This CVPR 2021 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

DSRNA: Differentiable Search of Robust Neural Architectures

Ramtin Hosseini, Xingyi Yang, Pengtao Xie
UC San Diego

{rhossein, x3yang, plxie}@eng.ucsd.edu

Abstract

In deep learning applications, the architectures of deep
neural networks are crucial in achieving high accuracy.
Many methods have been proposed to search for high-
performance neural architectures automatically. However,
these searched architectures are prone to adversarial at-
tacks. A small perturbation of the input data can render the
architecture to change prediction outcomes significantly. To
address this problem, we propose methods to perform dif-
ferentiable search of robust neural architectures. In our
methods, two differentiable metrics are defined to measure
architectures’ robustness, based on certified lower bound
and Jacobian norm bound. Then we search for robust ar-
chitectures by maximizing the robustness metrics. Different
from previous approaches which aim to improve architec-
tures’ robustness in an implicit way: performing adversar-
ial training and injecting random noise, our methods ex-
plicitly and directly maximize robustness metrics to harvest
robust architectures. On CIFAR-10, ImageNet, and MNIST,
we perform game-based evaluation and verification-based
evaluation on the robustness of our methods. The experi-
mental results show that our methods 1) are more robust to
various norm-bound attacks than several robust NAS base-
lines, 2) are more accurate than baselines when there are no
attacks, 3) have significantly higher certified lower bounds
than baselines.

1. Introduction

In deep learning applications, the architectures of neu-
ral models play a crucial role in improving performance.
For example, on the ImageNet [15] benchmark, the im-
age classification error is reduced from 16.4% to 3.57%,
when the architecture is evolved from AlexNet [20] to
ResNet [20]. Previously, neural architectures are mostly
designed by humans, which is time-consuming to obtain a
highly-performant architecture. Recently, automated neural
architecture search [49, 50, 36, 37, 41, 42] which develops
algorithms to find out the optimal architecture that yields
the best performance on the validation datasets, has raised

much attention and achieved promising results. For exam-
ple, on the CIFAR-10 dataset, an automatically searched ar-
chitecture [32] achieves an image classification error rate of
2.76% while the error achieved by state-of-the-art human-
designed architecture is 3.46%.

As we will show in the experiments, the architectures
searched by existing methods are prone to adversarial at-
tacks. A small perturbation (which is not perceivable
by humans) of the input data can render the architecture
to change prediction outcomes significantly. Many ap-
proaches [18, 4, 33, 12, 28] have been proposed to improve
the robustness of DNNs. In these approaches, the archi-
tecture of a DNN is provided by humans, and the defense
method focuses on training the weights in this architecture
in a robust way. However, the robustness of a DNN is not
only relevant to its weight parameters, but also determined
by the architecture. It is important to search for architec-
tures that are robust to adversarial attacks as well.

In this paper, we develop a novel approach for robust
NAS. We define two differentiable metrics to measure the
robustness of architectures and formulate robust NAS as an
optimization problem that aims to find out an optimal ar-
chitecture by maximizing the robustness metrics. The first
metric is defined based on certified lower bound [2]. Linear
bounding methods are applied to individual building blocks
in the differentiable architecture search space and these in-
dividual bounds are composed to obtain global bounds for
the entire neural architecture. The second metric is based
on the Jacobian norm bound [21], where the robustness is
measured by how much the output shifts as the input is per-
turbed. The shift is upper bounded by the norms of row vec-
tors in the Jacobian matrix of the neural architecture. Our
approach is applicable to various forms of differentiable ar-
chitecture search methods (e.g., DARTS [32], PC-DARTS
[46], P-DARTS [9], etc. and is robust against adversarial at-
tacks in various norm choices. Previously, robust NAS has
been investigated in [19, 8], based on adversarial training
of randomly sampled sub-architectures [19] and differen-
tiable architecture variables [8]. Unlike these methods that
achieve robustness implicitly via adversarial training, our
method explicitly defines robustness metrics and directly
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optimizes these metrics to obtain robust architectures.

On CIFAR-10, ImageNet, and MNIST, we perform
game-based evaluation and verification-based evaluation on
the robustness of our methods. The experimental results
show that our methods 1) are more robust to various norm-
bound attacks than several robust NAS baselines; 2) are
more accurate than baselines when there are no attacks; 3)
have significantly higher certified lower bounds than base-
lines.

The major contributions of this paper include:

* We propose a novel robust NAS method, which
searches robust architectures by maximizing differen-
tiable robustness metrics, defined based on certified
lower bound and Jacobian norm bound. Our meth-
ods have strong guarantees in obtaining robust archi-
tectures by explicitly and directly maximizing robust-
ness measures. In contrast, previous approaches per-
form implicit robustification of architectures via adver-
sarial training, which is not guaranteed to yield robust
architectures. Besides, our methods can be applied to
robustify any differentiable NAS methods, in a princi-
pled and unified way.

* Experiments on ImageNet, CIFAR-10, and MNIST
show that the architectures searched by our methods
are robust to various forms of adversarial attacks and
are as accurate as state-of-the-art NAS methods when
there are no attacks. Our methods are consistently
more robust than previous approaches against various
attacks. In contrast, previous approaches are effective
for certain types of attacks, but ineffective for other

types.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 and 4 present the method
and experiments. Section 5 concludes the paper.

2. Related Works
2.1. Neural Architecture Search

In general, there are three paradigms of methods in NAS:
reinforcement learning (RL) approaches [49, 35, 50], evo-
lutionary learning approaches [31, 36], and differentiable
approaches [3, 32, 45]. In RL-based approaches, a pol-
icy is learned to iteratively generate new architectures by
maximizing a reward, which is the accuracy on the valida-
tion set. Evolutionary learning approaches represent the ar-
chitectures as individuals in a population. Individuals with
high fitness scores (validation accuracy) have the privilege
to generate offspring, which replace individuals with low
fitness scores. Differentiable NAS approaches adopt a net-
work pruning strategy. On top of an over-parameterized net-
work, the weights of connections between nodes are learned

using gradient descent. Then weights close to zero are later
pruned. There have been many efforts devoted to improving
differentiable NAS methods. In P-DARTS [9], the depth of
searched architectures is allowed to grow progressively dur-
ing the training process. Search space approximation and
regularization approaches are developed to reduce compu-
tational overheads and improve search stability. PC-DARTS
[46] reduces the redundancy in exploring the search space
by sampling a small portion of a super network. Operation
search is performed in a subset of channels with the held out
part bypassed in a shortcut. DARTS+ [29] leverages early
stopping to avoid the collapse of DARTS’ performance.

2.2. Adversarial Attacks and Defenses

Adversarial attacks aim to perturb input data examples
by adding imperceptible noises so that the prediction results
are altered significantly. In white-box attack [38, 6, 11, 51],
the adversary has full access to the target model, while in
the black-box attack [7, 22, 39, 10], the target model is un-
known to the adversary. In targeted attacks, the adversary
aims to change the prediction outcome in certain classes,
while untargeted attacks are not class-specific. Arguably,
the most popular and effective white-box untargeted attacks
with various norm-bounds are: fast gradient sign method
(FGSM) [ 18], projected gradient descent (PGD) [33], and
Carlini & Wagner (C&W) [4]. FGSM is a single step attack
algorithm that aims to increase the adversarial loss by up-
dating its gradient sign. PGD is a more general version of
FGSM that runs over several iterations to increase the ad-
versarial loss. The attacks of FGSM and PGD are based on
lso-norm bound, while those in C&W are based on [, o,
and [, norms. C&W is particularly effective for /o-norm
attacks. Additionally, a recent work AutoAttack [14] pro-
poses a reliable and robust attack method using an ensem-
ble of stepsize-free versions of PGD attacks, a white-box at-
tack — Fast Adaptive Boundary (FAB) [13], and a black-box
attack — Square Attack [!] to create parameter-free attacks.
To improve the robustness of neural networks against adver-
sarial attacks, many adversarial defense methods have been
proposed, such as random smoothing [28, 12], adversarial
training [18, 33, 4], and Jacobian regularization [23, 21, 5].
Jacobian regularization aims to minimize the change of net-
work outputs when inputs are perturbed. Mathematically,
this amounts to minimizing the Frobenius norm of a Jaco-
bian matrix.

Most of these defense methods assume the neural archi-
tectures are manually designed by humans and focus on im-
proving the robustness of network weights. Automatically
searching for robust architectures is largely under-explored.
In [16], experiments show that architectures searched by
existing NAS methods such as DARTS, PC-DARTS, and
P-DARTS are vulnerable to various forms of adversarial at-
tacks. To address this issue, studies have been conducted to
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robustify NAS methods. RobNet [19] used one-shot NAS
to obtain a large number of networks and then studied the
patterns of architectures that are robust against adversarial
attacks. They discovered that using dense connectivity and
adding convolution operations to direct connection edges
help to improve robustness. Chen et al. [8] proposed per-
forming adversarial training and random smoothing on ar-
chitecture variables, which can improve the robustness of
DARTS-based methods. Our work takes a different ap-
proach for robustifying architectures, where we explicitly
define differentiable metrics to measure architectures’ ro-
bustness and search for robust architectures by maximizing
these metrics.

2.3. Robustness Verification of Neural Networks

Robustness verification aims to provide certified defense
against any possible attacks under a threat model. A robust-
ness certificate ¢ means the prediction outcome cannot be
changed if the strength of the attack is smaller than e. Many
verification approaches [43, 40, 48, 17] have been proposed,
which focus on achieving tighter lower bounds of the ro-
bustness certificate, computing bounds for various complex
building blocks in neural networks, and improving the ef-
ficiency in computing the bounds. Dvijotham et al. [17]
formulate verification as an optimization problem and seek
bounds of the certificate by solving a Lagrangian relaxation
of the optimization problem. Weng et al. [40] propose meth-
ods to verify the robustness of Rectified Linear Unit (ReL.U)
networks by bounding the ReLU units with linear func-
tions or local Lipschitz constant. CNN-Cert [2] applies lin-
ear bounding techniques to provide certified lower bounds
for various operations including convolution, pooling, batch
normalization, residual blocks, activation functions, etc.

3. Methods

We begin with defining differentiable metrics to measure
the robustness of neural architectures. Then we propose a
robust NAS framework that performs optimization in the
architecture search space to maximize the robustness met-
rics. The objective function explores a tradeoff between
predictive accuracy and robustness and can be efficiently
optimized using gradient-based methods.

3.1. Defining Differentiable Robustness Metrics

In this section, we define two differentiable metrics to
measure the robustness of neural architectures. The first one
is based on robustness certification methods [2]. Specifi-
cally, given an architecture, we seek to obtain a certified
lower bound of this architecture and use the bound to mea-
sure robustness. The architecture with a larger lower bound
is more robust against different attacks. The second metric
is based on upper-bounding the shift of the model’s predic-
tion when the inputs are perturbed, and the bound is based

on the norm of the Jacobian matrix [21] of the architecture.
The smaller the upper bound is, the more robust the network
is. Previous works [2, 21] have utilized certified bounds
and Jacobian regularization to measure or improve the ro-
bustness of neural networks that have human-designed and
fixed architectures. Different from these works, our work
defines certified bounds and Jacobian regularizers on neural
architecture variables and leverage them to search for robust
architectures.

3.1.1 Measuring Robustness Based on Certified Bound

One way to measure the robustness of a neural network is
to use the verified robustness certificate. A certificate with
value €(x) means that model prediction on the input data
x cannot be changed if the attack strength is smaller than
€(x). A larger €(x) indicates more robustness. In practice,
it is infeasible to obtain the exact robustness certificate of
a model. Instead, one can derive lower bounds of €(x) and
use these lower bounds as surrogates for measuring robust-
ness. Given an architecture search space comprised of vari-
ous building blocks such as ReLU-Conv-BN, (dilated) sepa-
rable convolutions, pooling operations, etc., we perform lin-
ear bounding [2] on these building blocks and compose the
individual bounds to obtain a certified lower bound for each
architecture in the search space. These bounds are differen-
tiable functions of architecture variables and are amenable
for gradient-based optimization. In the sequel, we discuss
how to derive the certified upper and lower bounds for each
type of building blocks.

ReLU-Conv-BN Block The ReLU-Conv-BN building
block consists of three consecutive operations including
rectified linear unit (ReLU) as a nonlinear activation oper-
ation, convolution, and batch normalization (BN). Let ®"
and ®"~2 be the output and input of an ReLU-Conv-BN
block r, then we have

(I)r—l _ Wr—l *J((I)T_2) + br—l (1)
ol 1 Lbn

B = A — et 4 By, @
Obn €on

where () is the ReLU function. W"~! and b"~! are the
weight parameters and bias parameters in the convolution
operation. i, and o2, are the mean and variance of a batch
of ® ! in batch normalization. 7y, €prn, and By, are hy-
perparameters in BN.

By applying linear bounds to these equations, we get
these upper and lower bounds:

AL g # @+ B, S @7 < Ay, # @7 4 By, 3)
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Az,bnq)T71 + Bz,bn 2 AZ,bn(Ar_l ®7l72 + Br_l ) + BZ,Im (4)

L,conv L,conv

A;J,lmq)r71 + B(G,bn < Ag,bn(AT71 <Dr72 + BTfl ) + BTU,bn, (5)

U,conv U,conv

where Ar pn, Avbn, BrL,n, and By py, are constants that
can be computed as in [2]:

Yon

r _ r _
Lin = Aupn = —Fm—=— (6)
\ Oy T+ €bn
—YonMbn
o
Ubn + €bn

and AL,conw AU,conv» BL,conU’ BU,conv are constant ten-
SOrS.

T _ nr _
BL,bn - BU,bn -

(Dilated) Separable Convolutions Another two types of
building blocks in our search space are separable convo-
lutions and dilated separable convolutions. Dilated sepa-
rable convolutions consist of four consecutive operations:
ReL.U, convolution, convolution, and batch normalization
(BN). Separable convolutions consist of two consecutive di-
lated separable convolutions. Let ®"~3 and ®" denote the
input and output of a dilated separable convolution, then:

q)rfl — erl " (WT72 " O’((I)Tig) —I—bT72) + brfl (8)

where W71 and W"~2 are weights of convolutions; b" 2
and b" ! are bias parameters in convolutions. The calcula-
tion of ®” is the same as that in Eq.(2). We can again use
Eq.(3) to find the upper and lower bound of ®", which are:

TL,bn, * q)r—l + Bz,bn 2 Az,bn * (AT71 * (WT_Q

L,conv

O+ 5"2) + Bl com) + BL
©

r r—1 T r r—1
Un * @770+ Blry,, < Appn * (A

U,conv

(I)T_B + bT_Q) + B;‘],_c})n'u) + B{],bn

* (Wr72

(10)
The upper and lower bound for separable convolution oper-
ations can be derived in a similar way.

Pooling Operations Let ®" ! and ®" denote the input
and output of a pooling operation . We have the following
lower and upper bound of ®":

ATk @TLL BT < DT < AT

r—1 T
L,pool = U,pool * P +B

U,pool

Y

s
L,poo

Robustness Metric  Given the lower and upper bounds of
individual building blocks, we are ready to derive a certi-
fied lower bound for the entire network as a measure of
the robustness of its architecture. In differentiable archi-
tecture search [32], the neural network is overparameter-
ized with many building blocks that are organized into a
directed acyclic graph (DAG). The output of each block is
multiplied with a positive scalar. The larger the scalar is,
the more critical the block is. After learning, a subset of
blocks with the largest scalars are selected to form the final
architecture of this network. Therefore, these scalars (called
architecture variables) represent the architecture. Given a
block with lower bound L and upper bound U, after mul-
tiplying with an architecture variable «, this block has a
lower bound of oL and aU. Following the topological or-
der of blocks in the DAG, we recursively compose the lower
and upper bounds (multiplied with architecture variables)
of blocks and get a global lower and upper bound for the
entire network. These two bounds are functions of architec-
ture variables and the input data example. The lower bound
is used as the robustness metric.

3.1.2 Measuring Robustness with Jacobian Regular-
ization

When the architecture search space is large, computing gra-
dients of the certified lower bound with respect to archi-
tecture variables is time-consuming. To address this prob-
lem, we investigate another measure of robustness, which is
computationally efficient. Let f(x) denote the neural net-
work which takes a data example x € R” as input and out-
puts a K-dimensional vector. Similar to the robustness met-
ric defined in Section 3.1.1, the architecture search space is
differentiable, where continuous architecture variables are
multiplied to the outputs of building blocks. Therefore,
f(x) is a continuous function of the architecture variables.
Let x + € be an adversarial example where € is a small per-
turbation vector. We assume the p-norm of € is less equal to
a small scalar J: ||€||, < d. The robustness of the network
can be measured using the following quantity [21]:

1 K
S = —EyE. ?;Uk(x"'e)_fk(xﬂ (12)

where a = 1/K Zszl | fe(x 4+ €) — fr(x)] is the average
change of the output across all dimensions when x is per-
turbed with € and S is the expectation of a defined with
respect to the distributions of x and €. The smaller this
quantity is, the more robust the network is: intuitively, a
network is robust if for every input data example, no matter
how it is perturbed, the change of network output is small.
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According to Taylor expansion, we have:

ammre

I (13)

Let J(x) denote the Jacobian matrix at x where Ji; =
Ofr(x)/0z;. Then Of(x)/0x = Jp(x) where Jj(x) is
the k-th row vector of J(x). According to Holder’s inequal-
ity, we have:

h&+d—ﬂ®%[

|36 (0) "e| < 1Rl llell, < 1TxG)ll, 6 (14)

where - + 1 = 1.
Putting these pieces together, we have:

~E.Ec [ % T [fi(x + ) = fu)]

~ —ExEe [ S0 19k(0) el

> ~ExEc | % X0 13, 9] ()
— 0B [ IS 1361l

o 2R F 3 MACHTH

where in the last step, the expectation is approximated by
the mean on a set of data examples {x;}% ;. To maximize
S for achieving robustness, we can maximize its approxi-
mated lower bound —§/N Zfil {1/K Zszl (95 ()l |-
This bound is referred to as the Jacobian norm bound. It is
a function of the architecture variables. For /5 and [, norm
bound attacks, Zle [Jx(x)][, is the Frobenius norm and
l; norm of the Jacobian matrix, respectively. We use the
method in [21] to compute the Jacobian matrix efficiently
based on random projection.

3.2. Differentiable Search of Robust Neural Archi-
tectures

Given the robustness metrics defined based on certified
lower bound and Jacobian norm bound, which are increas-
ing functions of the architecture variables (i.e., larger values
of the metrics indicate that the architecture is more robust),
we search for robust architectures by maximizing these ro-
bustness metrics. The formulation is as follows:

M
min z:l L(,w*(a)7 a, [EEWD) _ ’YR(U/*(OZ), a, xz(lval))

[e3%

N
s.t. w*(a) = argmin Y L(w,a,m?r))

w i=1
(16)
where a denotes the set of architecture variables, and w de-
notes the weight parameters of blocks. R denotes the ro-
bustness metric (either based on certified lower bound or
Jacobian norm bound). M is the number of validation ex-
amples, and [V is the number of training examples. On each

al
z(-Vd ) we measure the robustness R and

validation example x

predictive loss L of the architecture v and aim to search
for an optimal architecture that yields the largest robustness
and smallest predictive loss on the validation set. v is a
tradeoff parameter balancing these two objectives. Similar
to [32], this is a bi-level optimization problem. In the inner
optimization problem, given an architecture configuration
«a, an optimal set of weights w*(«) is learned by minimiz-
ing the training loss vazl L(w, a, :UZ(-“)). Note that w*(«)
is a function of a: each architecture configuration « cor-
responds to a set of optimal weights w*(«). w*(«) and «
are both used to measure the robustness and predictive loss
on the validation set. In the outer optimization problem, we
learn the architecture variables by minimizing the valida-
tion loss and maximizing the robustness metric, i.e., search-
ing for an architecture that is accurate and robust. When
R is the metric based on certified bound (CB), our method
is denoted as DSRNA-CB; when R is the metric based on
Jacobian norm bound, our method is denoted as DSRNA-
Jacobian. The two metrics can be summed together as a
single metric, leading to a DSRNA-Combined method. The
algorithm for solving the optimization problem in Eq.(16)
can be derived in a similar way to that in DARTS [32]. We
approximate w* («) using one step gradient descent update
of w with respect to the training loss. Then we plug in this
approximation into the validation loss and robustness met-
ric, and perform gradient descent update of o with respect
to the approximated objective in the first line in Eq.(16).
The detailed algorithm is deferred to the supplements.

4. Experiments
4.1. Dataset

We used three datasets in the experiments: CIFAR-
10 [25], ImageNet [15], and MNIST [27]. CIFAR-10 con-
tains 60K images with a size of 32 x 32. The train, vali-
dation, and test sets in CIFAR-10 contain 25K, 25K, 10K
images, respectively. ImageNet has 1.3M training images
and 50K validation images. MNIST has a training set of
60,000 examples and a test set of 10,000 examples, which
are 28 x 28 gray-scale images of handwritten single digits
between 0 and 9.

4.2. Experimental Settings
4.2.1 Baselines

We compare our proposed methods with the following base-
lines: 1) RobNet [19] which searches robust architectures
based on adversarial training in one-shot NAS; 2) SDARTS-
ADV and PC-DARTS-ADV [§8], which performs adversar-
ial training on architecture variables in DARTS-based NAS.
During architecture evaluation, DSRNA-CB, DSRNA-
Jacobian, DSRNA-Combined, SDARTS-ADYV, and PC-
DARTS-ADV are trained with Jacobian regularization,
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[ Method [ PGD (10 PGD (20) | PGD (100) | FGSM C&W | AutoAttack (i) | AutoAttack (Io) |
RobNet-large [19] 49.49 49.44 49.24 54.98 47.19 48.93 46.38
RobNet-free [ 19] 52.80 52.74 52.57 58.38 46.95 50.13 46.33
SDARTS-ADV [§]* 56.94 £0.02 | 56.90 +0.04 | 56.77 £ 0.17 | 63.84 £0.02 | 42.67 £0.09 | 55.04 £ 0.07 40.98£0.19
PC-DARTS-ADV [8]* 57.15+0.02 | 57.11 +0.05 | 56.83 £ 0.21 | 65.29 +£0.03 | 42.58 +0.04 |  55.29+0.05 40.57+ 0.21
DSRNA-CB (ours)* 6031 +0.07 | 6022 +0.11 | 59.93 +0.24 | 69.88 £0.09 | 63.01 £0.07 | 59.24+0.04 61.87 +£0.15
DSRNA-Jacobian (Ours)* 59.81£0.02 | 59.77 £ 0.04 | 59.47 £0.14 | 68.92+0.02 | 62.87 £0.04 | 59.11 +£0.04 62.09 + 0.10
DSRNA-Combined (Ours)* T || 61.12 & 0.03 | 61.06 £ 0.04 | 60.71 +0.15 | 70.32 + 0.04 | 64.76=0.06 | 59.83 + 0.05 64.51 -+ 0.12

Table 1. Accuracy (%) (mean and standard deviation) of different methods under various norm-bound attacks on CIFAR-10. * Average of
five runs. T Using early stopping. The best method is boldfaced and the second best is underlined.

Method Test Acc. (%) | Params | Search Cost | Search
M) (GPU days) | Method
NASNet-A [49] 97.35 33 1800 RL
AmoebaNet-B [36] 97.45 2.8 3150 evolution
PNAS [30] 96.59 32 255 SMBO
ENAS [35] 97.11 4.6 0.5 RL
DARTS (1st) [32] 97.00 £ 0.14 33 1.5 gradient
DARTS (2nd) [32] 97.26 £ 0.09 33 4.0 gradient
SNAS (moderate) [45] 97.15 2.8 1.5 gradient
ProxylessNAS [3]* 97.92 - 4.0 gradient
ASAP [34] 98.01 2.5 0.2 gradient
R-DARTS (L2) [47] 97.05 4+ 0.21 - 1.6 gradient
DARTS+ [29] 97.68 37 0.4 gradient
P-DARTS [Y] 97.50 34 0.3 gradient
PC-DARTS [46] 97.43 4+ 0.07 3.6 0.1 gradient
RobNet-large [19] 78.57 6.9 - one shot
RobNet-free [19] 82.79 55 - one shot
SDARTS-RS [8] 97.33 +£0.03 34 0.4 gradient
SDARTS-ADV [§] 97.39 £+ 0.02 33 1.3 gradient
PC-DARTS-ADV [¢] 97.51 £ 0.04 35 0.4 gradient
DSRNA-CB (ours)* 97.42 +0.07 35 4.0 gradient
DSRNA-Jacobian (ours) 97.50 £0.03 35 0.4 gradient
DSRNA-Combined (Ours) * 97.51 £ 0.04 3.5 0.6 gradient

Table 2. Accuracy (%) (mean and standard deviation) of different
NAS methods when there are no attacks. *Average of five runs.
TTraining without cutout augmentation. *Using a different search
space. *Using early stopping.

while RobNet-Free and RobNet-large are trained with ad-
versarial training. We select four popular adversarial attack
methods to evaluate the robustness of our methods: fast gra-
dient sign method (FGSM) [ 18], projected gradient descent
(PGD) [33], Carlini & Wagner (C&W) [4], and AutoAt-
tack [14].

4.2.2 Hyperparameter Settings

The search space of our methods is the same as that of PC-
DARTS, which is composed of 3 x 3 and 5 x 5 separable
convolutions, 3 x 3 and 5 x 5 dilated separable convolutions,
3 x 3 max pooling, 3 x 3 average pooling, identity, and zero.
The convolutional cell consists of 6 nodes, which has 2 in-
put nodes, 3 intermediate nodes, and 1 output node. For
CIFAR-10 and MNIST, our methods search the architec-
tures from scratch. In the searching phase, a small network
of 8 cells was trained for 50 epochs with an initial number
of channels of 16.

In DSRNA-CB, we used SGD for optimizing the net-
work weights w with a learning rate of 0.1, a batch size of
256, a momentum of 0.9, and a weight decay of 3e — 4. We

used the Adam optimizer [24] for optimizing architecture
variables «, with a fixed learning rate of 6e — 4, 5; = 0.5,
B2 = 0.999, and a weight decay of 3e — 4. In DSRNA-
Jacobian, the network weights w were optimized via SGD
with a learning rate of 0.025, a batch size of 128, a momen-
tum of 0.9, and a weight decay of 3e — 4. The architecture
variables o were optimized using Adam [24] with a learn-
ing rate of 3e — 4, 51 = 0.5, S = 0.999, and a weight
decay of le — 3.

Given the searched cell, we stack 20 copies of them
into a larger network and train this network from scratch
on CIFAR-10 or MNIST. The network was trained for 600
epochs from scratch with a batch size of 128, an initial
learning rate of 0.025, norm gradient clipping of 5, drop-
path with a rate of 0.3, and an initial number of channels
of 36. For ImageNet, the architecture is transferred from
CIFAR-10: given the optimal cell searched on CIFAR-10,
we stack 14 copies of them into a larger network with 48
initial channels and train this network on ImageNet. The
training was performed for 250 epochs using an SGD opti-
mizer with an annealing learning rate of 0.5, a momentum
of 0.9, and a weight decay of 3e — 5. The tradeoff param-
eter v in both DSRNA-CB and DSRNA-Jacobian was set
to 0.01. In DSRNA-CB, we initialized ¢ as 0.03, and then
linearly increased or decreased it based on the global differ-
ence between the certified upper bound and lower bound.
The hyperparameters of baseline methods are deferred to
the supplements. A single NVIDIA GTX 1080Ti GPU was
used to perform the search.

4.3. Results

In this section, we perform game-based and verification-
based evaluations of the adversarial robustness of our pro-
posed methods and compare with state-of-the-art baselines.

4.3.1 Game-based Evaluation

Game-based evaluation estimates the success rate of de-
fending against adversarial attacks with various forms of
norm-bounds, such as ls, [, etc. FGSM [18, 44] and PGD
[33] are two effective [, attack methods. C&W [4] is an
effective [, attack method. On CIFAR-10, ImageNet, and
MNIST, we evaluate our proposed methods against 1) PGD
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Method Without attack | PGD (100) FGSM C&W AutoAttack (I.,) | AutoAttack (I3) || Params
™M)
RobNet-large [19] 61.26 37.14 39.74 25.73 32.96 23.90 11.6
SDARTS-ADV [8] * 74.85 £+ 0.06 46.54 +0.13 | 48.09 +0.07 | 36.86 +0.10 41.58+ 0.07 3571+ 0.15 4.7
PC-DARTS-ADV [8] * 75.73 £+ 0.07 46.59 + 0.15 | 48.25 +0.08 | 36.69 + 0.09 41.79+0.06 35.86+0.11 53
DSRNA-CB (ours)* 75.84 £ 0.11 4539 £ 0.18 | 50.89 4 0.07 | 43.64 + 0.19 44.05+0.09 42.98+0.16 54
DSRNA-Jacobian (ours)* 75.88 + 0.07 43779 £ 0.11 | 48.69 +0.04 | 43.17 £ 0.08 43.81£0.03 42.56+ 0.11 53

Table 3. Accuracy (%) (mean and standard deviation) of different methods on ImageNet under various attacks and without attack. * Average
of five runs. These architectures were searched on CIFAR-10. The best method is boldfaced.

| Method | Without attack [ PGD (100) [ FGSM [ C&W [ AutoAttack (I..) | AutoAttack (I) |
RobNet-large [19] 90.73 87.28 89.43 69.38 86.85 65.07
SDARTS-ADV [8] * 99.19 £+ 0.01 97.31 £0.02 | 98.67 = 0.02 | 78.94 + 0.05 95.29+0.02 77.73+0.06
PC-DARTS-ADV [8] * 99.21 £ 0.01 97.33 £0.04 | 98.75 £ 0.01 | 78.93 + 0.03 95.86+0.03 77.834+0.07
DSRNA-CB (ours)* 99.21 +0.03 97.34 + 0.06 | 98.85 + 0.03 | 94.02 &+ 0.08 97.01+0.06 94.31+0.14
DSRNA-Jacobian (ours)* 99.36 + 0.01 96.82 +0.02 | 98.79 +£0.01 | 95.37 +0.02 96.28+0.04 94.91+0.08
DSRNA-Combined (ours)* 99.40 + 0.02 97.36 = 0.04 | 98.83 +0.04 | 96.72 + 0.02 96.31 £+ 0.03 95.47+ 0.09

Table 4. Accuracy (%) (mean and standard deviation) of different methods on MNIST under various attacks and without attack. * Average
of five runs. The best method is boldfaced and the second best is underlined.

attack with e = 8/255 on CIFAR-10, ¢ = 2/255 on Ima-
geNet, and € = 0.3 on MNIST, attack iterations of 10, 20,
and 100, and a step size of 2/255, 2) FGSM attack with
e = 2/255, 3) C&W with 60 attack iterations, 4) AutoAt-
tack (lo) with e = 8/255 on CIFAR-10, ¢ = 2/255 on
ImageNet, and € = 0.3 on MNIST, and 5) AutoAttack (I2)
with e = 1.

Table 1 shows the accuracy of different methods un-
der various norm-bound attacks on CIFAR-10. PGD (n)
denotes the PGD attack with n iterations. From this ta-
ble, we make the following observations. First, the ac-
curacy of our proposed methods, including DSRNA-CB
and DSRNA-Jacobian is much higher than that of other ro-
bust NAS baselines including RobNet-large, RobNet-free,
SDARTS-ADYV, and PC-DARTS-ADYV, under PGD, FGSM,
C&W attacks, AutoAttack (I.), and AutoAttack (I5). This
demonstrates that our methods are more robust against var-
ious attacks than these baselines. One major reason is that
our methods search for robust architectures by explicitly
and directly maximizing differentiable robustness metrics
and therefore are guaranteed to obtain robust architectures.
In contrast, the baseline methods try to improve the ro-
bustness of searched architectures implicitly and indirectly:
performing adversarial training and injecting random noise.
The implicitness and indirectness of these methods do not
guarantee robustness. Second, among the baselines, there
is no consistent winner: SDARTS-ADV and PC-DARTS-
ADV perform better than the other baselines under PGD
attack, FGSM attack, and AutoAttack (/.); RobNet-large
and RobNet-free perform better than the other baselines on
C&W attack and AutoAttack (I3). None of these baselines
consistently outperforms others across all these types of at-
tacks. In contrast, our proposed methods are consistently

more robust than these baselines under all types of attacks.
Third, between our two proposed methods DSRNA-CB
and DSRNA-Jacobian, DSRNA-CB is slightly more robust
than DSRNA-Jacobian. This is probably because the first-
order Taylor approximation in DSRNA-Jacobian incurs
larger inexactness. However, DSRNA-Jacobian is much
faster to train and more memory efficient than DSRNA-
CB, as we will show later. Fourth, DSRNA-Combined,
which utilizes CB and Jacobian norm bound simultane-
ously for regularization, performs better than DSRNA-CB
and DSRNA-Jacobian. This shows that when used together,
these two regularizers bring in a synergistic effect.

While our methods are robust against different attacks,
we also would like them to be accurate when there are no
attacks. To verify this, we compare the accuracy of our
methods with state-of-the-art baselines under the attack-free
setting. Table 2 shows the accuracy achieved by different
methods on CIFAR-10 when there are no attacks. From this
table, we make the following observations. First, the accu-
racy achieved by our methods is very close to the best ac-
curacy achieved by ASAP. This demonstrates that not only
being robust, our methods are also highly accurate when
there are no attacks. Second, the accuracy of RobNet is
much lower than that of ours. This shows that while our
methods are not only more robust than RobNet when there
are attacks, but also are much more accurate than RobNet
when there are no attacks. Third, in general, the search
cost of our methods is similar to that of other gradient-based
baselines. This demonstrates that our methods gain robust-
ness without significantly increasing search cost. Note that
the search cost of DSRNA-CB is higher than SDARTS-
RS, SDARTS-ADV, and PC-DARTS-ADV. One may won-
der whether DSRNA-CB achieves higher robustness than
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Dataset || RobNet-large [19] | SDARTS-ADV [5] [ PC-DARTS-ADV [5] | DSRNA-CB (ours) | DSRNA-Jacobian (ours) |
MNIST 0.0325 0.0471 0.0474 0.0526 0.0514
CIFAR-10 0.0024 0.0039 0.0040 0.0049 0.0048

Table 5. Comparison of averaged l..-norm certified lower bounds of architectures searched by various methods. Larger is better.

Dataset [ RobNet-large [[9] [ SDARTS-ADV [3] [ PC-DARTS-ADV [¢] | DSRNA-CB (ours) | DSRNA-Jacobian (ours) |
MNIST 0.1340 0.1767 0.1765 0.4288 0.4285
CIFAR-10 0.0167 0.0337 0.0336 0.0412 0.0409

Table 6. Comparison of averaged />-norm certified lower bounds of architectures searched by various methods. Larger is better.

the three baselines because it performs search for a longer
time. To check this, in DSRNA-CB, we decrease the batch-
size to 64 and use early stopping to reduce the search cost
to 0.5 GPU days. The corresponding accuracy on CIFAR-
10 is: 57.82% under PGD(100), 65.94% under FGSM,
62.35% under C&W, and 97.37% under no attack. Compar-
ing these results with those in Table 1, we can see that our
DSRNA-CB method is still more robust than SDARTS-RS,
SDARTS-ADV, and PC-DARTS-ADV when their search
costs are about the same. Fourth, while SDARTS-ADV
and PC-DARTS-ADYV can achieve high performance when
there are no attacks, they are not as robust as our methods
in the presence of attacks, as shown in Table 1.

To investigate our methods’ transferability, we use the
best cell structure searched on CIFAR-10 to compose a
larger network and train it on ImageNet. Table 3 shows the
accuracy of different methods achieved on ImageNet un-
der various norm-bound attacks and without attack. From
this table, we make the following observations. First, un-
der all the attacks, our methods achieve much higher ac-
curacy than RobNet. Under C&W attack and AutoAttack
(l2), our methods achieve substantially higher accuracy than
SDARTS-ADYV and PC-DARTS-ADV. Under PGD attack,
FGSM attack, and AutoAttack (l,), our methods are on
par with SDARTS-ADV and PC-DARTS-ADV: our meth-
ods are slightly better than SDARTS-ADYV and PC-DARTS-
ADV under FGSM attacks and AutoAttack (I,); SDARTS-
ADV and PC-DARTS-ADV are slightly better than our
methods under PGD attacks. These results further demon-
strate that our methods are more robust against various types
of attacks than the baselines. Second, when there are no at-
tacks, the accuracy of our methods is much higher than that
of RobNet. In addition to being more robust, our methods
are also more accurate than RobNet under the attack-free
setting. Third, DSRNA-CB is slightly more robust than
DSRNA-Jacobian. Note that the search costs of methods
in Table 3 are the same as those in Table 2 since the ar-
chitectures were searched on CIFAR-10 and evaluated on
ImageNet.

Table 4 shows the results on MNIST. Similarly, our
methods are substantially more robust than RobNet-large
under all types of attacks, and are substantially more robust

than SDARTS-ADV and PC-DARTS-ADV under C&W at-
tacks, AutoAttack (I5), and AutoAttack (I.,). Our methods
are on par with SDARTS-ADV and PC-DARTS-ADV un-
der PGD and FGSM attacks. When there is no attack, our
methods achieve much higher accuracy than RobNet-large
and are on par with SDARTS-ADV and PC-DARTS-ADV.

Runtime With a single GTX 1080Ti GPU, the runtime on
CIFAR-10 for the search phase of DSRNA-CB is 4 GPU
days, while that of DSRNA-Jacobian is 0.4 GPU days.
On MNIST, DSRNA-CB takes 1 GPU day for architec-
ture search while DSRNA-Jacobian takes 0.2 GPU days.
DSRNA-Jacobian is more efficient than DSRNA-CB, but
is less robust than DSRNA-CB as shown previously.

4.3.2 Verification-based Evaluation

In this section, we use the certification method developed in
Section 3.1.1 to find the certified lower bounds of the archi-
tectures searched by different methods. Larger lower bound
indicates more robustness. Table 5 and Table 6 compare the
averaged certified lower bounds of architectures searched
by different methods on MNIST and CIFAR-10 under [,
and [, norms. As can be seen, the lower bounds achieved
by our methods under various norms are larger than those
achieved by baselines. This further demonstrates that our
methods are more robust than these baseline methods.

5. Conclusion

To address the problem that existing neural architecture
search (NAS) methods are vulnerable to adversarial attacks,
we propose methods for differentiable search of robust ar-
chitectures. We define two differentiable measures of ar-
chitectures’ robustness, based on certified robustness lower
bound and Jacobian norm bound. Then we search for robust
architectures by performing optimization in the architecture
space with an objective of maximizing the robustness met-
rics. On various datasets, we demonstrate that our methods
1) are more robust to various norm-bound attacks than sev-
eral robust NAS baselines; 2) are more accurate than base-
lines when there are no attacks; 3) have significantly higher
certified lower bounds than baselines.
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