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Abstract

In deep learning applications, the architectures of deep

neural networks are crucial in achieving high accuracy.

Many methods have been proposed to search for high-

performance neural architectures automatically. However,

these searched architectures are prone to adversarial at-

tacks. A small perturbation of the input data can render the

architecture to change prediction outcomes significantly. To

address this problem, we propose methods to perform dif-

ferentiable search of robust neural architectures. In our

methods, two differentiable metrics are defined to measure

architectures’ robustness, based on certified lower bound

and Jacobian norm bound. Then we search for robust ar-

chitectures by maximizing the robustness metrics. Different

from previous approaches which aim to improve architec-

tures’ robustness in an implicit way: performing adversar-

ial training and injecting random noise, our methods ex-

plicitly and directly maximize robustness metrics to harvest

robust architectures. On CIFAR-10, ImageNet, and MNIST,

we perform game-based evaluation and verification-based

evaluation on the robustness of our methods. The experi-

mental results show that our methods 1) are more robust to

various norm-bound attacks than several robust NAS base-

lines; 2) are more accurate than baselines when there are no

attacks; 3) have significantly higher certified lower bounds

than baselines.

1. Introduction

In deep learning applications, the architectures of neu-

ral models play a crucial role in improving performance.

For example, on the ImageNet [15] benchmark, the im-

age classification error is reduced from 16.4% to 3.57%,

when the architecture is evolved from AlexNet [26] to

ResNet [20]. Previously, neural architectures are mostly

designed by humans, which is time-consuming to obtain a

highly-performant architecture. Recently, automated neural

architecture search [49, 50, 36, 37, 41, 42] which develops

algorithms to find out the optimal architecture that yields

the best performance on the validation datasets, has raised

much attention and achieved promising results. For exam-

ple, on the CIFAR-10 dataset, an automatically searched ar-

chitecture [32] achieves an image classification error rate of

2.76% while the error achieved by state-of-the-art human-

designed architecture is 3.46%.

As we will show in the experiments, the architectures

searched by existing methods are prone to adversarial at-

tacks. A small perturbation (which is not perceivable

by humans) of the input data can render the architecture

to change prediction outcomes significantly. Many ap-

proaches [18, 4, 33, 12, 28] have been proposed to improve

the robustness of DNNs. In these approaches, the archi-

tecture of a DNN is provided by humans, and the defense

method focuses on training the weights in this architecture

in a robust way. However, the robustness of a DNN is not

only relevant to its weight parameters, but also determined

by the architecture. It is important to search for architec-

tures that are robust to adversarial attacks as well.

In this paper, we develop a novel approach for robust

NAS. We define two differentiable metrics to measure the

robustness of architectures and formulate robust NAS as an

optimization problem that aims to find out an optimal ar-

chitecture by maximizing the robustness metrics. The first

metric is defined based on certified lower bound [2]. Linear

bounding methods are applied to individual building blocks

in the differentiable architecture search space and these in-

dividual bounds are composed to obtain global bounds for

the entire neural architecture. The second metric is based

on the Jacobian norm bound [21], where the robustness is

measured by how much the output shifts as the input is per-

turbed. The shift is upper bounded by the norms of row vec-

tors in the Jacobian matrix of the neural architecture. Our

approach is applicable to various forms of differentiable ar-

chitecture search methods (e.g., DARTS [32], PC-DARTS

[46], P-DARTS [9], etc. and is robust against adversarial at-

tacks in various norm choices. Previously, robust NAS has

been investigated in [19, 8], based on adversarial training

of randomly sampled sub-architectures [19] and differen-

tiable architecture variables [8]. Unlike these methods that

achieve robustness implicitly via adversarial training, our

method explicitly defines robustness metrics and directly

6196



optimizes these metrics to obtain robust architectures.

On CIFAR-10, ImageNet, and MNIST, we perform

game-based evaluation and verification-based evaluation on

the robustness of our methods. The experimental results

show that our methods 1) are more robust to various norm-

bound attacks than several robust NAS baselines; 2) are

more accurate than baselines when there are no attacks; 3)

have significantly higher certified lower bounds than base-

lines.

The major contributions of this paper include:

• We propose a novel robust NAS method, which

searches robust architectures by maximizing differen-

tiable robustness metrics, defined based on certified

lower bound and Jacobian norm bound. Our meth-

ods have strong guarantees in obtaining robust archi-

tectures by explicitly and directly maximizing robust-

ness measures. In contrast, previous approaches per-

form implicit robustification of architectures via adver-

sarial training, which is not guaranteed to yield robust

architectures. Besides, our methods can be applied to

robustify any differentiable NAS methods, in a princi-

pled and unified way.

• Experiments on ImageNet, CIFAR-10, and MNIST

show that the architectures searched by our methods

are robust to various forms of adversarial attacks and

are as accurate as state-of-the-art NAS methods when

there are no attacks. Our methods are consistently

more robust than previous approaches against various

attacks. In contrast, previous approaches are effective

for certain types of attacks, but ineffective for other

types.

The rest of the paper is organized as follows. Section 2

reviews related works. Section 3 and 4 present the method

and experiments. Section 5 concludes the paper.

2. Related Works

2.1. Neural Architecture Search

In general, there are three paradigms of methods in NAS:

reinforcement learning (RL) approaches [49, 35, 50], evo-

lutionary learning approaches [31, 36], and differentiable

approaches [3, 32, 45]. In RL-based approaches, a pol-

icy is learned to iteratively generate new architectures by

maximizing a reward, which is the accuracy on the valida-

tion set. Evolutionary learning approaches represent the ar-

chitectures as individuals in a population. Individuals with

high fitness scores (validation accuracy) have the privilege

to generate offspring, which replace individuals with low

fitness scores. Differentiable NAS approaches adopt a net-

work pruning strategy. On top of an over-parameterized net-

work, the weights of connections between nodes are learned

using gradient descent. Then weights close to zero are later

pruned. There have been many efforts devoted to improving

differentiable NAS methods. In P-DARTS [9], the depth of

searched architectures is allowed to grow progressively dur-

ing the training process. Search space approximation and

regularization approaches are developed to reduce compu-

tational overheads and improve search stability. PC-DARTS

[46] reduces the redundancy in exploring the search space

by sampling a small portion of a super network. Operation

search is performed in a subset of channels with the held out

part bypassed in a shortcut. DARTS+ [29] leverages early

stopping to avoid the collapse of DARTS’ performance.

2.2. Adversarial Attacks and Defenses

Adversarial attacks aim to perturb input data examples

by adding imperceptible noises so that the prediction results

are altered significantly. In white-box attack [38, 6, 11, 51],

the adversary has full access to the target model, while in

the black-box attack [7, 22, 39, 10], the target model is un-

known to the adversary. In targeted attacks, the adversary

aims to change the prediction outcome in certain classes,

while untargeted attacks are not class-specific. Arguably,

the most popular and effective white-box untargeted attacks

with various norm-bounds are: fast gradient sign method

(FGSM) [18], projected gradient descent (PGD) [33], and

Carlini & Wagner (C&W) [4]. FGSM is a single step attack

algorithm that aims to increase the adversarial loss by up-

dating its gradient sign. PGD is a more general version of

FGSM that runs over several iterations to increase the ad-

versarial loss. The attacks of FGSM and PGD are based on

l∞-norm bound, while those in C&W are based on l0, l2,

and l∞ norms. C&W is particularly effective for l2-norm

attacks. Additionally, a recent work AutoAttack [14] pro-

poses a reliable and robust attack method using an ensem-

ble of stepsize-free versions of PGD attacks, a white-box at-

tack – Fast Adaptive Boundary (FAB) [13], and a black-box

attack – Square Attack [1] to create parameter-free attacks.

To improve the robustness of neural networks against adver-

sarial attacks, many adversarial defense methods have been

proposed, such as random smoothing [28, 12], adversarial

training [18, 33, 4], and Jacobian regularization [23, 21, 5].

Jacobian regularization aims to minimize the change of net-

work outputs when inputs are perturbed. Mathematically,

this amounts to minimizing the Frobenius norm of a Jaco-

bian matrix.

Most of these defense methods assume the neural archi-

tectures are manually designed by humans and focus on im-

proving the robustness of network weights. Automatically

searching for robust architectures is largely under-explored.

In [16], experiments show that architectures searched by

existing NAS methods such as DARTS, PC-DARTS, and

P-DARTS are vulnerable to various forms of adversarial at-

tacks. To address this issue, studies have been conducted to
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robustify NAS methods. RobNet [19] used one-shot NAS

to obtain a large number of networks and then studied the

patterns of architectures that are robust against adversarial

attacks. They discovered that using dense connectivity and

adding convolution operations to direct connection edges

help to improve robustness. Chen et al. [8] proposed per-

forming adversarial training and random smoothing on ar-

chitecture variables, which can improve the robustness of

DARTS-based methods. Our work takes a different ap-

proach for robustifying architectures, where we explicitly

define differentiable metrics to measure architectures’ ro-

bustness and search for robust architectures by maximizing

these metrics.

2.3. Robustness Verification of Neural Networks

Robustness verification aims to provide certified defense

against any possible attacks under a threat model. A robust-

ness certificate ǫ means the prediction outcome cannot be

changed if the strength of the attack is smaller than ǫ. Many

verification approaches [43, 40, 48, 17] have been proposed,

which focus on achieving tighter lower bounds of the ro-

bustness certificate, computing bounds for various complex

building blocks in neural networks, and improving the ef-

ficiency in computing the bounds. Dvijotham et al. [17]

formulate verification as an optimization problem and seek

bounds of the certificate by solving a Lagrangian relaxation

of the optimization problem. Weng et al. [40] propose meth-

ods to verify the robustness of Rectified Linear Unit (ReLU)

networks by bounding the ReLU units with linear func-

tions or local Lipschitz constant. CNN-Cert [2] applies lin-

ear bounding techniques to provide certified lower bounds

for various operations including convolution, pooling, batch

normalization, residual blocks, activation functions, etc.

3. Methods

We begin with defining differentiable metrics to measure

the robustness of neural architectures. Then we propose a

robust NAS framework that performs optimization in the

architecture search space to maximize the robustness met-

rics. The objective function explores a tradeoff between

predictive accuracy and robustness and can be efficiently

optimized using gradient-based methods.

3.1. Defining Differentiable Robustness Metrics

In this section, we define two differentiable metrics to

measure the robustness of neural architectures. The first one

is based on robustness certification methods [2]. Specifi-

cally, given an architecture, we seek to obtain a certified

lower bound of this architecture and use the bound to mea-

sure robustness. The architecture with a larger lower bound

is more robust against different attacks. The second metric

is based on upper-bounding the shift of the model’s predic-

tion when the inputs are perturbed, and the bound is based

on the norm of the Jacobian matrix [21] of the architecture.

The smaller the upper bound is, the more robust the network

is. Previous works [2, 21] have utilized certified bounds

and Jacobian regularization to measure or improve the ro-

bustness of neural networks that have human-designed and

fixed architectures. Different from these works, our work

defines certified bounds and Jacobian regularizers on neural

architecture variables and leverage them to search for robust

architectures.

3.1.1 Measuring Robustness Based on Certified Bound

One way to measure the robustness of a neural network is

to use the verified robustness certificate. A certificate with

value ǫ(x) means that model prediction on the input data

x cannot be changed if the attack strength is smaller than

ǫ(x). A larger ǫ(x) indicates more robustness. In practice,

it is infeasible to obtain the exact robustness certificate of

a model. Instead, one can derive lower bounds of ǫ(x) and

use these lower bounds as surrogates for measuring robust-

ness. Given an architecture search space comprised of vari-

ous building blocks such as ReLU-Conv-BN, (dilated) sepa-

rable convolutions, pooling operations, etc., we perform lin-

ear bounding [2] on these building blocks and compose the

individual bounds to obtain a certified lower bound for each

architecture in the search space. These bounds are differen-

tiable functions of architecture variables and are amenable

for gradient-based optimization. In the sequel, we discuss

how to derive the certified upper and lower bounds for each

type of building blocks.

ReLU-Conv-BN Block The ReLU-Conv-BN building

block consists of three consecutive operations including

rectified linear unit (ReLU) as a nonlinear activation oper-

ation, convolution, and batch normalization (BN). Let Φr

and Φr−2 be the output and input of an ReLU-Conv-BN

block r, then we have

Φr−1 = W r−1 ∗ σ(Φr−2) + br−1 (1)

Φr = γbn
Φr−1 − µbn
√

σ2
bn + ǫbn

+ βbn (2)

where σ(·) is the ReLU function. W r−1 and br−1 are the

weight parameters and bias parameters in the convolution

operation. µbn and σ2
bn are the mean and variance of a batch

of Φr−1 in batch normalization. γbn, ǫbn, and βbn are hy-

perparameters in BN.

By applying linear bounds to these equations, we get

these upper and lower bounds:

Ar
L,bn ∗Φ

r−1+Br
L,bn ≤ Φr ≤ Ar

U,bn ∗Φ
r−1+Br

U,bn (3)
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Ar
L,bnΦ

r−1 +Br
L,bn ≥ Ar

L,bn(A
r−1
L,convΦ

r−2 +Br−1
L,conv) +Br

L,bn (4)

Ar
U,bnΦ

r−1 +Br
U,bn ≤ Ar

U,bn(A
r−1
U,convΦ

r−2 +Br−1
U,conv) +Br

U,bn (5)

where AL,bn, AU,bn, BL,bn, and BU,bn are constants that

can be computed as in [2]:

Ar
L,bn = Ar

U,bn =
γbn

√

σ2
bn + ǫbn

(6)

Br
L,bn = Br

U,bn =
−γbnµbn

√

σ2
bn + ǫbn

+ βbn (7)

and AL,conv , AU,conv , BL,conv , BU,conv are constant ten-

sors.

(Dilated) Separable Convolutions Another two types of

building blocks in our search space are separable convo-

lutions and dilated separable convolutions. Dilated sepa-

rable convolutions consist of four consecutive operations:

ReLU, convolution, convolution, and batch normalization

(BN). Separable convolutions consist of two consecutive di-

lated separable convolutions. Let Φr−3 and Φr denote the

input and output of a dilated separable convolution, then:

Φr−1 = W r−1 ∗ (W r−2 ∗ σ(Φr−3) + br−2) + br−1 (8)

where W r−1 and W r−2 are weights of convolutions; br−2

and br−1 are bias parameters in convolutions. The calcula-

tion of Φr is the same as that in Eq.(2). We can again use

Eq.(3) to find the upper and lower bound of Φr, which are:

Ar
L,bn ∗ Φr−1 +Br

L,bn ≥ Ar
L,bn ∗ (Ar−1

L,conv ∗ (W
r−2

Φr−3 + br−2) +Br−1
L,conv) +Br

L,bn

(9)

Ar
U,bn ∗ Φr−1 +Br

U,bn ≤ Ar
U,bn ∗ (Ar−1

U,conv ∗ (W
r−2

Φr−3 + br−2) +Br−1
U,conv) +Br

U,bn

(10)

The upper and lower bound for separable convolution oper-

ations can be derived in a similar way.

Pooling Operations Let Φr−1 and Φr denote the input

and output of a pooling operation r. We have the following

lower and upper bound of Φr:

Ar
L,pool ∗ Φ

r−1 +Br
L,pool ≤ Φr ≤ Ar

U,pool ∗ Φ
r−1 +Br

U,pool

(11)

Robustness Metric Given the lower and upper bounds of

individual building blocks, we are ready to derive a certi-

fied lower bound for the entire network as a measure of

the robustness of its architecture. In differentiable archi-

tecture search [32], the neural network is overparameter-

ized with many building blocks that are organized into a

directed acyclic graph (DAG). The output of each block is

multiplied with a positive scalar. The larger the scalar is,

the more critical the block is. After learning, a subset of

blocks with the largest scalars are selected to form the final

architecture of this network. Therefore, these scalars (called

architecture variables) represent the architecture. Given a

block with lower bound L and upper bound U , after mul-

tiplying with an architecture variable α, this block has a

lower bound of αL and αU . Following the topological or-

der of blocks in the DAG, we recursively compose the lower

and upper bounds (multiplied with architecture variables)

of blocks and get a global lower and upper bound for the

entire network. These two bounds are functions of architec-

ture variables and the input data example. The lower bound

is used as the robustness metric.

3.1.2 Measuring Robustness with Jacobian Regular-

ization

When the architecture search space is large, computing gra-

dients of the certified lower bound with respect to archi-

tecture variables is time-consuming. To address this prob-

lem, we investigate another measure of robustness, which is

computationally efficient. Let f(x) denote the neural net-

work which takes a data example x ∈ R
D as input and out-

puts a K-dimensional vector. Similar to the robustness met-

ric defined in Section 3.1.1, the architecture search space is

differentiable, where continuous architecture variables are

multiplied to the outputs of building blocks. Therefore,

f(x) is a continuous function of the architecture variables.

Let x+ ǫ be an adversarial example where ǫ is a small per-

turbation vector. We assume the p-norm of ǫ is less equal to

a small scalar δ: ‖ǫ‖p ≤ δ. The robustness of the network

can be measured using the following quantity [21]:

S = −ExEǫ

[

1

K

K
∑

k=1

|fk(x+ ǫ)− fk(x)|

]

(12)

where a = 1/K
∑K

k=1 |fk(x + ǫ) − fk(x)| is the average

change of the output across all dimensions when x is per-

turbed with ǫ and S is the expectation of a defined with

respect to the distributions of x and ǫ. The smaller this

quantity is, the more robust the network is: intuitively, a

network is robust if for every input data example, no matter

how it is perturbed, the change of network output is small.
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According to Taylor expansion, we have:

fk(x+ ǫ)− fk(x) ≈

[

∂fk(x)

∂x

]⊤

ǫ (13)

Let J(x) denote the Jacobian matrix at x where Jkj =
∂fk(x)/∂xj . Then ∂fk(x)/∂x = Jk(x) where Jk(x) is

the k-th row vector of J(x). According to Hölder’s inequal-

ity, we have:

∣

∣Jk(x)
⊤
ǫ

∣

∣ ≤ ‖Jk(x)‖q ‖ǫ‖p ≤ ‖Jk(x)‖q δ (14)

where 1
p
+ 1

q
= 1.

Putting these pieces together, we have:

−ExEǫ

[

1
K

∑K
k=1 |fk(x+ ǫ)− fk(x)|

]

≈ −ExEǫ

[

1
K

∑K
k=1 |Jk(x)

⊤
ǫ|
]

≥ −ExEǫ

[

1
K

∑K
k=1 ‖Jk(x)‖q δ

]

= −δEx

[

1
K

∑K
k=1 ‖Jk(x)‖q

]

≈ − δ
N

∑N
i=1

[

1
K

∑K
k=1 ‖Jk(xi)‖q

]

(15)

where in the last step, the expectation is approximated by

the mean on a set of data examples {xi}
N
i=1. To maximize

S for achieving robustness, we can maximize its approxi-

mated lower bound −δ/N
∑N

i=1

[

1/K
∑K

k=1 ‖Jk(xi)‖q

]

.

This bound is referred to as the Jacobian norm bound. It is

a function of the architecture variables. For l2 and l∞ norm

bound attacks,
∑K

k=1 ‖Jk(x)‖q is the Frobenius norm and

l1 norm of the Jacobian matrix, respectively. We use the

method in [21] to compute the Jacobian matrix efficiently

based on random projection.

3.2. Differentiable Search of Robust Neural Archi­
tectures

Given the robustness metrics defined based on certified

lower bound and Jacobian norm bound, which are increas-

ing functions of the architecture variables (i.e., larger values

of the metrics indicate that the architecture is more robust),

we search for robust architectures by maximizing these ro-

bustness metrics. The formulation is as follows:

min
α

M
∑

i=1

L(w∗(α), α, x
(val)
i )− γR(w∗(α), α, x

(val)
i )

s.t. w∗(α) = argmin
w

N
∑

i=1

L(w,α, x
(tr)
i )

(16)

where α denotes the set of architecture variables, and w de-

notes the weight parameters of blocks. R denotes the ro-

bustness metric (either based on certified lower bound or

Jacobian norm bound). M is the number of validation ex-

amples, and N is the number of training examples. On each

validation example x
(val)
i , we measure the robustness R and

predictive loss L of the architecture α and aim to search

for an optimal architecture that yields the largest robustness

and smallest predictive loss on the validation set. γ is a

tradeoff parameter balancing these two objectives. Similar

to [32], this is a bi-level optimization problem. In the inner

optimization problem, given an architecture configuration

α, an optimal set of weights w∗(α) is learned by minimiz-

ing the training loss
∑N

i=1 L(w,α, x
(tr)
i ). Note that w∗(α)

is a function of α: each architecture configuration α cor-

responds to a set of optimal weights w∗(α). w∗(α) and α
are both used to measure the robustness and predictive loss

on the validation set. In the outer optimization problem, we

learn the architecture variables by minimizing the valida-

tion loss and maximizing the robustness metric, i.e., search-

ing for an architecture that is accurate and robust. When

R is the metric based on certified bound (CB), our method

is denoted as DSRNA-CB; when R is the metric based on

Jacobian norm bound, our method is denoted as DSRNA-

Jacobian. The two metrics can be summed together as a

single metric, leading to a DSRNA-Combined method. The

algorithm for solving the optimization problem in Eq.(16)

can be derived in a similar way to that in DARTS [32]. We

approximate w∗(α) using one step gradient descent update

of w with respect to the training loss. Then we plug in this

approximation into the validation loss and robustness met-

ric, and perform gradient descent update of α with respect

to the approximated objective in the first line in Eq.(16).

The detailed algorithm is deferred to the supplements.

4. Experiments

4.1. Dataset

We used three datasets in the experiments: CIFAR-

10 [25], ImageNet [15], and MNIST [27]. CIFAR-10 con-

tains 60K images with a size of 32 × 32. The train, vali-

dation, and test sets in CIFAR-10 contain 25K, 25K, 10K

images, respectively. ImageNet has 1.3M training images

and 50K validation images. MNIST has a training set of

60,000 examples and a test set of 10,000 examples, which

are 28 × 28 gray-scale images of handwritten single digits

between 0 and 9.

4.2. Experimental Settings

4.2.1 Baselines

We compare our proposed methods with the following base-

lines: 1) RobNet [19] which searches robust architectures

based on adversarial training in one-shot NAS; 2) SDARTS-

ADV and PC-DARTS-ADV [8], which performs adversar-

ial training on architecture variables in DARTS-based NAS.

During architecture evaluation, DSRNA-CB, DSRNA-

Jacobian, DSRNA-Combined, SDARTS-ADV, and PC-

DARTS-ADV are trained with Jacobian regularization,

6200



Method PGD (10) PGD (20) PGD (100) FGSM C&W AutoAttack (l∞) AutoAttack (l2)

RobNet-large [19] 49.49 49.44 49.24 54.98 47.19 48.93 46.38

RobNet-free [19] 52.80 52.74 52.57 58.38 46.95 50.13 46.33

SDARTS-ADV [8]∗ 56.94 ± 0.02 56.90 ± 0.04 56.77 ± 0.17 63.84 ± 0.02 42.67 ± 0.09 55.04 ± 0.07 40.98± 0.19

PC-DARTS-ADV [8]∗ 57.15 ± 0.02 57.11 ± 0.05 56.83 ± 0.21 65.29 ± 0.03 42.58 ± 0.04 55.29± 0.05 40.57± 0.21

DSRNA-CB (ours)∗ 60.31 ± 0.07 60.22 ± 0.11 59.93 ± 0.24 69.88 ± 0.09 63.01 ± 0.07 59.24± 0.04 61.87 ± 0.15

DSRNA-Jacobian (Ours)∗ 59.81 ± 0.02 59.77 ± 0.04 59.47 ± 0.14 68.92 ± 0.02 62.87 ± 0.04 59.11 ± 0.04 62.09 ± 0.10

DSRNA-Combined (Ours)∗ † 61.12 ± 0.03 61.06 ± 0.04 60.71 ± 0.15 70.32 ± 0.04 64.76± 0.06 59.83 ± 0.05 64.51 ± 0.12

Table 1. Accuracy (%) (mean and standard deviation) of different methods under various norm-bound attacks on CIFAR-10. ∗Average of

five runs. † Using early stopping. The best method is boldfaced and the second best is underlined.

Method Test Acc. (%) Params

(M)

Search Cost

(GPU days)

Search

Method

NASNet-A [49] 97.35 3.3 1800 RL

AmoebaNet-B [36] 97.45 2.8 3150 evolution

PNAS [30]† 96.59 3.2 255 SMBO

ENAS [35] 97.11 4.6 0.5 RL

DARTS (1st) [32] 97.00 ± 0.14 3.3 1.5 gradient

DARTS (2nd) [32] 97.26 ± 0.09 3.3 4.0 gradient

SNAS (moderate) [45] 97.15 2.8 1.5 gradient

ProxylessNAS [3]∗ 97.92 – 4.0 gradient

ASAP [34] 98.01 2.5 0.2 gradient

R-DARTS (L2) [47] 97.05 ± 0.21 – 1.6 gradient

DARTS+ [29] 97.68 3.7 0.4 gradient

P-DARTS [9] 97.50 3.4 0.3 gradient

PC-DARTS [46] 97.43 ± 0.07 3.6 0.1 gradient

RobNet-large [19] 78.57 6.9 – one shot

RobNet-free [19] 82.79 5.5 – one shot

SDARTS-RS [8] 97.33 ± 0.03 3.4 0.4 gradient

SDARTS-ADV [8] 97.39 ± 0.02 3.3 1.3 gradient

PC-DARTS-ADV [8] 97.51 ± 0.04 3.5 0.4 gradient

DSRNA-CB (ours)‡ 97.42 ± 0.07 3.5 4.0 gradient

DSRNA-Jacobian (ours)‡ 97.50 ± 0.03 3.5 0.4 gradient

DSRNA-Combined (Ours)‡ ⋆ 97.51 ± 0.04 3.5 0.6 gradient

Table 2. Accuracy (%) (mean and standard deviation) of different

NAS methods when there are no attacks. ‡Average of five runs.
†Training without cutout augmentation. ∗Using a different search

space. ⋆Using early stopping.

while RobNet-Free and RobNet-large are trained with ad-

versarial training. We select four popular adversarial attack

methods to evaluate the robustness of our methods: fast gra-

dient sign method (FGSM) [18] , projected gradient descent

(PGD) [33], Carlini & Wagner (C&W) [4], and AutoAt-

tack [14].

4.2.2 Hyperparameter Settings

The search space of our methods is the same as that of PC-

DARTS, which is composed of 3 × 3 and 5 × 5 separable

convolutions, 3×3 and 5×5 dilated separable convolutions,

3×3 max pooling, 3×3 average pooling, identity, and zero.

The convolutional cell consists of 6 nodes, which has 2 in-

put nodes, 3 intermediate nodes, and 1 output node. For

CIFAR-10 and MNIST, our methods search the architec-

tures from scratch. In the searching phase, a small network

of 8 cells was trained for 50 epochs with an initial number

of channels of 16.

In DSRNA-CB, we used SGD for optimizing the net-

work weights w with a learning rate of 0.1, a batch size of

256, a momentum of 0.9, and a weight decay of 3e− 4. We

used the Adam optimizer [24] for optimizing architecture

variables α, with a fixed learning rate of 6e − 4, β1 = 0.5,

β2 = 0.999, and a weight decay of 3e − 4. In DSRNA-

Jacobian, the network weights w were optimized via SGD

with a learning rate of 0.025, a batch size of 128, a momen-

tum of 0.9, and a weight decay of 3e − 4. The architecture

variables α were optimized using Adam [24] with a learn-

ing rate of 3e − 4, β1 = 0.5, β2 = 0.999, and a weight

decay of 1e− 3.

Given the searched cell, we stack 20 copies of them

into a larger network and train this network from scratch

on CIFAR-10 or MNIST. The network was trained for 600

epochs from scratch with a batch size of 128, an initial

learning rate of 0.025, norm gradient clipping of 5, drop-

path with a rate of 0.3, and an initial number of channels

of 36. For ImageNet, the architecture is transferred from

CIFAR-10: given the optimal cell searched on CIFAR-10,

we stack 14 copies of them into a larger network with 48

initial channels and train this network on ImageNet. The

training was performed for 250 epochs using an SGD opti-

mizer with an annealing learning rate of 0.5, a momentum

of 0.9, and a weight decay of 3e − 5. The tradeoff param-

eter γ in both DSRNA-CB and DSRNA-Jacobian was set

to 0.01. In DSRNA-CB, we initialized ǫ as 0.03, and then

linearly increased or decreased it based on the global differ-

ence between the certified upper bound and lower bound.

The hyperparameters of baseline methods are deferred to

the supplements. A single NVIDIA GTX 1080Ti GPU was

used to perform the search.

4.3. Results

In this section, we perform game-based and verification-

based evaluations of the adversarial robustness of our pro-

posed methods and compare with state-of-the-art baselines.

4.3.1 Game-based Evaluation

Game-based evaluation estimates the success rate of de-

fending against adversarial attacks with various forms of

norm-bounds, such as l2, l∞, etc. FGSM [18, 44] and PGD

[33] are two effective l∞ attack methods. C&W [4] is an

effective l2 attack method. On CIFAR-10, ImageNet, and

MNIST, we evaluate our proposed methods against 1) PGD
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Method Without attack PGD (100) FGSM C&W AutoAttack (l∞) AutoAttack (l2) Params

(M)

RobNet-large [19] 61.26 37.14 39.74 25.73 32.96 23.90 11.6

SDARTS-ADV [8] ∗ 74.85 ± 0.06 46.54 ± 0.13 48.09 ± 0.07 36.86 ± 0.10 41.58± 0.07 35.71± 0.15 4.7

PC-DARTS-ADV [8] ∗ 75.73 ± 0.07 46.59 ± 0.15 48.25 ± 0.08 36.69 ± 0.09 41.79±0.06 35.86±0.11 5.3

DSRNA-CB (ours)∗ 75.84 ± 0.11 45.39 ± 0.18 50.89 ± 0.07 43.64 ± 0.19 44.05±0.09 42.98±0.16 5.4

DSRNA-Jacobian (ours)∗ 75.88 ± 0.07 43.79 ± 0.11 48.69 ± 0.04 43.17 ± 0.08 43.81±0.03 42.56± 0.11 5.3

Table 3. Accuracy (%) (mean and standard deviation) of different methods on ImageNet under various attacks and without attack. ∗Average

of five runs. These architectures were searched on CIFAR-10. The best method is boldfaced.

Method Without attack PGD (100) FGSM C&W AutoAttack (l∞) AutoAttack (l2)

RobNet-large [19] 90.73 87.28 89.43 69.38 86.85 65.07

SDARTS-ADV [8] ∗ 99.19 ± 0.01 97.31 ± 0.02 98.67 ± 0.02 78.94 ± 0.05 95.29±0.02 77.73±0.06

PC-DARTS-ADV [8] ∗ 99.21 ± 0.01 97.33 ± 0.04 98.75 ± 0.01 78.93 ± 0.03 95.86±0.03 77.83±0.07

DSRNA-CB (ours)∗ 99.21 ± 0.03 97.34 ± 0.06 98.85 ± 0.03 94.02 ± 0.08 97.01±0.06 94.31±0.14

DSRNA-Jacobian (ours)∗ 99.36 ± 0.01 96.82 ± 0.02 98.79 ± 0.01 95.37 ± 0.02 96.28±0.04 94.91±0.08

DSRNA-Combined (ours)∗ 99.40 ± 0.02 97.36 ± 0.04 98.83 ± 0.04 96.72 ± 0.02 96.31 ± 0.03 95.47± 0.09

Table 4. Accuracy (%) (mean and standard deviation) of different methods on MNIST under various attacks and without attack. ∗Average

of five runs. The best method is boldfaced and the second best is underlined.

attack with ǫ = 8/255 on CIFAR-10, ǫ = 2/255 on Ima-

geNet, and ǫ = 0.3 on MNIST, attack iterations of 10, 20,

and 100, and a step size of 2/255, 2) FGSM attack with

ǫ = 2/255, 3) C&W with 60 attack iterations, 4) AutoAt-

tack (l∞) with ǫ = 8/255 on CIFAR-10, ǫ = 2/255 on

ImageNet, and ǫ = 0.3 on MNIST, and 5) AutoAttack (l2)

with ǫ = 1.

Table 1 shows the accuracy of different methods un-

der various norm-bound attacks on CIFAR-10. PGD (n)

denotes the PGD attack with n iterations. From this ta-

ble, we make the following observations. First, the ac-

curacy of our proposed methods, including DSRNA-CB

and DSRNA-Jacobian is much higher than that of other ro-

bust NAS baselines including RobNet-large, RobNet-free,

SDARTS-ADV, and PC-DARTS-ADV, under PGD, FGSM,

C&W attacks, AutoAttack (l∞), and AutoAttack (l2). This

demonstrates that our methods are more robust against var-

ious attacks than these baselines. One major reason is that

our methods search for robust architectures by explicitly

and directly maximizing differentiable robustness metrics

and therefore are guaranteed to obtain robust architectures.

In contrast, the baseline methods try to improve the ro-

bustness of searched architectures implicitly and indirectly:

performing adversarial training and injecting random noise.

The implicitness and indirectness of these methods do not

guarantee robustness. Second, among the baselines, there

is no consistent winner: SDARTS-ADV and PC-DARTS-

ADV perform better than the other baselines under PGD

attack, FGSM attack, and AutoAttack (l∞); RobNet-large

and RobNet-free perform better than the other baselines on

C&W attack and AutoAttack (l2). None of these baselines

consistently outperforms others across all these types of at-

tacks. In contrast, our proposed methods are consistently

more robust than these baselines under all types of attacks.

Third, between our two proposed methods DSRNA-CB

and DSRNA-Jacobian, DSRNA-CB is slightly more robust

than DSRNA-Jacobian. This is probably because the first-

order Taylor approximation in DSRNA-Jacobian incurs

larger inexactness. However, DSRNA-Jacobian is much

faster to train and more memory efficient than DSRNA-

CB, as we will show later. Fourth, DSRNA-Combined,

which utilizes CB and Jacobian norm bound simultane-

ously for regularization, performs better than DSRNA-CB

and DSRNA-Jacobian. This shows that when used together,

these two regularizers bring in a synergistic effect.

While our methods are robust against different attacks,

we also would like them to be accurate when there are no

attacks. To verify this, we compare the accuracy of our

methods with state-of-the-art baselines under the attack-free

setting. Table 2 shows the accuracy achieved by different

methods on CIFAR-10 when there are no attacks. From this

table, we make the following observations. First, the accu-

racy achieved by our methods is very close to the best ac-

curacy achieved by ASAP. This demonstrates that not only

being robust, our methods are also highly accurate when

there are no attacks. Second, the accuracy of RobNet is

much lower than that of ours. This shows that while our

methods are not only more robust than RobNet when there

are attacks, but also are much more accurate than RobNet

when there are no attacks. Third, in general, the search

cost of our methods is similar to that of other gradient-based

baselines. This demonstrates that our methods gain robust-

ness without significantly increasing search cost. Note that

the search cost of DSRNA-CB is higher than SDARTS-

RS, SDARTS-ADV, and PC-DARTS-ADV. One may won-

der whether DSRNA-CB achieves higher robustness than
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Dataset RobNet-large [19] SDARTS-ADV [8] PC-DARTS-ADV [8] DSRNA-CB (ours) DSRNA-Jacobian (ours)

MNIST 0.0325 0.0471 0.0474 0.0526 0.0514

CIFAR-10 0.0024 0.0039 0.0040 0.0049 0.0048

Table 5. Comparison of averaged l∞-norm certified lower bounds of architectures searched by various methods. Larger is better.

Dataset RobNet-large [19] SDARTS-ADV [8] PC-DARTS-ADV [8] DSRNA-CB (ours) DSRNA-Jacobian (ours)

MNIST 0.1340 0.1767 0.1765 0.4288 0.4285

CIFAR-10 0.0167 0.0337 0.0336 0.0412 0.0409

Table 6. Comparison of averaged l2-norm certified lower bounds of architectures searched by various methods. Larger is better.

the three baselines because it performs search for a longer

time. To check this, in DSRNA-CB, we decrease the batch-

size to 64 and use early stopping to reduce the search cost

to 0.5 GPU days. The corresponding accuracy on CIFAR-

10 is: 57.82% under PGD(100), 65.94% under FGSM,

62.35% under C&W, and 97.37% under no attack. Compar-

ing these results with those in Table 1, we can see that our

DSRNA-CB method is still more robust than SDARTS-RS,

SDARTS-ADV, and PC-DARTS-ADV when their search

costs are about the same. Fourth, while SDARTS-ADV

and PC-DARTS-ADV can achieve high performance when

there are no attacks, they are not as robust as our methods

in the presence of attacks, as shown in Table 1.

To investigate our methods’ transferability, we use the

best cell structure searched on CIFAR-10 to compose a

larger network and train it on ImageNet. Table 3 shows the

accuracy of different methods achieved on ImageNet un-

der various norm-bound attacks and without attack. From

this table, we make the following observations. First, un-

der all the attacks, our methods achieve much higher ac-

curacy than RobNet. Under C&W attack and AutoAttack

(l2), our methods achieve substantially higher accuracy than

SDARTS-ADV and PC-DARTS-ADV. Under PGD attack,

FGSM attack, and AutoAttack (l∞), our methods are on

par with SDARTS-ADV and PC-DARTS-ADV: our meth-

ods are slightly better than SDARTS-ADV and PC-DARTS-

ADV under FGSM attacks and AutoAttack (l∞); SDARTS-

ADV and PC-DARTS-ADV are slightly better than our

methods under PGD attacks. These results further demon-

strate that our methods are more robust against various types

of attacks than the baselines. Second, when there are no at-

tacks, the accuracy of our methods is much higher than that

of RobNet. In addition to being more robust, our methods

are also more accurate than RobNet under the attack-free

setting. Third, DSRNA-CB is slightly more robust than

DSRNA-Jacobian. Note that the search costs of methods

in Table 3 are the same as those in Table 2 since the ar-

chitectures were searched on CIFAR-10 and evaluated on

ImageNet.

Table 4 shows the results on MNIST. Similarly, our

methods are substantially more robust than RobNet-large

under all types of attacks, and are substantially more robust

than SDARTS-ADV and PC-DARTS-ADV under C&W at-

tacks, AutoAttack (l2), and AutoAttack (l∞). Our methods

are on par with SDARTS-ADV and PC-DARTS-ADV un-

der PGD and FGSM attacks. When there is no attack, our

methods achieve much higher accuracy than RobNet-large

and are on par with SDARTS-ADV and PC-DARTS-ADV.

Runtime With a single GTX 1080Ti GPU, the runtime on

CIFAR-10 for the search phase of DSRNA-CB is 4 GPU

days, while that of DSRNA-Jacobian is 0.4 GPU days.

On MNIST, DSRNA-CB takes 1 GPU day for architec-

ture search while DSRNA-Jacobian takes 0.2 GPU days.

DSRNA-Jacobian is more efficient than DSRNA-CB, but

is less robust than DSRNA-CB as shown previously.

4.3.2 Verification-based Evaluation

In this section, we use the certification method developed in

Section 3.1.1 to find the certified lower bounds of the archi-

tectures searched by different methods. Larger lower bound

indicates more robustness. Table 5 and Table 6 compare the

averaged certified lower bounds of architectures searched

by different methods on MNIST and CIFAR-10 under l2
and l∞ norms. As can be seen, the lower bounds achieved

by our methods under various norms are larger than those

achieved by baselines. This further demonstrates that our

methods are more robust than these baseline methods.

5. Conclusion

To address the problem that existing neural architecture

search (NAS) methods are vulnerable to adversarial attacks,

we propose methods for differentiable search of robust ar-

chitectures. We define two differentiable measures of ar-

chitectures’ robustness, based on certified robustness lower

bound and Jacobian norm bound. Then we search for robust

architectures by performing optimization in the architecture

space with an objective of maximizing the robustness met-

rics. On various datasets, we demonstrate that our methods

1) are more robust to various norm-bound attacks than sev-

eral robust NAS baselines; 2) are more accurate than base-

lines when there are no attacks; 3) have significantly higher

certified lower bounds than baselines.
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[51] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann.
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