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Abstract

Accuracy of many visiolinguistic tasks has benefited

significantly from the application of vision-and-language

(V&L) BERT. However, its application for the task of vision-

and-language navigation (VLN) remains limited. One rea-

son for this is the difficulty adapting the BERT architecture

to the partially observable Markov decision process present

in VLN, requiring history-dependent attention and decision

making. In this paper we propose a recurrent BERT model

that is time-aware for use in VLN. Specifically, we equip

the BERT model with a recurrent function that maintains

cross-modal state information for the agent. Through ex-

tensive experiments on R2R and REVERIE we demonstrate

that our model can replace more complex encoder-decoder

models to achieve state-of-the-art results. Moreover, our

approach can be generalised to other transformer-based ar-

chitectures, supports pre-training, and is capable of solving

navigation and referring expression tasks simultaneously.

1. Introduction

Asking a robot to navigate in complex environments fol-

lowing human instructions has been a long-term goal in AI

research. Recently, a great variety of vision-and-language

navigation (VLN) setups [3, 44, 52] have been introduced

for relevant studies and a large number of works explore

different methods to leverage visual and language clues to

assist navigation. For example, in the popular R2R naviga-

tion task [3], enhancing the learning of visual-textual cor-

respondence is essential for the agent to correctly interpret

the instruction and perceive the environment.

On the other hand, recent work on vision-and-language

pre-training has achieved significant improvement over a

wide range of visiolinguistic problems. Instead of designing

complex and monolithic models for different tasks, those
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Figure 1. Recurrent multi-layer Transformer for addressing par-

tially observable inputs. A state token is defined along with the

input sequence. At each time step, a new state representation st

will be generated based on the new observation. Meanwhile, the

past information will help inferring a new decision dt.

methods pre-train a multi-layer Transformer [53] on a large

number of image-text pairs to learn generic cross-modal

representations [7, 26, 28, 30, 33, 48, 50], known as V&L

BERT (Bidirectional Encoder Representations from Trans-

formers [10]). Such advances have inspired us to employ

V&L BERT for VLN, replacing the complicated modules

for modelling cross-modal relationships and allowing the

learning of navigation to adequately benefit from the pre-

trained visual-textual knowledge. Unlike recent works on

VLN, which apply a pre-trained V&L BERT only for en-

coding language [14, 29] or for measuring the instruction-

path compatibility [37], we propose to use existing V&L

BERT models themselves for learning to navigate.

However, an essential difference between VLN and other

vision-and-language tasks is that VLN can be considered as

a partially observable Markov decision process, in which

future observations are dependent on the agent’s current

state and action. Meanwhile, at each navigational step, the

visual observation only corresponds to partial instruction,

requiring the agent to keep track of the navigation progress

and correctly localise the relevant sub-instruction to gain

useful information for decision making. Another difficulty

of applying V&L BERT for VLN is the high demand on

computational power; since the navigational episode could
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be very long, performing self-attention on a long visual and

textual sequence at each time step will cost an excessive

amount of (GPU) memory during training.

To address the aforementioned problems, we propose a

recurrent vision-and-language BERT for navigation, or sim-

ply VLNœ BERT. Instead of employing large-scale datasets

for pre-training which usually require thousands of GPU

hours, the aim of this work is to allow the learning of

VLN to adequately benefit from pre-trained V&L BERT.

Based on the previously proposed V&L BERT models, we

implement a recurrent function in their original architec-

ture (Fig. 1) to model and leverage the history-dependent

state representations, without explicitly defining a memory

buffer [61] or applying any external recurrent modules such

as an LSTM [16]. To reduce the memory consumption, we

control the self-attention to consider the language tokens as

keys and values but not queries during navigation, which

is similar to the cross-modality encoder in LXMERT [50].

Such design greatly reduces the memory usage so that the

entire model can be trained on a single GPU without perfor-

mance degeneration. Furthermore, as in the original V&L

BERT, our proposed model has the potential of multi-task

learning, it is able to address other vision and language

problems along with the navigation task.

We employ two datasets to evaluate the performance

of our VLNœ BERT, R2R [3] and REVERIE [44]. The

chosen datasets are different in terms of the provided vi-

sual clues, the instructions and the goal. Our agent, ini-

tialised from a pre-trained V&L BERT and fine-tuned on the

two datasets, achieves state-of-the-art results. We also ini-

tialise our model with the PREVALENT [14], a LXMERT-

like model pre-trained for VLN. On the test split of R2R

[3], it improves the Success Rate absolutely by 8% and

achieves 57% Success weighted by Path Length (SPL). For

the remote referring expression task in REVERIE [44], our

agent obtains 23.99% navigation SPL and 13.51% Remote

Grounding SPL. These results indicate the strong generali-

sation ability of our proposed VLNœ BERT as well as the

potential of using it for merging the learning of VLN with

other vision and language tasks.

2. Related Work

Vision-and-Language Navigation Learning navigation

with visual-linguistic clues has drawn significant research

interests. The recent R2R [3] and Touchdown [6] datasets

introduce human natural language as guidance and ap-

ply photo-realistic environments for navigation. Following

these work, dialog-based navigation such as CVDN [52],

VNLA [41] and HANNA [40], navigation for localising a

remote object such as REVERIE [44], VLN in continuous

environment [22], and multilingual navigation with spatial-

temporal grounding such as RxR [24] have been proposed

for further research.

One crucial challenge in VLN is to understand the

visual-textual correspondence for decision making. To

achieve this, Self-Monitoring [36] and RCM [55] adopt

cross-modal attention to highlight the relevant observations

and instruction at each step. Speaker-Follower [11] and En-

vDrop [51] learn on the augmented training data via a self-

supervised manner. FAST [19] resorts self-correction navi-

gation, while APS [12] samples adversarial paths for train-

ing to enhance the model’s ability to generalise. AuxRN

[60] applies several auxiliary losses to learn comprehensive

representations, Qi et al. [43] and Wang et al. [54] also de-

sign loss functions to encourage the agent to follow the in-

structions to take the shortest paths. More recently, Hong

et al. [17] propose a graph network to model the intra- and

inter-modal relationships among the contextual and visual

clues. The great improvements achieved by these methods

encourage researchers to explore simpler and more power-

ful visiolinguistic learning network for VLN.

Visual BERT Pre-Training Following the success of

pre-trained BERT on a wide range of natural language pro-

cessing tasks [10], the model has been extended to process

visual tokens and to pre-train on large-scale image/video-

text pairs for learning generic visual-linguistic representa-

tions. Previous research introduce two-stream BERT mod-

els which encode texts and images separately, and fuse the

two modalities in a later stage [33, 50], as well as one-

stream BERT models which directly perform inter-modal

grounding [7, 26, 28, 30, 48]. Although video BERT ap-

proaches have been proposed to learn the correspondence

between texts and video frames [27, 35, 49, 57], we are the

first to integrate recurrence into BERT to learn partially-

observable and temporal-dependent inputs. In terms of

VLN pre-training, PRESS fine tunes a pre-trained language

BERT to encode instructions [29], PREVALENT trains a

V&L BERT on a large amount of image-text-action triplets

from scratch to learn navigation-oriented textual representa-

tions [14], and VLN-BERT [37] fine-tunes a ViLBERT [33]

on instruction-trajectory pairs to measure their compatibil-

ity in beam search setting. Unlike all previous work, our

VLNœ BERT can augment various V&L BERT models

with recurrent function, it is a navigator network by itself

that can be directly trained for navigation.

V&L Multi-Task Learning Instead of building a mono-

lithic model for different V&L tasks, numbers of previous

work explore multi-task learning with a unified model for

utilising the common and the complementary knowledge to

reduce the domain gap [31, 39, 42, 47, 33]. Very recently,

12-in-1 [34] trains a single ViLBERT [33] on 12 different

datasets across four categories of V&L tasks, including vi-

sual question answering, referring expressions, multi-modal

verification and caption-based image retrieval. In Vision-

and-Language Navigation, Wang et al. [56] propose a multi-

task navigation model to address the R2R navigation [3] and
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Figure 2. Schematics of the Recurrent Vision-and-Language BERT. At the initialisation stage, the entire instruction is encoded by a multi-

layer Transformer, where the output feature of the [CLS] token serves as the initial state representation of the agent. During navigation,

the concatenated sequence of state, encoded language and new visual observation is fed to the same Transformer to obtain the updated state

and decision probabilities. The updated state and the language encoding from initialisation will be fused and applied as input at the next

time step. The green star ( ) indicates the cross-modal matching (Eq. 12) and the past decision encoding (Eq. 13) in State Refinement.

the Navigation from Dialog History (NDH) [52] problems.

Comparing to previous methods, our VLNœ BERT uses a

single network to address the navigation task and the remote

referring expression task seamlessly in REVERIE [44].

3. Proposed Model

In this section, we first define the vision-and-language

navigation task, then we revisit the BERT model [10] and

present the architecture of our proposed VLNœ BERT .

3.1. VLN Background

The problem of VLN can be formulated as follows:

Given a natural language instruction U which contains a

sequence of words, at each time step t, the agent observes

the environment and infers an action at that transfers the

agent from state st to a new state st`1. The state consists

of the navigational history and the current spatial position

defined by a triplet xCt, θt, φty, where Ct is a viewpoint

on the pre-defined connectivity graph of the environment

[3], and θt and φt are the angles of heading and elevation,

respectively. The agent needs to execute a sequence of ac-

tions to navigate on the connectivity graph and eventually

decides to stop at the target position to complete the task.

3.2. Revisit BERT

Bidirectional Encoder Representations from Transform-

ers (BERT) [10] is a multi-layer Transformer architec-

ture [53] designed to pre-train deep bidirectional language

representations. Each layer of the Transformer encodes the

language features from the previous layer X l´1 P R
Iˆhdh

with multi-head self-attention to capture the dependencies

among the I words in the sentence, and applies a residual

feed-forward network to process the output features.

Formally, the k-th attention head at the l-th layer per-

forms self-attention over X l´1 as

Q “ X l´1W
Q
l,k,K “ X l´1W

K
l,k,V “ X l´1W

V
l,k (1)

H l,k “ Softmax

˜
QKJ

?
dh

¸
V (2)

where WQ, WK and W V P R
hdhˆdh are learnable linear

projections1 specifically for queries, keys and values; dh is

the hidden dimension of the network. The outputs from all

the attention heads will be concatenated and projected onto

the same dimension as the input as

H l “ rH l,1; ...;H l,hsWO
l (3)

1All W in this section denotes learnable linear projections
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where h is the total number of heads, r; s denotes concate-

nation and WO P R
hdhˆhdh is a learned linear projection.

Finally, the output of layer l is formulated by

H 1

l “ LayerNormpH l ` X l´1q (4)

X 1

l “ ReLUpH 1

lW
F1

l qW F2

l (5)

X l “ LayerNormpH 1

l ` X 1

lq (6)

where ReLU is the Rectified Linear Unit activation function

and LayerNorm is layer normalisation [4].

Based on this architecture, BERT has been extended to

V&L BERT [7, 26, 28, 30, 33, 48, 50], which takes the con-

catenation of language tokens and visual tokens as input,

and pre-trains on image-text corpus to learn generic visi-

olinguistic representations.

3.3. Recurrent VLN BERT

The idea of our VLNœ BERT can be adapted to a wide

range of Transformer-based networks. In this section we

apply the recently proposed one-stream V&L BERT model

OSCAR [30] for demonstration. We modify the model to

enable the learning of navigation and the associated refer-

ring expression (REF) task. As shown in Fig. 2, at each time

step, the network takes four sets of tokens as input; the pre-

vious state token st´1, the language tokens X , the visual to-

kens V t for scene, and the visual tokens Ot for objects (only

in REVERIE [44]). Then, it performs self-attention over

these cross-modal tokens to capture the textual-visual cor-

respondence for inferring the action probabilities pa
t and the

object grounding probabilities po
t (only in REVERIE [44]):

st,p
a
t ,p

o
t “ VLNœ BERTpst´1,X,V t,Otq (7)

Language Processing At initialisation (t“0), a sequence

of words consisting of the classification token [CLS], the

language tokens of the instruction U and the separation to-

ken [SEP] will be fed into VLNœ BERT, where [CLS]

and [SEP] are pre-defined in BERT models. In the pre-

training of OSCAR [30], the [CLS] token is applied for

aggregating relevant visiolinguistic clues from the input se-

quence for contrastive learning. Here, we defined the em-

bedded [CLS] token as the initial state representation s0,

to inherit such function — initialise an agent’s state which

is aware of the entire navigation task.

s0,X “ VLNœ BERTp[CLS],U ,[SEP]q (8)

During navigation steps (tą0), unlike the state token st or

the visual tokens V t and Ot which performs self-attention

with respect to the entire input sequence, the language to-

kens X only serve as the keys and values in the Trans-

former. We consider the language tokens produced by the

model at the initialisation step as a deep representation of

the instruction which does not need to be further encoded in

later steps. Not updating the language features also save a

huge amount of computational resources since the instruc-

tion and the trajectory can be long in VLN problems.

Vision Processing At each navigation step (tą0), the

agent makes new visual observation in the environment and

uses the visual clues to assist navigation. To process the vi-

sual clues, the network first projects the image features of

views at the navigable directions Iv
t to the same space as

the BERT token as V t“Iv
tW

Iv

. Then, the visual tokens

will be concatenated with the state token and the language

tokens, and fed into the model.

In terms of the remote REF task [44], we simply consider

the object features Io
t as additional visual tokens in the in-

put sequence. Similarly, the features will be projected onto

the token space as Ot“Io
tW

Io

and fed into the model. The

object clues can provide valuable information about the im-

portant landmarks on the path, which could be very helpful

to the navigation with high-level instructions [44].

State Representation We formulate the agent’s state at

each time step st as the summary of all textual and visual

clues that the agent collects, as well as all decisions that the

agent makes until the current viewpoint. Instead of explic-

itly defining a memory buffer [61] or implementing an addi-

tional recurrent network [16] to store the past experiences,

our model relies on BERT’s original architecture to recog-

nise time-dependent inputs, and recurrently updates s0 from

initialisation to represent the state. At each navigation step,

the state representation is used as the leading input token of

the entire textual-visual sequence. It then performs inter-

modal self-attention in VLNœ BERT with other tokens to

update its content and becomes the leading token of the in-

put at the next step, in an autoregressive way.

State Refinement Unlike most of the V&L BERT models

which apply the output feature of the [CLS] token for clas-

sification, our state is not directly used for inferring a de-

cision (see following Decision Making subsection), which

means, the vanilla state representation is not explicitly en-

forced to capture the most important language and visual

features. To address this issue, our model matches the raw

textual and visual tokens, and feeds the output to the state

representation. Formally, let Qs
l,k and Kx

l,k be the state

and textual tokens at head k of the final (l“12) layer of

VLNœ BERT, the attention scores over the textual tokens

can be expressed as:

A
s,x
l,k “

Qs
l,kK

x
l,k

J

?
dh

(9)

Then, we average the scores over all the attention heads

(K“12) and apply a Softmax function to get the overall

state-language attention weights as:

rA
s,x

l “ Softmaxp sAs,x

l q “ Softmax

˜
1

K

Kÿ

k“1

A
s,x
l,k

¸
(10)
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Similarly, the visual attention scores A
s,v
l,k and weights rA

s,v

l

can be obtained. Now, we perform a weighted sum over the

input textual tokens and visual tokens respectively to obtain

the weighted raw features as:

F x
t “ rA

s,x

l X and F v
t “ rA

s,v

l V t (11)

We then enforce a cross-modal matching between the raw

textual and visual features via element-wise product and

send such information to the agent’s state as:

s
f
t “ rsrt ;F x

t d F v
t sW r (12)

where srt is the output state features at the final layer.

Notice that in REVERIE [44], only the visual features is

sent to the state representation, i.e., Eq. 12 becomes s
f
t “

rsrt ;F v
t sW r. This is because the navigational instructions

in REVERIE are high-level, hence performing step-wise

matching between the raw textual and visual features is less

valuable.

Finally, past decisions are important for the agent to keep

track of the navigation progress, our network records the

new decision by feeding the directional features of the se-

lected action at into the state token as:

st “
”
s
f
t ;at

ı
W s (13)

where st is the new representation of the agent’s state at

time step t.

Decision Making Many previous VLN agents apply an

inner product between the state representation and the vi-

sual features at candidate directions to evaluate the state-

vision correspondence, and choose a direction with the

highest matching score to navigate [36, 51]. We find that

the BERT network can nicely perform such scoring because

it is fully built upon the inner product based soft-attention.

Inspired by the method of predicting alignment between re-

gions and phrases in VisualBERT [28], we directly apply

the mean attention weights of the visual tokens over all the

attention heads in the last layer, with respect to the state, as

the action probabilities, simply pa
t “ rA

s,v

l (as defined in

Eq. 10). As for the remote referring expression task [44],

our agent uses the same method to select an object. The se-

lection probabilities can be expressed as po
t “ rA

s,o

l , where
rA

s,o

l is the mean attention weights for all candidate objects.

We refer the Appendix §B.2 for more details.

3.4. Training

We train our network with a mixture of reinforcement

learning (RL) and imitation learning (IL) objectives. We ap-

ply A2C [38] for RL, in which the agent samples an action

according to pa
t and measures the advantage At at each step

(we refer the Appendix §B.5 for more details about RL.). In

IL, our agent navigates on the ground-truth trajectory by fol-

lowing teacher actions and calculates a cross-entropy loss

for each decision. Formally, we minimise the navigation

loss function, expressed for each given sample, as

L “ ´
ÿ

t

ast log ppat qAt ´ λ
ÿ

t

a˚
t log ppat q (14)

where ast is the sampled action and a˚
t is the teacher ac-

tion. Here λ is a coefficient for weighting the IL loss.

In REVERIE [44], we applied an additional cross-entropy

term
ř

t o
˚
t logppot q to learn object grounding.

3.5. Adaptation

We initialise the parameters of VLNœ BERT from OS-

CAR [30] pre-trained without object tags. Although OS-

CAR is trained on regional features, we find that it is

also compatible with the grid features of the entire scene.

When adapting to the LXMERT-like [50] model in PREVA-

LENT [14], we remove the language branch in the cross-

modality encoder and concatenate the state token with

the visual tokens for self-attention (see Appendix §B.3 for

schematics). We also remove the entire downstream net-

work EnvDrop [51], including the Speaker and the environ-

mental dropout, and then directly fine-tune the model pre-

trained by PREVALENT for navigation.

4. Experiments

Implementation Details All experiments are conducted

on a single NVIDIA 2080Ti GPU, the learning rate is fixed

to 10´5 throughout the training and AdamW optimiser [32]

is applied. For R2R, we train the agent directly on the mix-

ture of the original training data and the augmented data

from PREVALENT [14], the batch size2 is set to 16 and the

network is trained for 300,000 iterations. For REVERIE,

we use batch size2 8 and train the agent for 200,000 it-

erations. Images in the environments are encoded by a

ResNet-152 [15] pre-trained on Places365 [59], and objects

are encoded by a Faster-RCNN [46] pre-trained on the Vi-

sual Genome [23]. Early stopping is applied when the train-

ing saturates, the model which achieves the highest SPL in

validation unseen split is adopted for testing.

Evaluation Metrics We apply the standard metrics em-

ployed by previous works to evaluate the performance.

R2R [3] considers Trajectory Length (TL): the average

path length in meters, Navigation Error (NE): the average

distance between agent’s final position and the target in me-

ters, Success Rate (SR): the ratio of stopping within 3 me-

ters to the target, and Success weighted by the normalised

inverse of the Path Length (SPL) [2].

2Half for RL and half for IL in each iteration, corresponding to the first

and the second term in Eq. 14, respectively.
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Methods
R2R Validation Seen R2R Validation Unseen R2R Test Unseen

TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ
Random 9.58 9.45 16 - 9.77 9.23 16 - 9.89 9.79 13 12

Human - - - - - - - - 11.85 1.61 86 76

Seq2Seq-SF [3] 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18

Speaker-Follower [11] - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28

SMNA [36] - 3.22 67 58 - 5.52 45 32 18.04 5.67 48 35

RCM+SIL (train) [55] 10.65 3.53 67 - 11.46 6.09 43 - 11.97 6.12 43 38

PRESS [29] : 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45

FAST-Short [19] - - - - 21.17 4.97 56 43 22.08 5.14 54 41

EnvDrop [51] 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47

AuxRN [60] - 3.33 70 67 - 5.28 55 50 - 5.15 55 51

PREVALENT [14] : 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51

RelGraph [17] 10.13 3.47 67 65 9.99 4.73 57 53 10.29 4.75 55 52

Ours (no init. OSCAR) 9.78 3.92 62 59 10.31 5.10 50 46 11.15 5.45 51 47

Ours (init. OSCAR) 10.79 3.11 71 67 11.86 4.29 59 53 12.34 4.59 57 53

Ours (init. PREVALENT) 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57

Table 1. Comparison of agent performance on R2R in single-run setting. : work that applies pre-trained BERT for language encoding.

Methods

REVERIE Validation Seen REVERIE Validation Unseen REVERIE Test Unseen

Navigation
RGSÒ RGSPLÒ Navigation

RGSÒ RGSPLÒ Navigation
RGSÒ RGSPLÒ

SRÒ OSRÒ SPLÒ TL SRÒ OSRÒ SPLÒ TL SRÒ OSRÒ SPLÒ TL

Random 2.74 8.92 1.91 11.99 1.97 1.31 1.76 11.93 1.01 10.76 0.96 0.56 2.30 8.88 1.44 10.34 1.18 0.78

Human – – – – – – – – – – – – 81.51 86.83 53.66 21.18 77.84 51.44

Seq2Seq-SF [3] 29.59 35.70 24.01 12.88 18.97 14.96 4.20 8.07 2.84 11.07 2.16 1.63 3.99 6.88 3.09 10.89 2.00 1.58

RCM [55] 23.33 29.44 21.82 10.70 16.23 15.36 9.29 14.23 6.97 11.98 4.89 3.89 7.84 11.68 6.67 10.60 3.67 3.14

SMNA [36] 41.25 43.29 39.61 7.54 30.07 28.98 8.15 11.28 6.44 9.07 4.54 3.61 5.80 8.39 4.53 9.23 3.10 2.39

FAST-Short [19] 45.12 49.68 40.18 13.22 31.41 28.11 10.08 20.48 6.17 29.70 6.24 3.97 14.18 23.36 8.74 30.69 7.07 4.52

FAST-MATTN [44] 50.53 55.17 45.50 16.35 31.97 29.66 14.40 28.20 7.19 45.28 7.84 4.67 19.88 30.63 11.61 39.05 11.28 6.08

Ours (no init. OSCAR) 39.56 42.09 36.29 12.06 21.15 19.39 25.76 29.28 22.16 14.52 11.62 9.87 18.52 20.18 15.47 14.09 8.80 7.29

Ours (init. OSCAR) 39.85 41.32 35.86 12.85 24.46 22.28 25.53 27.66 21.06 14.35 14.20 12.00 24.62 26.67 19.48 14.88 12.65 10.00

Ours (init. PREVALENT) 51.79 53.90 47.96 13.44 38.23 35.61 30.67 35.02 24.90 16.78 18.77 15.27 29.61 32.91 23.99 15.86 16.50 13.51

Table 2. Comparison of agent performance of navigation and remote referring expression on REVERIE.

REVERIE [44] defines Success Rate (SR) as the ratio

of stopping at a viewpoint where the target object is visi-

ble (in panorama), and considers the corresponding SPL. It

also employ Oracle Success Rate (OSR): the ratio of hav-

ing a viewpoint along the trajectory where the target object

is visible, Remote Grounding Success Rate (RGS): the ra-

tio of grounding to the correct objects when stopped, and

RGSPL, which weights RGS by the trajectory length.

4.1. Main Results

Comparison with SoTA Results in Table 1 compare the

single-run (greedy search, no pre-exploration [55]) perfor-

mance of different agents on the R2R benchmark. Our pro-

posed VLNœ BERT initialised from OSCAR [30] (init.

OSCAR) performs better than previous methods across all

the dataset splits. Comparing to a randomly initialised net-

work (no init. OSCAR), the large performance degenera-

tion suggests that the pre-trained general vision-linguistic

knowledge significantly benefits the learning of navigation.

The model initialised from PREVALENT [14], pre-trained

especially for VLN, further improves the agent’s perfor-

mance, achieving 63% SR (+8%) and 57% SPL (+5%)

on the test unseen split3. Comparing to PRESS [29]

and PREVALENT [14] which only fine-tune a pre-trained

BERT for extracting language features, adding recurrence

into V&L BERT and using the model directly as the navi-

gator network allows the VLN learning to adequately bene-

fit from the pre-trained knowledge. Such performance gain

cannot be achieved by using pre-trained V&L BERT only as

a feature extractor, as will be shown in §4.2 Ablation Study.

Moreover, the large gain in SR with a slight increase in TL

suggests that the agent is able to navigate both accurately

and efficiently. Comparing to previous methods, we can

see that the performance gap between the validation unseen

and the test unseen splits is greatly reduced, which means

our agent has a stronger generalisation ability to novel in-

structions and environments.

In REVERIE [44] (Table 2), our VLNœ BERT (init. OS-

CAR) generalises much better to unseen data. On the vali-

dation unseen split, the SR of navigation and object ground-

ing has been absolutely improved by 11.13% and 6.36%

respectively. On the test unseen split3, our method ob-

3R2R Leaderboard: https://evalai.cloudcv.org/web/challenges/challenge-

page/97/overview, REVERIE Leaderboard:

https://eval.ai/web/challenges/challenge-page/606/overview
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tains 24.62% SR and 19.48% SPL for navigation, as well

as 12.65% RGS and 10.00% RGSPL for REF, achieving a

better performance than the previous best [44] which ap-

plies SoTA navigator FAST [19] for navigation and pointer

MATTN [58] for object grounding. Compare our model

with OSCAR initialisation to without, the navigation re-

sults on the validation splits are similar, but the naviga-

tion on the test split and the object grounding across all

the data splits are largely improved. This result also sug-

gests that it is possible to apply a BERT-based model for

VLN and REF multi-task learning. Although the previous

method has higher OSR, it is likely due to longer searching

(long TL), the lower SR suggests that the agent does not

know where to stop correctly. In Table 2, we also present

the performance of VLNœ BERT initialised from PREVA-

LENT [14], which achieves the best result across almost

all of the metrics in all dataset splits. It is very interesting

to see that although PREVALENT is pre-trained on low-

level R2R instructions [3] without other V&L knowledge, it

significantly boosts the navigation with high-level instruc-

tions as well as the object grounding in REVERIE. We hy-

pothesis that the pre-trained knowledge provides the model

with some structural priors, while the learning of REF is

strongly influenced by navigation, especially at the early

training stage where the target object is rarely observable

by the agent.

Visualisation of Language Attention To demonstrate

that our VLNœ BERT (init. OSCAR) is able to trace the

navigation progress, we visualise the changes of language

attention weights at the final Transformer layer over all in-

structions during navigation (Fig. 3). As the agent moves

forward, the attention weights with respect to state shifts

from the beginning of the instructions to the end. Since

the sub-instructions and sub-paths for each sample in R2R

is monotonically aligned [18], our results indicate that the

state nicely records the partial instruction that has been

completed. In terms of the attention weights with respect to

the visual token at the select direction, it follows a similar

pattern meaning that the most relevant part of the instruction

is used for guiding the action selection.

4.2. Ablation Study

Network Components Table 3 shows comprehensive ab-

lation experiments on the influence of using V&L BERT

(init. OSCAR) to replace or to add the key network compo-

nents in the baseline model (EnvDrop [51]). The baseline

model consists of a language encoder, a visual encoder, a

state LSTM and a decision making module, corresponding

to the columns of Language, Vision, State and Decision in

Table 3, respectively. E.g., Model #3 replaces the language

encoder and visual encoder in baseline with a V&L BERT.

For fair comparison, all models in the table are trained with
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Figure 3. Averaged attention weights over all instructions in val-

idation unseen split during navigation. State: Attention weights

with respect to the state representation. Selected Action: Attention

weights with respect to the visual token at the selected direction.

the same data and training strategy as our VLNœ BERT.

As the results suggested, our proposed method is a multi-

functional framework, the more network components it cov-

ers, the larger performance gain it achieves. Comparing the

baseline with Model #1 and #2, we can see that employing a

pre-trained BERT as language encoder improves the perfor-

mance only if the BERT is fine-tuned for navigation. This

finding is also supported by using the V&L BERT to en-

code both the textual and visual signals (Model #3 and #4).

However, simply using pre-trained V&L BERT as text and

image encoders does not fully utilise its power; model #5

indicates that relying on the original architecture of BERT

to learn recurrence is feasible and it is able to achieve bet-

ter results. Moreover, using the averaged visual attention

weights of the final layer of the Transformer as the action

probabilities (Model #6) and enhancing the state represen-

tation with visual-textual matching as defined in Eq. 12 (full

model) further improves the agent’s performance.

Self-Attended Language Features Due to the long in-

structions and episodes, high memory cost during training

is one of the key issues that prevents previous research to

apply BERT for self-attention at every time step. To demon-

strate the influence of self-attending textual features during

navigation, we compare the agent’s performance and the

training time GPU memory consumption (constrained to a

single 11GB memory GPU) of re-attending the language

at each step. As shown in Table 4, training for Emb-Attn,

Init-Attn and Re-Attn consume much more memory for each

sample than performing language self-attention only at ini-

tialisation (Ours), and their performances are worse than

Ours. The results of Re-Attn degenerates significantly be-

cause at each time step the output language features aggre-

gate the most relevant visual-textual clues at a certain view-

point, which suppresses the valuable information in other

part of the instruction for the future steps. We refer Ap-

pendix §C.2 for experiment on language self-attention with

larger batch size by applying gradient accumulation.
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Models
V&L BERT (init. OSCAR) R2R Validation Seen R2R Validation Unseen

Language Vision State Decision Matching Train TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ
Baseline [51] 11.84 4.44 57.79 52.85 12.50 5.26 49.81 43.45

1 X 10.81 4.98 49.95 46.19 11.34 5.68 44.15 39.64

2 X X 11.73 4.18 59.26 54.12 12.59 5.00 52.11 45.75

3 X X 9.26 6.85 34.77 33.33 8.92 7.43 30.74 29.05

4 X X X 11.37 3.50 67.97 63.94 12.98 4.73 54.75 48.31

5 X X X X 11.10 3.81 65.52 61.24 12.20 4.62 55.21 49.72

6 X X X X X 10.70 3.21 70.32 66.45 11.46 4.48 57.22 52.57

Full model X X X X X X 10.79 3.11 71.11 67.23 11.86 4.29 58.71 53.41

Table 3. Ablation experiments on the effect of applying V&L BERT for learning navigation. Checkmarks indicate using V&L BERT to

replace or to add the corresponding network component in the baseline model. Matching indicates the cross-modal matching (Eq. 12), and

Train with checkmark means the V&L BERT is fine-tuned for navigation.

Models
R2R Validation Seen R2R Validation Unseen Batch

Memory
TL NEÓ SRÒ SPLÒ TL NEÓ SRÒ SPLÒ Size

Emb-Attn 10.84 3.40 67.19 63.19 11.31 4.64 55.60 51.00 6 11.0GB

Init-Attn 10.21 3.93 61.80 58.06 10.39 4.59 53.47 49.05 6 11.0GB

Re-Attn 8.99 5.81 40.84 39.44 8.85 6.22 37.76 35.78 6 11.0GB

Ours 10.79 3.11 71.11 67.23 11.86 4.29 58.71 53.41 16 9.2GB

Table 4. Comparison of performing language self-attention: On

the raw word embeddings at each step (Emb-Attn), on the ini-

tialised language features at each step (Init-Attn), on the output

language features from previous step (Re-Attn), or only at initiali-

sation (Ours). Memory is the training time GPU memory cost.

Learning Curves As shown in Fig. 4, we compare the

learning curves of VLNœ BERT initialised from differ-

ent models. The training losses of our method initialised

from pre-trained OSCAR [30] converges faster than a ran-

domly initialised model, and it reaches much higher SPL in

both validation seen and unseen environments. Moreover,

our model initialised from PREVALENT [14] learns signif-

icantly faster than the other two methods and it is able to

achieve a much better performance within much fewer it-

erations. In terms of training in real time, the model init.

OSCAR takes about 7 days4 to complete 600,000 itera-

tions of training (best result achieved in 3.5 days), while the

model init. PREVALENT takes about 4.5 days4 (best result

achieved in 1 day). Using wall-clock time in Fig. 4 as the

x-axis will enhance the discrepancy between the three mod-

els. These results suggest that the pre-trained generic visi-

olinguistic knowledge is beneficial to the learning of VLN,

and pre-training especially for navigation skills allows the

agent to learn better in fine-tuning.

5. Conclusion

In this paper, we introduce recurrence into Vision-and-

Language BERT and rely on its original architecture to

recognise time-dependent inputs. Such innovation allows

V&L BERT to address problems with a partially observ-

4Time includes evaluation on the validation splits every 2,000 itera-

tions. Matterport 3D Simulator v0.1 is applied, whereas the latest version

supports batches of agents so it is much more efficient.
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Figure 4. Comparison of the learning curves. no init. means ran-

domly initialised network parameters.

able Markov decision process, and allows the learning

of downstream tasks to adequately benefit from the pre-

trained generic V&L knowledge. For VLN, our proposed

VLNœ BERT applies BERT itself as the navigator net-

work, which achieves SoTA performance in R2R [3] and

REVERIE [44]. Moreover, results suggest that V&L BERT

with recurrence is capable of VLN and REF multi-tasking.

Future Work As suggested by the significant improve-

ment on R2R [3] achieved by our VLNœ BERT, we ex-

pect that the model can improve the performance of other

navigation settings such as street navigation [6] and navi-

gation in continuous environments [22]. In this paper, we

only apply our recurrent BERT for VLN. However, we be-

lieve that it has a huge potential in addressing other tasks

which require sequential interactions/decisions, such as lan-

guage and visual dialog [5, 8, 21, 25, 45], dialog naviga-

tion [9, 40, 41] and action anticipation for reactive robot

response [1, 13, 20].
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