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Abstract

Feature-based student-teacher learning, a training

method that encourages the student’s hidden features to

mimic those of the teacher network, is empirically success-

ful in transferring the knowledge from a pre-trained teacher

network to the student network. Furthermore, recent em-

pirical results demonstrate that, the teacher’s features can

boost the student network’s generalization even when the

student’s input sample is corrupted by noise. However,

there is a lack of theoretical insights into why and when

this method of transferring knowledge can be successful be-

tween such heterogeneous tasks. We analyze this method

theoretically using deep linear networks, and experimen-

tally using nonlinear networks. We identify three vital fac-

tors to the success of the method: (1) whether the student

is trained to zero training loss; (2) how knowledgeable the

teacher is on the clean-input problem; (3) how the teacher

decomposes its knowledge in its hidden features. Lack of

proper control in any of the three factors leads to failure of

the student-teacher learning method.

1. Introduction

1.1. What is studentteacher learning?

Student-teacher learning is a form of supervised learning

that uses a well-trained teacher network to train a student

network for various low-level and high-level vision tasks.

Inspired by the knowledge distillation work of Hinton et al.

[14], Romero et al. [24] started a major line of experimen-

tal work demonstrating the utility of feature-based student-

teacher training [1, 7, 9, 13, 15, 17, 19, 20, 26–28, 31–33].

Figure 1 shows an illustration of the scheme. Suppose

that we want to perform classification (or regression) where

the input image is corrupted by noise. In student-teacher

learning, the teacher is a model trained to classify clean

images. We assume that the teacher’s prediction quality

is acceptable, and the features extracted by the teacher are

meaningful. However, the teacher cannot handle noisy im-

ages because it has never seen one before. Student-teacher

Figure 1. The student-teacher training loss, computed by measur-

ing the difference between the hidden features of the student and

the teacher networks. During training, the input signal to the stu-

dent network is the noisy version of the teacher’s.

learning says that, given a pair of clean-noisy input, we can

train a student by forcing the noisy features extracted by

the student to be similar to those clean features extracted

by the teacher, via a loss term known as the student-teacher

loss. In some sense, the training scheme forces the student

network to adjust its weights so that the features are “de-

noised”. During testing, we drop the teacher and use the

student for inference.

The success of student-teacher learning from clean in-

puts to corrupted inputs has been demonstrated in recent pa-

pers, including classification with noisy input [9], low-light

denoising [7], and image dehazing [15]. However, on the

theory side, there is very little analysis of why and when the

hidden features of the teacher can boost the generalization

power of the student. Most of the explanations in the exper-

imental papers boil down to stating that the hidden features

contain rich and abstract information about the task which

the teacher solves, which could be difficult for the student

network to discover on its own.

In this paper, we provide the first insights into the mech-

anism of feature-based student teacher learning from clean

inputs to noisy inputs, for classification and regression
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tasks. The questions we ask are: When will student-teacher

learning succeed? When will it fail? What are the con-

tributing factors? What is the generalization capability of

the student?

The main results of our theoretical and experimental

findings can be summarized in the three points below:

• The student should not be trained to zero training

loss.

• A knowledgeable teacher is generally preferred, but

there are limitations.

• Well-decomposed knowledge leads to better knowl-

edge transfer.

To verify these findings, we prove several theoretical re-

sults, including showing how missing one or more of those

can lead to failure, by studying deep linear networks. We

experimentally verify these findings by studying wide non-

linear networks.

1.2. Related works

Most of the existing papers on feature-based student-

teacher learning are experimental in nature and include little

analysis. As there already are two comprehensive review

papers on these works [10, 30], we do not attempt to pro-

vide another one here, but instead list a few representative

uses of the learning method: homogeneous-task knowledge

transfer techniques, which include general-purpose model

compression [1, 13, 17, 19, 28, 33], compression of object

detection models [31], performance improvement on small

datasets [33]; heterogeneous-task knowledge transfer tech-

niques similar to that depicted in Figure 1: the student’s

input is usually corrupted by noise [9, 27], blur [15], noise

with motion [7], etc.

On the theory front, there are three papers that are most

related to our work. The first is [29], which formulates

student-teacher learning in the framework of “privileged in-

formation”. We found two limitations of the work: first, it

only focuses on student-teacher learning using kernel clas-

sifiers and not neural networks; second, it does not clearly

identify and elaborate on the factors that lead to the suc-

cess and failure cases of student-teacher learning. The sec-

ond paper of interest is [23], which focuses on the train-

ing dynamics of student-teacher learning, while our work

focuses on the generalization performance of the trained

student. The third one is [22]. Aside from studying tar-

get-based (instead of feature-based) student-teacher learn-

ing for deep linear networks, there are two additional dif-

ferences between their work and ours: they only focus on

the case that the teacher and student’s tasks are identical,

while we assume the student faces noisy inputs, moreover,

some of their messages appear opposite to ours, e.g. from

their results, early stopping the student network is not nec-

essary, and might, in fact, harm the student’s generalization

performance, while we claim the opposite.

1.3. Scope and limitations

We acknowledge that, due to the varieties and use cases

of student-teacher learning, a single paper cannot analyze

them all. In this paper, we focus on the case depicted in

Figure 1: the teacher and student network have identical ar-

chitecture, no transform is applied to their features, and they

solve the same type of task except that the student’s input is

the noisy version of the teacher’s. We do not study the learn-

ing method in other situations, such as model compression.

Moreover, our focus is on the generalization performance

of the student, not its training dynamics.

2. Background

We first introduce the notations that shall be used

throughout this paper. We denote the clean training sam-

ples {(xi,yi)}
Ns

i=1 ⊂ R
dx × R

dy , and the noise vectors

{ǫi}
Ns

i=1 ⊂ R
dx . For matrix M , we use [M ]i,j to denote

the (i, j) entry of M , and [M ]i,: and [M ]:,j to denote the

i-th row and j-th column of M . For convenience, we define

matrices [X]:,i = xi, [Xǫ]:,i = xi + ǫi, and [Y ]:,i = yi.

We write an L-layer neural network f(W 1, ...,WL; ·) :
R

dx → R
dy as (for simplicity we skip the bias terms):

f(W 1, ...,WL;x) = σ(WLσ(WL−1...σ(W 1x)...)

where the W i’s are the weights, and σ(·) is the activation

function. In this model, if σ(·) is the identity function, we

have a deep linear network as a special case. Deep linear

networks have been used in the theoretical literature of neu-

ral networks [2–4,18,22,25], as they are often more analyt-

ically tractable than their nonlinear counterparts, and help

provide insights on the mechanisms of the nonlinear net-

works. We denote W L =
∏L

i=1 W i.

While we will demonstrate numerical results for L-layer

linear (and nonlinear) networks, to make our theoretical

analysis tractable, we make the following assumptions:

Assumptions for theoretical results in this paper:

• Assumption 1: The student and the teacher share the

same 2-layer architecture: shallow (L = 2), fully-

connected, and the dimension of the single hidden

layer is m.

• Assumption 2: Noise is only applied to the input of

the student, the targets are always noiseless.

In terms of the training losses of the student network, we
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denote L̂base(W 1,W 2) as the base training loss:

L̂base(W 1,W 2) =

Ns∑

i=1

ℓ(f(W 1,W 2; xi + ǫi︸ ︷︷ ︸
noisy input

), yi︸︷︷︸
clean label

)

(1)

where ℓ : Rdy×R
dy → R≥0 can be, for instance, the square

loss. Moreover, we define the student-teacher (ST) training

loss as follows:

L̂st(W 1,W 2) = L̂base(W 1,W 2)︸ ︷︷ ︸
base training loss

+

λ

Ns∑

i=1

‖σ(W 1(xi + ǫi))− σ(W̃ 1xi)‖
2
2

︸ ︷︷ ︸
feature difference loss

(2)

where the W̃ i’s are the weights of the teacher network. The

feature difference loss for 2-layer networks can be easily

generalized to deeper networks: for every h ∈ {1, ..., L −
1}, sum the ℓ2 difference between the hidden features of

layer h from the student and teacher networks.

During testing, we evaluate the student network’s gener-

alization performance using the base testing loss:

Ltest(W 1,W 2)
def
= Ex,y,ǫ [ℓ(f(W 1,W 2;x+ ǫ),y)] .

(3)

Unlike many existing experimental works, we do not ap-

ply any additional operation to the hidden features of the

student and teacher networks. We choose the particular

student-teacher loss because we wish to study this train-

ing method in its simplest form. Furthermore, this form

of student-teacher loss is close to the ones used in [7, 9].

3. Message I: Do not train student to zero loss

The student-teacher loss (2) can be viewed as the base

loss (1) regularized by the feature difference loss [9, 24]. A

natural question then arises: since we are already regulariz-

ing the base loss, shall we train the overall student-teacher

loss to zero so that we have the optimal student-teacher so-

lution? The answer is no. The main results are stated as

follows.

Message I: Do not train the student to zero training loss.

• Section 3.1: If the deep linear network is over-

parametrized Ns < dx, training the student until zero

training loss using (2) will return a solution close to

the base one (Theorem 1). Similar conclusion holds

for Ns ≥ dx (Theorem 2).

• Section 3.2: An early-stopped student trained with

(2) has better test error than one trained to conver-

gence.

3.1. Theoretical insights from linear networks

To prove the theoretical results in this sub-section, we as-

sume that σ(·) is the identity function, and the base training

and testing loss are the MSE loss, i.e. ℓ(ŷ,y) = ‖ŷ − y‖22.

We explicitly characterize how close the solutions of the

MSE and S/T losses are.

Theorem 1 Let L = 2. Suppose the student’s sample

amount Ns < dx, {x}Ns

i=1 and {ǫ}Ns

i=1 are sampled indepen-

dently from continuous distributions, and the optimizer is

gradient flow. Denote W base
i (t) and W st

i (t) as the weights

for the student network trained with the base loss (1) and

the student-teacher loss (2), respectively.

Assume that the following statements are true:

i There exists some δ > 0 such that ‖W base
i (0)‖F ≤ δ

and ‖W st
i (0)‖F ≤ δ for all i;

ii The teacher network minimizes the training loss for

clean data
∑Ns

i=1 ℓ(f(W̃ 1, W̃ 2);xi);

iii Gradient flow successfully converges to a global mini-

mizer for both the MSE- and ST-trained networks

With mild assumptions on the initialized weights and the

gradient flow dynamics induced by the two losses, and with

δ sufficiently small, the following is true almost surely:

lim
t→∞

‖W base
L

(t)−W st
L
(t)‖F ≤ Cδ (4)

for some constant C that is independent of δ.

Proof. See supplementary materials.

The implication of the theorem is the following. When

we initialize the student’s weights with small norms, which

is a standard practice [8,12], and if the teacher satisfies sev-

eral mild assumptions, then the final solution reached by

the MSE- and the student-teacher-induced gradient flow are

very close to each other. In other words, using student-

teacher training does not help if we train to zero loss.

We elaborate on some of the assumptions. The assump-

tion Ns < dx causes the optimization problem to be un-

derdetermined, leading to nonunique global minima to the

base and student-teacher problems. Thus, we need to con-

sider solutions that the gradient flow optimizer chooses. As-

sumption (iii) simplifies our analysis and is similar to the

one made in [4]. It helps us to focus on the end result of the

training rather than the dynamics.

We observe similar phenomenon when Ns ≥ dx, albeit

with stricter assumptions on the two networks.

Theorem 2 Suppose Ns ≥ dx. Assume that L =

2, span
(
{xi + ǫi}

Ns

i=1

)
= R

dx , the teacher network

can perfectly interpolate the clean training samples, and

the dimension of the hidden space m is no less than
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rank(Y XT
ǫ
(XǫX

T
ǫ
)−1). Then the global minimizers of

MSE and S/T satisfy:

W base
L

= W st
L
= Y XT

ǫ
(XǫX

T
ǫ
)−1 (5)

Proof. See supplementary materials.

Theorem 2 tells us that when the teacher network has

zero training error on the clean-input task, and the student

possesses sufficient capacity, MSE and S/T learning pro-

duce exactly the same student network. Additionally, as

proven in the supplementary materials, very similar ver-

sions of the current and previous theorem hold even if the

teacher’s activation function is not the identity. It can be any

function.

The two theorems show that, even though the feature dif-

ference loss in (2) can be viewed as a regularizer, it is im-

portant to add other regularizers or use early stopping so

that (2) can provide benefit to the student.

3.2. Experimental evidence

Since the theoretical analysis has provided justifications

to the linear networks, in this sub-section, we conduct a nu-

merical experiment on nonlinear networks to strengthen our

claims.

Choices of teacher and student. We consider a

teacher and a student that both are shallow and wide fully-

connected ReLU networks with hidden dimension m =
20, 000, input dimension dx = 500, and output dimension

dy = 1. We assume that the teacher network is the ground

truth here, and the teacher’s layers are set by the Xavier

Normal initialization in PyTorch, i.e. each entry of W̃ 1 is

sampled from N (0, 2/(dx + m)), and each entry of W̃ 2

is sampled from N (0, 2/(dy + m)). The clean input data

x ∼ N (0, I), and the noise ǫ ∼ N (0, σ2
ǫI), with σǫ = 0.5.

The loss ℓ(·, ·) is the square loss, so the learning task is MSE

regression. All networks are optimized with batch gradient

descent.

Experimental setting. The goal of the experiment is to

demonstrate the benefit of early stopping to the trained stu-

dent’s testing error. We first randomly sample {xi + ǫi}
Ns

i=1

and compute the {yi}
Ns

i=1. To train the student network us-

ing (2), we carry out parameter sweep over λ in (2), and

for each λ used, we record that student’s best testing error

during training and at the end of training. Note that all of

these trained students use Xavier normal initialization with

the same random seed and the same training samples. We

found that the best test error always occurs during training,

i.e. early stopping is necessary. Out of all the early-stopped

networks trained with different λ’s, we pick out the one that

has the best early-stopped test error, and plot this error on

the “Early-Stopped” curve, and that network’s error at the

end of training on the “Zero Training Loss” curve. Finally,

for comparison purposes, for all the Ns’s we choose, we

1000 2000 3000 4000 5000 6000

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 2. Testing error of student networks trained with the

student-teacher loss (2), with and without early stopping, and stu-

dent network trained with the base loss (1). The figure shows that

early stopping is necessary for student-teacher learning to have

significant improvement over baseline learning.

also train student networks using the base loss (1), with the

same samples and initialization, and early-stopped for opti-

mal generalization.

Conclusion. The experimental results are depicted in

Figure 2. The horizontal axis is Ns, i.e. the amount of noisy

training samples available to the student, and the vertical

axis is the test error of the trained student. Indeed, the early-

stopped students trained with (2) can outperform both the

“zero-training-loss” student and the baseline student, which

supports the necessity of early-stopping the student.

4. Message II: Use a knowledgeable teacher

In this section, we shift our attention to the teacher.

We consider the following questions: How knowledgeable

should the teacher be (1) if we want student-teacher learn-

ing to generalize better than using the base learning? (2)

if the input data becomes noisier so that more help from

the teacher is needed? To quantify the level of a teacher’s

“knowledge”, we use the number of training samples seen

by the teacher as a proxy. The intuition is that if the teacher

sees more (clean) samples, it should be more knowledge-

able.

Message II: For any teacher pre-trained with a finite

amount of data, there exists an operating regime for the

student-teacher learning to be effective. The regime de-

pends on the number of training samples available to the

teacher and student. Generally, a more knowledgeable

teacher is preferred.

• Section 4.2: If more training samples are available

to the students, the teacher needs to be more knowl-

edgeable for the student-teacher learning to be effec-

tive.
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• Section 4.3: If the student’s task becomes more diffi-

cult (i.e. the noise level is higher), the teacher needs

to be more knowledgeable in order to help the stu-

dent.

4.1. Experimental setting

We conduct several experiments using deep nonlinear

convolutional networks to verify the message. Before we

dive into the details, we define a few notations, as shown in

Table 1.

Ns number of noisy samples/class for student

Nt number of clean samples/class for teacher

f t(Nt) teacher trained with Nt clean samples

f st(Nt, Ns) student trained with Ns noisy samples

and f t(Nt) using student-teacher loss (2)

f base(Ns) same as f st but trained using base loss (1)

Et(Nt) testing error for f t(Nt)
Est(Nt, Ns) testing error for f st(Nt, Ns)
Ebase(Ns) testing error for f base(Ns)

Table 1. Notations for Section 4.

The goal of this experiment is to show the regime where

student-teacher learning is beneficial. To this end, we aim

to visualize the equation

Est(Nt, Ns) ≤ (1− δ)Ebase(Ns), (6)

for some hyper-parameter δ > 0. Given noise level σǫ,

this equation depends on how knowledgeable the teachers

is (based on Nt), and how many samples the student can

see (Ns).

For this experiment, we consider a classification prob-

lem on CIFAR10 dataset. We use ResNet-18 as the back-

bone for both student and teacher networks. The feature-

difference loss is applied to the output of each stage of the

network, and we fix the hyper-parameter λ in (2) to 0.001

for all training instances, as it already yields good testing

error. Optimization-wise, both the student and the teacher

networks are trained with SGD optimizer from scratch for

300 epochs, and the learning rate is set to 0.01 initially and

is divided by 10 after every 100 epochs. To make early stop-

ping possible, we allocate 2000 images from the testing set

to form a validation set. The best model on the validation

set from the 300 epochs is saved.

To minimize the random effect during the training pro-

cess, we do not use any dropout or data augmentation. We

also make sure that the networks with the same training

sample amount (Ns or Nt) are trained with the same sub-

set of images. Each model is trained 5 times with different

random seeds, and the average performance is reported.

4.2. Operating regime of studentteacher learning

Figure 3. Operating regime of student-teacher learning. Green cir-

cles • represent the actual numerical experiment where Est ≤
(1 − δ)Ebase, and red crosses × represent Est > (1 − δ)Ebase.

We highlight regions where students-teacher learning can be ben-

efited. If Nt is too small, Ns is too small, or Ns is too large, there

is little benefit of student-teacher learning.

Understanding the operating regime can be broken down

into two sub-questions:

(1a) Is there a range of Ns such that regardless of how big

Nt is, student-teacher learning simply cannot beat base

learning?

(1b) Away from the regime in (1a), as Ns varies, how

should Nt, the teacher’s training sample quantity,

change such that student-teacher learning can outper-

form base learning?

Generation of Figure 3. The answers to the above

questions can be obtained from Figure 3. The figure’s x-

axis is Ns and y-axis is Nt. Parameter-wise, the data in

the figure is generated by varying Ns and Nt, while keep-

ing σǫ fixed to 0.5. Procedure-wise, we first select two

sets, Nt and Ns ⊂ N. For every Nt ∈ Nt, we train a

teacher network f t(Nt), early-stopped to have the best test-

ing error on the clean-input task. Then for each Ns ∈ Ns

and each f t(Nt), we train a student network f st(Nt, Ns)
using the student-teacher loss (2), and train a f base(Ns)
with the base loss (1). The above experiment is repeated

over different Nt’s. Now, we fix δ = 0.02, and compare

Est(Nt, Ns) against Ebase(Ns) over all the pairs of Nt and

Ns. If Est(Nt, Ns) ≤ (1 − δ)Ebase(Ns), we mark the po-

sition (Nt, Ns) with a green dot in the figure, otherwise,

we mark it with a red cross. For clearer visualization, we

use color blocks to emphasize the important regions in the

figure.
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Answering question (1a). In Figure 3, we see that when

Ns is too small, the region is filled with red crosses, i.e.

student-teacher learning cannot outperform baseline learn-

ing regardless of what Nt is. Intuitively speaking, when Ns

is too small, it simply is impossible for the student to extract

any meaningful pattern from its training data, regardless of

how good the teacher’s features are.

Answering question (1b). Figure 3 shows that, as Ns

increases, the lower boundary of the green region keeps

moving upward, which means that Nt must also increase

for student-teacher learning to beat the baseline. This phe-

nomenon is also intuitive to understand: as the student sees

more and more training samples, its ability to capture the

target-relevant information in the noisy input would also

grow, so it should also have higher demand on how much

target-relevant hidden-feature information the teacher pro-

vides about the clean input.

4.3. The influence of student’s task difficulty

Another related question is the following:

(2) How knowledgeable should the teacher be when the

student needs to handle a difficult task, so that student-

teacher learning is effective?

To answer the above question, we conduct the following

experiment. We fix Ns = 320 and δ = 0.04, increase σǫ

from 0.1 to 0.5 by steps of 0.1, and observe how Nt needs

to change in order for Est(Nt, Ns) ≤ (1 − δ)Ebase(Ns) to

be maintained. The result is shown in Table 2. Note that the

Nt’s vary by steps of 100.

Interpreting Table 2. It can be seen that as σǫ in-

creases, Nt must also increase in order for Est(Nt, Ns) ≤
(1 − δ)Ebase(Ns). Intuitively speaking, as the noise in

the student’s training input samples becomes heavier, it be-

comes harder for the student to extract target-relevant pat-

terns from the input, as the noise obscures the clean pat-

terns. This in turn means that the teacher needs to give the

student information of greater clarity in order to help the

student, and this boils down to an increase in Nt.

σǫ 0.1 0.2 0.3 0.4 0.5

Nt 200 300 500 700 800

Table 2. Minimum training samples Nt required at each σǫ level.

4.4. Summary

The experimental results above suggest a few important

observations. Firstly, a large Nt (i.e., a more knowledge-

able teacher) is generally beneficial. Secondly, if Ns is too

small or too large, the student-teacher offers little benefit.

Thirdly, a larger σǫ generally demands a more knowledge-

able teacher.

5. Message III: Well-decomposed knowledge

leads to better knowledge transfer

In Section 4, we observed that when Nt is large, student-

teacher learning usually outperforms the baseline learn-

ing. However, the following question remains unanswered:

Does a good teacher only mean someone with a low testing

error? Intuitively we would think yes, because low-test-

error means that the teacher performs well on its own task.

However, having a low testing error does not mean that the

teacher can teach. In fact, student-teacher learning benefits

from a “divide-and-conquer” strategy. If the knowledge can

be decomposed into smaller pieces, student-teacher learn-

ing tends to perform better.

Message III: Student-teacher learning improves if the

teacher can decompose knowledge into smaller pieces.

• Section 5.2: If the teacher’s hidden features have suf-

ficiently low complexity, then it is easy for the stu-

dent to mimic the teacher’s features, hence resulting

in low test error on the noisy task (Theorem 3);

• Section 5.3: When Ns is not too small, a similar phe-

nomenon happens for nonlinear networks.

5.1. Theoretical setting

We first need to settle on a way to quantify how de-

composed the knowledge is. Since the concept of “knowl-

edge” itself is vague, we acknowledge that any definition

surrounding its decomposition would have some degree of

arbitrariness.

Unit of knowledge — how neurons are grouped. We

adopt the following definition of units of knowledge in the

hidden layer. For linear networks, the unit is any hidden

neuron with weight that has sparsity level of 1, i.e. only

one of its entries is nonzero. This choice fits the intuition

of the simplest linear transform possible, and is compatible

with the popular LASSO regression model. We shall further

elaborate on this in section 5.2.

For ReLU networks, we treat any hidden ReLU neuron

as one unit of knowledge. When outputs from more ReLU

neurons are linearly combined together, we treat them as

larger units of knowledge as they form more complex piece-

wise linear functions. This observation is further supported

on wide fully-connected ReLU networks. If such a network

was trained with gradient descent and initialized with stan-

dard schemes, such as the Xavier Normal initialization, the

hidden neurons’ weights would be close to their random ini-

tialization [5, 16]. Therefore, given a group of these neu-

rons, as long as the group is not too large, their weights are

unlikely to be col-linear, so linearly combining the outputs

of them indeed create more complex functions.
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Figure 4. An illustration of the simplified student-teacher loss (7).

Here, dx = 4, m = 4, and g = 2. Notice that the square dif-

ference is taken between the pooled features of the student and

teacher networks.

Additional assumptions. To provide a concrete theoret-

ical result, we make several additional assumptions:

i We assume that the teacher network has zero test error.

This is the best-case-scenario in Section 4.

ii We focus on the simplified student-teacher training loss,

defined as follows:

L̂simp
st (W 1)

=

Ns∑

i=1

∥∥∥P
[
σ(W 1(xi + ǫi))− σ(W̃ 1xi)

]∥∥∥
2

2

(7)

An illustration of the above loss is shown in Figure

4. The base loss L̂base(W 1,W 2), which provides tar-

get information, is not present here. The matrix P ∈
R

(m/g)×m, where g ∈ N is a divisor of m, and P i,j = 1
if j ∈ {ig, ..., (i + 1)g}, and zero everywhere else.

Multiplication with P essentially sums every g neurons’

output, similar to how average pooling works in convo-

lutional neural networks. We treat g as a proxy of how

decomposed the teacher’s features are: the larger it is,

the less decomposed the features are.

iii We fix W 2 = W̃ 2, i.e. the second layer of the

student is fixed to be identical to the teacher’s, and

only W 1 is trainable. At inference, the student com-

putes W̃ 2Pσ(W 1(x + ǫ)), and teacher computes

W̃ 2Pσ(W̃ 1x).

iv We assume that the entries in the noise vectors ǫ are all

zero-mean Gaussian random variables with variance σ2
ǫ .

5.2. Theoretical analysis via LASSO

We formulate the knowledge decomposition analysis via

LASSO, because it offers the most natural (and clean) ana-

lytical results. We use the identity for the activation function

Figure 5. Small-g (left) vs. large-g (right) student-teacher learning.

σ(·). For simplicity, we use dy = 1, and use the square loss

for ℓ(·, ·). Thus, our learning problem reduces to linear re-

gression. Following the suggestion of Section 3, we impose

an ℓ1-regularization onto the student so that it becomes a

LASSO.

Theorem 3 Assume assumptions (i)-(iv) in Section 5.1, and

consider the following conditions:

• The ground truth is a linear model characterized by the

vector β∗ ∈ R
dx , and without loss of generality, only

the first s entries are nonzero.

• The hidden dimension of the networks m is equal to

the number of non-zeros s.

• The weights of the teacher satisfy [W̃ 2]i = 1 for all

i = 1, ..., s/g; [W̃ 1]i,i = β∗
i for i = 1, ..., s, and the

remaining entries are all zeros. Essentially, the s/g
groups of pooled teacher neurons in (7) each has g
distinct entries from β∗

.

• The number of samples satisfies 1 Ns ∈
Ω̃
(
g2 log(dx)

)
.

• The samples {x}Ns

i=1 and some of the parameters above

satisfy certain technical conditions (for LASSO analy-

sis).

Then, with high probability, the student network which min-

imizes (7) achieves mean square test error

E

[(
W̃ 2PW 1(x+ ǫ)− β∗Tx

)2
]
= Õ1

(
σ2
ǫ ‖β

∗‖22
1 + σ2

ǫ

)
.

(8)

Proof. See supplementary materials.

Interpreting the theorem. Note that, when g is small,

the above error can be quite close to the optimal test er-

ror σ2
ǫ ‖β

∗‖2F /(1 + σ2
ǫ ), shown in the supplementary notes.

1We hide constants coming from the technical LASSO analysis with˜

on top of O and Ω.
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More importantly, the required sample amount Ns is inde-

pendent of s, the “complexity” of the ground truth linear

model. In contrast, if we only use the targets to train the stu-

dent, standard LASSO literature suggests that Ns should at

least be Ω(s) to achieve nontrivial generalization [6,11,21].

Thus, by decomposing the teacher’s knowledge into sim-

ple units, student-teacher learning can succeed with much

fewer samples than base learning. See the supplementary

notes for experimental demonstrations of students trained

by (7) outperforming those trained with targets by a signifi-

cant margin.

Besides the fact that the teacher has zero testing error, the

key reason behind this effective learning is the “divide-and-

conquer” strategy adopted by (7). This idea is roughly illus-

trated in Figure 5. Imagine that each small disk represents a

hidden neuron of a network, and the left and right sides rep-

resent two ways of teaching the student. The left is essen-

tially giving the student neurons simple pieces of informa-

tion one at a time, while the right floods the student neurons

complex information pooled from many teacher neurons all

at once. The left side clearly represents a better way of

teaching, and corresponds to a choice of small g.

Now, let us consider the more precise example in Figure

4, in which dx = 4, m = 4, g = 2, and suppose s = dx.

If we use the base loss (1) to train the student, the student

can only see β∗Tx, i.e. the action of every element in β∗ =
(β∗

1 , ..., β
∗
4) on x all at once. On the other hand, as stated in

the third bullet point of Theorem 3, for every i ∈ {1, ..., s},

the ith hidden neuron [W̃ 1]i,: of W̃ 1 encodes exactly the

ith entry in β∗, so the first group of the student neurons

sees the action of (β∗
1 , β

∗
2 , 0, 0) on x, and the second group

sees the action of (0, 0, β∗
3 , β

∗
4) on x. In other words, the

two groups of student neurons each observes response to

the input x created by a 2-sparse subset of β∗. Due to the

lower sparsity in such responses, with the help of LASSO,

the student neurons can learn more easily.

On a more abstract level, the above theorem suggests an

important angle of studying student-teacher learning: the

“simpler” the hidden features of the teacher are, the more

likely it is for the student to benefit from the teacher’s fea-

tures.

5.3. Numerical evidence

We verify our claims using a nonlinear network.

Network setting. The networks are shallow and fully-

connected, with m = 20, 000, and the activation function

σ(·) is the ReLU function. We define ℓ(·, ·) to be the square

loss. All student networks are initialized with the Xavier

Normal initialization, and optimized with SGD.

Experiment setting. The clean input signal x ∈ R
500

has the distribution N (0, I), and the noise has distribu-

tion N (0, 0.09I). We assume that the ground truth net-

work is identical to the teacher network. As a result,

10
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Figure 6. Here, dx = 500 and m = 20, 000. Test error vs. g, the

number of neurons per group. From the figure it is clear that, as

long as Ns is not too small, the fewer neurons per group, the lower

the test error of the trained student network.

during testing, we simply compute E[(W̃ 2Pσ(W 1(x +

ǫ))− W̃ 2Pσ(W̃ 1x))
2]. To construct the teacher network,

we set W̃ 1 with Xavier Normal initialization, and we set

[W̃ 2]i = 1 for all i ∈ {1, ...,m/2g}, and [W̃ 2]i = −1 for

all i ∈ {m/2g+1, ...,m/g}. Notice that, for any g such that

m/g is divisible by 2, the overall function W̃ 2Pσ(W̃ 1·)
remains the same, i.e. regardless of what g is, a network

trained with the base loss (1) remains the same.

Interpreting the results. As shown in Figure 6, as long

as Ns is not too small, the greater g is, the higher the test er-

ror of the student trained with (7). Intuitively speaking, an

increase in g means that more teacher neurons are pooled

in each of the s/g groups, so the piecewise-linear function

formed by each of these groups is more complex. There-

fore, it becomes more difficult for the student’s hidden neu-

rons to learn with limited samples.

6. Conclusion

This paper offers a systematic analysis of the mech-

anism of feature-based student-teacher learning. Specif-

ically, the “when” and “why” of the success of student-

teacher learning in terms of generalization were studied.

Through theoretical and numerical analysis, three conclu-

sions were reached: use early stopping, use a knowledge-

able teacher, and make sure that the teacher can decompose

its hidden features well. It is our hope that the analytical

and experimental results could help systematize the design

principles of student-teacher learning, and potentially in-

spire new learning protocols that better utilize the hidden

features of the teacher network, or construct networks that

are better at “teaching”.
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