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Figure 1. Our proposed StereoPIFu could recover high-fidelity and depth-aware reconstruction of clothed human body. Compared with

state-of-the-art methods, our reconstruction is more accurate and maintains correct relative positions of different parts of the human body.

Abstract

In this paper, we propose StereoPIFu, which integrates

the geometric constraints of stereo vision with implicit func-

tion representation of PIFu, to recover the 3D shape of

the clothed human from a pair of low-cost rectified images.

First, we introduce the effective voxel-aligned features from

a stereo vision-based network to enable depth-aware recon-

struction. Moreover, the novel relative z-offset is employed

to associate predicted high-fidelity human depth and occu-

pancy inference, which helps restore fine-level surface de-

tails. Second, a network structure that fully utilizes the

geometry information from the stereo images is designed

to improve the human body reconstruction quality. Con-

sequently, our StereoPIFu can naturally infer the human

body’s spatial location in camera space and maintain the

correct relative position of different parts of the human

body, which enables our method to capture human perfor-

mance. Compared with previous works, our StereoPIFu sig-

nificantly improves the robustness, completeness, and accu-

racy of the clothed human reconstruction, which is demon-

strated by extensive experimental results.

1. Introduction

Human digitization is the key to many applications

like AR/VR, virtual try-on, holographic communication,
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film/game production etc. While high-fidelity and geo-

metric detail preserved 3D human digitalization can be

achieved with high-end acquisition equipment and well-

designed capture environment [17, 22], it is not suitable

for general consumers. Recently, with the popularization

of consumer-level acquisition devices, human digitization

with simple inputs becomes a hot research topic in the field

of 3D computer vision and computer graphics.

Many methods have been proposed for clothed hu-

man reconstruction from simple inputs (e.g., single im-

age). Among them, some methods reconstruct the 3D

human body with the help of parametric models [13, 29,

33, 34, 36, 45, 27]. However, parametric models are

mainly used for reconstructing naked body and can not

deal with topology changes. To solve these problems, im-

plicit function based representations have been recently in-

troduced [25, 43, 38, 46, 47, 16, 10, 21, 23]. Represen-

tatively, Saito et al. [46] proposed Pixel-Aligned Implicit

Function (PIFu), which performs implicit function predic-

tion based on the z-value of a 3D query point and its pro-

jected 2D image feature. PIFu is memory-efficient and can

generate a plausible surface with a single image. Later, PI-

FuHD [47] further improves the results of PIFu in the aspect

of fine-level geometric details recovery with the aid of pre-

dicted normal maps and higher resolution. However, like

other single image-based approaches, PIFu can not predict

the precise spatial location and suffers from depth ambi-

guity, which results in inconsistent results noticeable from

different perspectives. Besides, PIFu related methods are
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prone to generate wrong structures like broken limbs.

A natural way to resolve the depth ambiguity is to take

multi-view images as input. However, existing approaches

for 3D human digitization rarely fully utilize the rich ge-

ometric relationships endowed by stereo vision. For ex-

ample, Gilbert et al. [20] only exploits visual hull ex-

tracted from multi-view silhouettes, and PIFu-like meth-

ods [25, 46] aggregate the projected pixel features from

multi-view images with a pooling layer for each query

point. As shown in Fig. 1, this simple operation fails to

perceive the depth information. On the other hand, some

deep learning-based depth estimation methods explore ge-

ometric correlations between multi-view images and obtain

satisfying results [30, 15, 31, 14, 58, 53]. The key to su-

perior performance is the constructed cost volume feature,

which encodes the correlation between a pixel and its can-

didate pixels in another view. Generally, these methods pre-

dict disparity, namely the horizontal displacement between

a pair of corresponding pixels from rectified stereo pair im-

ages. The pixel’s predicted disparity can be obtained by

calculating the weighted average of these candidate dispar-

ities, and the predicted depth can be recovered via triangu-

lation [31, 15, 53].

To overcome the limitations of classic PIFu-like meth-

ods mentioned in the above, we propose StereoPIFu (Stereo

Vision-Based Pixel-Aligned Implicit Function) for depth-

aware clothed humans digitization. Compared with PIFu,

StereoPIFu has two novel designs to improve its represen-

tation ability. First, we introduce additional novel voxel-

aligned features as input to the implicit function. Dif-

ferent from the voxel-aligned features of previous meth-

ods [23, 16], our voxel-aligned features are extracted from

volume data widely used in stereo vision-based depth es-

timation networks. Specifically, we construct two volume

data from the feature maps of the image pair. The volumes

define a spatial grid and for a 3D query point, we can do

trilinear interpolation on its neighboring voxels in the vol-

umes to generate voxel-aligned features. The features con-

tain rich geometric information, indicating the correlation

between the query point and the underlying surface. With

voxel-aligned features as input, StereoPIFu can predict hu-

mans’ spatial location in camera space without the need to

normalize human shape into a canonical space like PIFu.

Second, we introduce human shape priors to guide the rep-

resentation. Specifically, a high-quality human depth map is

obtained based on the above-mentioned volume data. More-

over, the relative z-offset between the query point and its

projected pixel’s predicted depth is added as another input

of the implicit function. Compared with using the absolute

z-value, relative z-offset can generate more realistic details.

More importantly, the predicted depth map provides com-

plete surface constraints for the human body and effectively

eliminates broken limbs in reconstructed results. With the

above novel designs, StereoPIFu can recover high-fidelity

geometric details and accurate geometric shape of human

body. In summary, the paper includes the following contri-

butions:

• We propose StereoPIFu, a novel implicit representa-

tion integrating stereo vision to PIFu representation,

which makes full use of binocular images and enables

high-quality depth-aware reconstruction of the clothed

human body.

• We utilize the novel well-designed voxel-aligned fea-

tures and predicted depth map to help occupancy in-

ference. The geometric correlation contained in the

voxel-aligned features and depth priors significantly

improve the robustness, completeness, and accuracy of

clothed human reconstruction.

2. Related Work

Reconstruction from Single Image. Different strategies

have been proposed to recover 3D human body shape from

a single image. A common way is to fit the input image by a

parametric model (e.g., SMPL [36]) via 2D landmarks and

silhouette [13, 29, 45, 33, 27]. However, these methods can

only recover the naked body’s shape due to the limited rep-

resentation ability of the parametric model. Several meth-

ods [8, 7, 6, 9] add a displacement on each vertex to rep-

resent fine-scale details. Bhatnagar et al. [11] and Jiang et

al. [28] additionally regress the clothes via parametric mod-

els. These methods have improved the quality but are still

unable to recover high-fidelity geometry shape.

Several methods [51, 60] take 3D CNN to regress vol-

umetric representation of human bodies. However, they

can not recover geometric details due to the large mem-

ory consumption of 3D CNN. Instead of regressing a vol-

ume with a fixed resolution, Saito et al. [46] propose Pixel-

Aligned Implicit Function (PIFu) representation, which is

memory-efficient and can predict the occupancy of any 3D

point. However, it may generate incorrect body structures

and struggle to recover fine-scale geometric details. To

this end, PIFuHD [47] improves PIFu with additionally ex-

tracted high-resolution features and predicted normal maps.

Huang et al. [26] and Zheng et al. [59] take a feature re-

lated to the parametric human model as the input of the im-

plicit function to improve the stability of prediction. He et

al. [23] expands the pixel-aligned feature with geometry-

aligned shape features, which serves as a shape prior for

the reconstruction. Gabeur et al. [19] convert this prob-

lem as depth prediction of the front- and back-side, and the

complete shape is obtained by merging the recovered point

clouds together. However, these methods suffer from depth

ambiguity due to the inherent nature of single image input.

Reconstruction from Multi-view Images. Previous stud-

ies extract shape cues from the silhouette, stereo, and
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shading, to recover geometric shape from multi-view in-

puts [49, 17, 52, 8, 22]. The high-quality 3D shape can

be reconstructed with hundreds of cameras [17, 22, 18, 56],

but this hardware configuration is inaccessible to general

consumers due to its special equipment and complexity.

Gilbert et al. [20] predicts the high-fidelity volume of the

human shape utilizing a coarse visual hull generated by

sparse view silhouettes with a 3D convolutional autoen-

coder network. Alldieck et al. [8] take a video of humans

slowly rotating as input and exploit the silhouette of frames

to optimize the SMPL+D representation. Alldieck et al. [6]

uses a network to substitute the optimization, which leads to

faster inference and simpler input (1-8 frames). However,

these methods are hard to recover fine-level surface details

due to their limited geometric representation abilities. Sev-

eral works [25, 46] aggregate multi-view pixel-aligned fea-

tures with a pooling layer to help reconstruction. Although

improved results can be obtained, the simple aggregation

with the pooling strategy does not make full use of the in-

formation endowed by multi-view images.

Depth Estimation from Stereo Images. Depth estima-

tion from stereo images has been studied extensively for

decades. Although traditional methods have made signif-

icant progress [12, 24], they still suffer from the edge-

fattening [48, 39] and poor performance in challenging sit-

uations like textureless regions. Recently, deep learning-

based methods have been proposed to alleviate these prob-

lems [37, 30, 15, 31, 14, 58, 53]. DispNet [37] constructs

a large-scale synthetic dataset, Scene Flow, and builds the

first end-to-end trainable framework for disparity predic-

tion. GC-Net [30] concatenates the left and right images’

feature and applies 3D convolutions to aggregate the result-

ing 4D feature cost volume. PSMNet [15] further improves

the accuracy by using a stacked hourglass block [41] with

more 3D convolutional layers. Several methods [58, 53] de-

sign novel modules to reduce the memory consumption and

can obtain competitive performance with other state-of-the-

art methods. However, these methods can only recover the

shape of the human body’s visible part as they do not utilize

any human body shape prior.

3. Method

In this paper, we aim to perform depth-aware reconstruc-

tion for the clothed human. To this end, we propose Stere-

oPIFu, which takes a pair of stereo images as input. Sim-

ilar to PIFu [46], we learn an implicit function that indi-

cates whether a 3D point is inside the human body or not.

Compared with PIFu, we additionally add the self-designed

voxel-aligned features as input, which effectively improves

our method’s expression ability and enables depth-aware

reconstruction of the clothed human body. Moreover, the

predicted high-fidelity depth map further helps recover the

fine-level geometric details of the visible part. An overview

of our method is shown in Fig. 2, and we will give the algo-

rithm details for each part in the following.

3.1. Stereo Vision­based PIFu

StereoPIFu takes a pair of rectified color images, Il and

Ir as input, and can be formulated as:

f(Fl(πl(P )),Φ(P ),Ψ(P ), ψt(ZE(P ))) 7→ s ∈ [0, 1],
(1)

where f is the implicit function represented by a multi-layer

perceptron (MLP). It infers a continuous scalar s ∈ [0, 1] to

indicate the occupancy of any 3D query point P in the left

camera space. π represents the camera projection. Its sub-

scripts indicate its left and right image counterparts. Fl is

the feature map extracted from the left image and Fl(πl(P ))
denotes pixel-aligned feature in PIFu [46]. Φ(P ) and Ψ(P )
are voxel-aligned features of P , and they will be described

in detail later. We denote E as the predicted depth map

corresponding to Il, and the relative z-offset ZE(P ) of P

relative to E is defined as:

ZE(P ) = Pz − E(πl(P )), (2)

where Pz is the z-coordinate of P , andE(πl(P ) is the depth

value of πl(P ) in E. Compared with PIFu [46], we addi-

tionally input more variables to predict the occupancy value

s of P . We will introduce them one by one and explain the

reasons for our design.

Pixel-Aligned Feature Fl(πl(P )). The pixel-aligned fea-

ture was first introduced in PIFu [46] and widely applied

in the later PIFu-like methods [47, 26, 23, 35, 59]. First,

an image encoder (e.g., hourglass in [46]) is used to ex-

tract feature map Fl from Il. Generally, the image encoder

is specially designed to have a large receptive field to sup-

port overall perception and consistent depth inference. For

a given 3D query point P , we compute its pixel-aligned fea-

ture Fl(πl(P )) by bilinearly interpolating Fl at πl(P ). In-

stead of using a global feature [43], the pixel-aligned feature

encodes the local detail information contained in the image

and results in a more high-fidelity reconstruction.

Voxel-Aligned Features Φ(P ), Ψ(P ). Although the

pixel-aligned feature leads to more surface details, it can-

not perceive the absolute depth information and struggles

to guarantee correct relative positions of various body parts.

In addition to the pixel-aligned feature, PIFu [46] further

uses the query points’ z-coordinates to distinguish their oc-

cupancy values along the ray. Therefore, it needs to nor-

malize all training data to a fixed bounding box, making

PIFu unable to restore the human body’s spatial location.

To this end, we specially design the novel voxel-aligned fea-

tures, which contain rich spatial and geometric information.

Based on these features, both the spatial location and the

relative position of various body parts can be recovered.

Our observation is that the volume data, widely used

in stereo vision-based depth estimation networks, naturally
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Figure 2. Overview of our StereoPIFu pipeline. Given a stereo pair, for a query point P , its pixel-aligned feature, voxel-aligned features,

and relative z-offset are constructed. These features encode the information about whether P is inside the underlying surface or not and

are used for inferring the occupancy of P by the MLP.

contains spatial information. For a given 3D query point

P , we define its voxel-aligned features as the trilinear in-

terpolation of these volume data depending on its spatial

position. Specifically, we use AANet+, recently introduced

in [53], to predict the depth map E corresponding to Il. Its

structure is shown in the lower-left part of Fig. 2. First, a

shared feature extractor is used to extract the downsampled

feature pyramids. Then, given the maximum disparity range

D, an intermediate variable, i.e., the confidence volume Ψ,

is constructed. It is a 4D tensor with size [1, D,H,W ] and

defines a scalar field in 3D space (please refer to [53] for

details). For any element of Ψ, its index coordinate (d, i, j)
corresponds to a 3D point in the space, and its value de-

scribes the probability of whether the point lies on the vis-

ible part of the underlying surface. Finally, the predicted

disparity dPred(i, j) for a pixel (i, j) in the left image Il is

a combination of all the disparity values weighted by their

corresponding confidence value in Ψ, and it is expressed as:

dPred(i, j) =

D−1
∑

d=0

d×Ψ(d, i, j). (3)

The depth value can be computed by bk
dPred(i,j)

[50], where

b is the baseline of stereo images and k is the focal length.

As the confidence volume mainly encodes the visible

part of the underlying surfaces, we introduce another fea-

ture cost volume to further encode the 3D space contain-

ing the entire underlying surface. As shown in the voxel-

aligned features extractor of Fig. 2, we first upsample the

multi-scale features of two feature pyramids to the same

size. Then, we concatenate them together to form two 3D

tensors with size [Cin, H,W ], denoted as Fl and Fr, re-

spectively. Next, we follow Khamis et al. [31] to construct

the initial feature cost volume Φ′ with size [Cin, D,H,W ]
from Fl and Fr, by computing the differences between a

feature in Fl and its corresponding features with some dis-

parities in Fr, i.e.:

Φ′(:, d, i, j) = Fl(:, i, j)−Fr(:, i, j − d). (4)

Based on Φ′, we use a variation of the stacked 3D hour-

glass network in [15] to aggregate context across the spatial

and disparity domain to generate the feature cost volume Φ.

Specifically, we add a downsampling layer at the beginning

of the network for reducing memory consumption. All 3D

deconvolutions are replaced by the combination of upsam-

pling and convolution for eliminating the checkerboard arti-

facts [42]. The repeated bottom-up and top-down architec-

ture of the hourglass network extends the 3D receptive field,

making features in Φ more consistent and robust. Like the

above-mentioned confidence volume Ψ, Φ naturally defines

a vector field in 3D space, the index coordinates of each el-

ement of Φ corresponds to a 3D point, and its feature vector

encodes the information whether the 3D point lies on the

underlying surface, including the occluded parts.

For a given query point P , its voxel-aligned features con-

sist of cost feature Φ(P ) and confidence value Ψ(P ). They

are obtained by trilinearly interpolating Φ and Ψ at the co-

ordinate
(

πl(P )x−πr(P )x, πl(P )y, πl(P )x
)

, respectively.

Relative z-offset ZE(P ). As stated in PIFuHD [47], the

pixel-aligned feature with low resolution is hard to en-

code fine-level surface details. The above-mentioned voxel-

aligned features also suffer a similar problem. Fortunately,

AANet+ can provide a high-resolution depth map. Thus the

relative z-offset naturally encodes the fine-level geometric
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information. Moreover, thanks to the human shape prior

from our constructed large-scale human body dataset (see

Sec. 4.1), the AANet+ retrained by the dataset can gener-

ate a high-quality, complete, and consistent human depth

map. Furthermore, the relative z-offset can exploit the hu-

man priors from predicted depth to guide occupancy infer-

ence. Specifically, the relative z-offset endows the query

points close to the underlying surface with a similar relative

z-offset value, making the network easier to train and en-

abling our StereoPIFu to generate fine-level surface details

and avoids broken limbs. Therefore, the relative z-offset

actually acts as a bridge between the predicted depth and

occupancy prediction.

For some cases such as a hand in front of the torso, there

will be some discontinuous regions in the predicted depth

map E. In these cases, ZE(P ) of the occluded query points

in the back will change discontinuously, resulting in unnat-

ural geometric copy in the occluded region, as shown in

Fig. 4. To tackle this issue, we design a transformation func-

tion ψt(x) to normalize ZE(P ) to the interval (−1.0, 1.0):

ψt(x) =
2.0

1.0 + exp(−t · x)
− 1.0, (5)

where t is a hyperparameter. For query points far away

from the predicted depth, ψt(ZE(P )) will be close to 1.0
or −1.0, which effectively eliminates the geometric copy of

the occluded part of human body and helps to produce more

natural reconstruction results, see Sec. 4.3.

3.2. Loss Function

With our constructed dataset (see Sec. 4.1), our Stere-

oPIFu is trained with ground truth as supervision. In the

following, we give details of the loss terms.

Loss on Depth Estimation. We adopt the same multi-scale

loss function as [53] to retrain AANet+, i.e., depth estima-

tion module of our StereoPIFu, especially for human body

type images,

LDisp =
∑

ω

λω · L(dGT
ω (p), dPred

ω (p)) (6)

where dPred
ω (p) is ω-scale predicted disparity in pixel p, and

dGT
ω (p) is the corresponding ground truth value. L is the

smooth L1 loss and λω is the weight to balance different

terms.

Loss on Implicit Function. We adopt the same sampling

strategy with [46, 47] to generate sampling points for train-

ing our implicit function. Differently, we do not normalize

our training data to a canonical space and they are accompa-

nied by random spatial locations (see Sec. 4.1). The Binary

Cross Entropy (BCE) loss is used for occupancy prediction.

LOccu =
∑

P∈S

fGT (P ) · log(fPred(P ))

+ (1− fGT (P )) · log(1− fPred(P ))

(7)

where S denotes the set of sampling points, fPred(P )
is the predicted occupancy value for sampling point P

and fGT (P ) is the corresponding ground truth occupancy

value. The pixel-aligned feature extractor, the voxel-aligned

features extractor, and the MLP of Fig. 2 are trained using

LOccu.

4. Experiments

4.1. Datasets

We collected 171 and 103 rigged human models from

AXYZ [1] and RenderPeople [4], respectively. They all

have high-fidelity geometry and realistic texture. Then non-

water-tight meshes are converted into water-tight meshes

with blender [2] for efficiently generating sampling points

and their ground truth occupancy values. To construct a

large-scale dataset for training, these human models are an-

imated with Mixamo [3] to generate mesh sequences with

various actions and postures. Finally, we generate 68419
meshes from 246 human models as the training data, and

7578 meshes from 28 human models as the testing data.

To efficiently synthesize binocular image pairs from the

generated meshes, we assume the mesh surface to be pre-

dominantly Lambertian and fix the binocular camera pa-

rameters. For a given mesh in our dataset, we randomly

rotate, translate, and scale the mesh within a certain range

and randomly disturb the light direction and intensity to fur-

ther enhance our data. The synthetic images are rendered

on-the-fly with CUDA acceleration and directly used for

training. This strategy effectively improves our network’s

generalization ability.

4.2. Implementation Details

We train StereoPIFu in two steps. First we train the

AANet+ for depth prediction based on Eq. (6). Then we

fix the parameters of the AANet+ and train the other parts

of StereoPIFu for occupancy prediction based on Eq. (7).

We implemented our StereoPIFu in Pytorch [44]. Adam

optimizer [32] (β1 = 0.9, β2 = 0.999) is used and the

weight decay is set to 0.0001. The learning rate starts at

0.0001 and is decayed by the factor of 0.1 after every 10

epochs. We train our network on 3 NVIDIA V100 GPUs

with batch size of 15. The parameter t of transformation

function ψt(·) is set to 50. The loss weights in Eq. (6) are set

to λ1 = λ2 = λ3 = 1.0, λ4 = 2
3 , λ5 = 1

3 . The resolution

of our stereo image pair is set to 576× 576 and their maxi-

mum disparity range is set to 72. Due to the downsampling

operator, the sizes of confidence volume Ψ and cost volume

Φ are [1, 24, 192, 192], [64, 24, 96, 96], respectively.

4.3. Evaluations

We evaluate our StereoPIFu on three datasets, including

AXYZ pose dataset [1], the synthetic meshes from our test-
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Front Side Front Side Front Side

Input PF using 2-view images + AZ PF + VF + AZ PF + VF + RZ

Figure 3. Ablation study on our StereoPIFu. ‘PF’: Pixel-aligned Feature; ‘PF using 2-view images’: The average of PFs from 2-view

images; ‘VF’: Voxel-aligned Features; ‘AZ’: Absolute z-value; ‘RZ’: Relative z-offset. ‘PF using 2-view images + AZ’ fails to infer the

plausible geometry due to the complexity and diverse spatial locations of our training data. ‘PF + VF + AZ’ is a variant of our StereoPIFu.

Compared with PIFu[46], only our self-designed voxel-aligned features is added as the input of the implicit function. ‘PF + VF + RZ’ is

another variant of our StereoPIFu. As relative z-offset replaces absolute z-value, finer surface details can be recovered.

Input wo ψt(·) with ψt(·)

Figure 4. Ablation study on transformation function ψt(·). The

transformation function ψt(·) can effectively eliminate the back

geometry copy artifact caused by the discontinuity of ZE(P ).

ing data, and BUFF dataset [57]. AXYZ pose dataset con-

tains 100 high-quality meshes with obvious cloth wrinkles

under general posture. For our testing dataset, we randomly

select 100 meshes that are accompanied by some challeng-

ing postures and complex occlusions. BUFF dataset con-

tains 100 human meshes scanned by high-end equipment.

The material and lighting of these meshes look realistic.

These datasets have ground-truth measurements and are not

used in our training stage. The corresponding color images

are obtained by using our renderer. In the following, we

first show some ablation studies to analyze the role of each

module in our method, and then do comparisons with other

state-of-the-art methods. In the final, we show the recon-

struction results on real captured data to demonstrate the

generalization of our method.

Ablation Study. We conduct ablation studies to demon-

strate the importance of inputs in Eq. (1) that we design for

occupancy inference and high-fidelity reconstruction. First,

we retrain PIFu using 2-view images [46] with our con-

structed dataset, where PIFu’s network takes the same input

Method AXYZ BUFF Synthetic

AANet+ 0.7268 0.8969 0.7699

Retrained AANet+ 0.1635 0.1785 0.1600

PF+VF+ψt(RZ) 0.1754 0.1907 0.1659

Table 1. Comparisons between AANet+ and StereoPIFu. The nu-

merical values represent the average distance (cm) between ground

truth geometry and the visible area generated by AANet+ predict-

ing depth or our reconstructed result.

AXYZ Pose BUFF Synthetic

Method P2S Chamfer P2S Chamfer P2S Chamfer

DeepHuman 2.656 2.670 3.875 3.454 2.761 3.502

PIFu With 1-View 1.760 1.980 2.010 2.033 2.729 3.680

PIFu With 2-Views 1.739 1.971 1.975 2.013 2.749 3.706

PIFuHD 1.551 1.666 1.816 1.735 2.544 3.219

PF+VF+AZ 0.612 0.668 0.639 0.667 0.726 0.641

PF+VF+RZ 0.556 0.611 0.591 0.614 0.469 0.485

PF+VF+ψt(RZ) 0.547 0.603 0.568 0.612 0.417 0.436

Table 2. Quantitative evaluation on several datasets. Point-

to-Surface distance and Chamfer distance (cm) between recon-

structed and ground truth meshes are computed. Please refer to

Fig. 3 for ‘PF,VF,AZ,RZ’.

images as our StereoPIFu. As shown in Fig. 3, due to the

complexity and diverse spatial locations of our training data,

PIFu [46] using the pixel-aligned feature from 2 view im-

ages and absolute z-coordinate fails to reconstruct reason-

able human geometry. In contrast, a variant version of our

StereoPIFu successfully learns human priors from the same

dataset by taking the pixel-aligned feature, voxel-aligned

features, and the absolute z-coordinate of P as input. This

experiment shows that our voxel-aligned features indeed en-

code the query point’s depth-scale information and further

enhance the representation ability of previous works.

Fig. 3 also shows that geometric details can be better

recovered by replacing the absolute z value with the rela-

tive z-offset. Besides, as shown in Tab. 1, the errors of our

StereoPIFu and retrained AANet+ are similar (slight error
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Input Ground Truth DeepHuman [60] PIFu using 2-view images [46] PIFuHD [47] Ours

Figure 5. Qualitative comparison with other methods. Our StereoPIFu can depth-aware reconstruct the high-fidelity clothed human body

and is more robust to extreme postures. The incorrect reconstruction parts of other methods are marked with red rectangles.

increase of StereoPIFu may come from the process of re-

construction from occupancy fields), which verifies that our

self-designed relative z-offset indeed effectively utilizes the

human priors from the predicted depth map to guide occu-

pancy inference. In addition, the significant accuracy im-

provement of the retrained AANet+ demonstrates the effec-

tiveness of our constructed dataset. Moreover, Fig. 4 shows

that our transformation function ψt(·) can help infer oc-

cluded back geometry and eliminate unreasonable artifacts.

Tab. 2 shows our quantitative evaluation using the above

mentioned three types of dataset. We compute Point-to-

Surface distance and Chamfer distance from the recon-

structed mesh to the ground truth mesh. The results from

Tab. 2 demonstrate that our novel voxel-aligned feature sig-

nificantly improves the reconstruction accuracy.

Comparisons. Fig. 1, 5 and Tab. 2 show our qualitative

and quantitative comparison with state-of-the-art 3D hu-

man reconstruction methods. DeepHuman [60] first pre-

dicts a parametric human model, i.e., SMPL [36], then the

entire volume’s occupancy value is regressed based on the

predicted SMPL mesh. Its results are over-smooth due to

memory limitation. Besides, incorrect body structure pre-

diction in the first stage will result in large error in the final.

PIFu’s results can recover rough shape but still suffer from

lacking fine-level details. PIFuHD [47] additionally uses

the feature extracted from a high resolution image to guide

the fine-level reconstruction. Also, it further enhances geo-

metric details using predicted front- and back- side normal
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maps. However, its results are still depth-ambiguous and

cannot ensure the correctness of different parts of the human

body’s relative positions due to single image input. Tab. 2

shows the quantitative comparison between our method and

these methods. Our method greatly outperforms the state-

of-the-art method of PIFuHD in terms of geometric errors.

On average, the Point-to-Surface distance and Chamfer dis-

tance decrease from 1.97cm to 0.51cm (74.1% reduction)

and from 2.21cm to 0.55cm (75.1% reduction) respectively.

It shows that the introduction of our well-designed voxel-

aligned features can bring a substantial gain. It is worth

noting that, compared with single image based methods, our

method does not need to perform scaling operation before

computing the reconstruction accuracy. For other methods,

we need to align their results to ground-truth models based

on rigid transformation with scaling.

Different from single image based methods, our method

is depth-aware. As shown in the first row of Fig. 5, the belly

of the pregnant women can be accurately recovered by our

method. StereoPIFu is also aware of the bending motion

and can accurately reconstruct the plausible result as shown

in the second row of Fig. 5. Similarly, our method also suc-

cessfully maintains the relative position of the right hand

and the human body as shown in Fig. 1. As pointed out

via the red rectangles, the competing methods can not han-

dle these challenging cases. Besides, our method is more

robust than other methods. For some extreme postures as

shown in the bottom two rows of Fig. 5, our method can

still obtain correct results and our reconstructions are sig-

nificantly better than other methods.

Results on Real Data. We also evaluate our method on

actual captured data. We use a binocular camera [5] to cap-

ture binocular images where people do various actions. As

shown in Fig. 6, although the camera parameters and light-

ing conditions may be inconsistent with our training data,

our StereoPIFu can still accurately reconstruct the geome-

try shape of human bodies. We also show the reconstruction

results of PIFuHD [47] using a single view image. Although

their results look quite good from the input view, inaccurate

human body structure can be easily observed from another

view. As shown in the 1st row of Fig. 6, the left leg of

their result is longer than the right one. Besides, we can

find that PIFuHD generates incorrect shape especially for

the leg as shown in the last two rows, a significantly en-

larged right leg can be observed from the side view of the

third example. In contrast, with the help of binocular im-

ages and the well-designed neural network, our StereoPIFu

can accurately recover the human body’s geometry shape

and relative positions of different body parts. Therefore,

our method can be directly extended to capture human per-

formance, and a comparison video is supplied as supple-

mentary material. As the video shows, our results are more

stable and robust than others.

Input Depth Normal PIFuHD [47] Ours

Figure 6. Comparison results of our method and PIFuHD [47] on

real data. From left to right: input images, depth maps recovered

by our network, normal maps computed from the recovered depth

maps, results of PIFuHD, results of ours. Please refer to the sup-

plementary video for sequence comparison.

5. Discussion and Conclusion

Our work still has several limitations. First, the care-

ful calibration of the binocular camera is essential for our

method. When the camera parameters are not accurate, our

method may be affected or even fail to reconstruct body

shapes. Second, for the invisible area, our StereoPIFu can

only predict a plausible result while can not guarantee its

accuracy. In the future, we plan to utilize several MVS sys-

tems [54, 55, 40] to alleviate the problem.

In this paper, we proposed StereoPIFu, a novel clothed

human digitization method that integrates stereo vision to

implicit function representation. First, we introduced the

novel voxel-aligned features, which enables our StereoPIFu

to depth-aware clothed human body reconstruction. Sec-

ond, the transformed relative z-offset of the query point is

used to recover the geometric details and eliminate the back

region’s geometry-copy artifacts, and it further improves the

reconstruction accuracy of our method. Extensive experi-

ments demonstrate that the proposed method outperforms

existing state-of-the-art methods and achieves more robust

and accurate 3D human digitization.
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