfor-

mance of single-image methods in Table 1, the no alignment

method still achieves much better performance, indicating

the effectiveness of our transmission recovery network and

Table 2. Comparisons of quantitative results in terms of PSNR [8],

SSIM [39], NCC [47], and LMSE [4] on our PORTABLE dataset.

Bold numbers indicate the best performing results.

Method

Error Metrics

PSNR↑ SSIM↑ NCC↑ LMSE↓

Ours 23.986 0.749 0.926 0.021

No alignment 22.539 0.724 0.895 0.027

Fine-grained only 23.473 0.738 0.909 0.024

Coarse only 23.288 0.737 0.907 0.025

the setup of panoramic image reflection removal6. As can

be observed from the visual comparison results in Figure 7,

6The ablation study on the transmission recovery network can be found

in the supplementary material.
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Figure 7. Visual quality comparison of different variants of our methods. From left to right: the mixture image/the ground truth of the

transmission scene, estimated reflection images/recovered transmission scenes from our method, the no alignment method, the fine-grained

only method, and the coarse only method. Close-up views are displayed at the right side of each image. Zoom in for better details.

Reflection removal result

Ours ERRNet CoRRNIBCLN KH20Mixture image Reflection scene

Input

Figure 8. An example of reflection removal results on PHONE dataset, compared with IBCLN [14], KH20 [9], ERRNet [40], and

CoRRN [38]. Close-up views are displayed at the bottom of each image. Zoom in for better details.

our method produces a more accurate estimation of the re-

flection image as compared with its variants (first row) and

thereby recovers the transmission scene with better details

and fewer reflection artifacts (second row).

4.3. Without using Panoramic Cameras

This section considers a more practical case for casual

users who does not have panoramic cameras but use con-

ventional cameras or mobile phones with limited FoV. Af-

ter capturing a mixture image, the reflection scene can be

obtained by turning over the camera for about 180◦, while

the constraints on RP and RG is not the same as that in a

panoramic image, bringing different challenges for reflec-

tion alignment and transmission recovery. To evaluate the

generalization capacity, we conduct experiments on PHONE

dataset using our method and other single-image methods.

As can be observed from Figure 8, our method achieves

much better results and suppresses most of reflection arti-

facts. Single-image methods as IBCLN [14] and KH20 [9]

incorrectly enhance reflection artifacts, with ERRNet [40]

and CoRRN [38] only suppressing partial reflections. From

the promising results, it can be verified that our two-step

pipeline is well generalized for limited-FoV images, accom-

panying with the prominent advantage on relieving the con-

tent ambiguity for reflection removal.

5. Conclusion

We consider relieving the content ambiguity by taking

a panoramic image as the input for reflection removal. We

show that the major challenge of this problem is the geomet-

ric and photometric misalignment between the panoramic

reflection scene and the glass-reflected reflection image,

based on which a two-step solution composing of reflec-

tion alignment and transmission recovery is proposed. Ex-

perimental results demonstrate that our method not only

achieves a significant performance advantage over single-

image methods by relieving the content ambiguity, but also

generalizes well to casual users. Though our method re-

lieves the content ambiguity for most scenarios, it fails to in-

paint extremely strong reflections with missing image con-

tent knowledge. Failure cases are shown in our supplemen-

tary material.

Acknowledgement

This work is supported by National Natural Sci-

ence Foundation of China under Grant No. 61872012,

62088102, and Beijing Academy of Artificial Intelligence

(BAAI). Qian Zheng is supported by the Rapid-Rich Ob-

ject Search (ROSE) Lab, Nanyang Technological Univer-

sity, Singapore.

7769



References

[1] Nikolaos Arvanitopoulos, Radhakrishna Achanta, and
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