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Abstract

Reasoning the human-object interactions (HOI) is es-

sential for deeper scene understanding, while object affor-

dances (or functionalities) are of great importance for hu-

man to discover unseen HOIs with novel objects. Inspired

by this, we introduce an affordance transfer learning ap-

proach to jointly detect HOIs with novel object and rec-

ognize affordances. Specifically, HOI representations can

be decoupled into a combination of affordance and object

representations, making it possible to compose novel inter-

actions by combining affordance representations and novel

object representations from additional images, i.e. transfer-

ring the affordance to novel objects. With the proposed

affordance transfer learning, the model is also capable of

inferring the affordances of novel objects from known af-

fordance representations. The proposed method can thus

be used to 1) improve the performance of HOI detection,

especially for the HOIs with unseen objects; and 2) infer

the affordances of novel objects. Experimental results on

two datasets, HICO-DET and HOI-COCO (from V-COCO),

demonstrate significant improvements over recent state-of-

the-art methods for HOI detection and object affordance de-

tection. Code is available at https://github.com/

zhihou7/HOI-CL.

1. Introduction

Human-object interaction (HOI) detection aims to local-

ize the human and objects in a given image, and recog-

nize the interactions between the human and objects [4].

Considering the combinatorial nature of HOIs, there are al-

ways a variety of rare or unseen interactions with novel ob-

jects (e.g., “ride tiger”), which remains a great challenge for

the HOI detection model to detect unseen interactions with

those novel objects.

ride tiger

horse rideable tiger

Discover novel HOIs

rideable

Recognize Affordances

Affordance Transfer Learning


rideable



Figure 1. An intuitive example to demonstrate affordance trans-

fer learning for jointly exploring human interactions with novel

objects (e.g., “tiger”), and recognizing the affordance of novel ob-

jects. The proposed method is able to learn from the unseen in-

teraction samples (e.g., “ride tiger”) that are composed from af-

fordance representations and novel object representations, which

meanwhile transfers the affordance to novel objects and enables

the object affordance recognition.

The interactions between the human and object,

〈human, verb, object〉, can be captured by either a human-

centric (actions) or object-centric (affordance) manner.

Specifically, each HOI can be disentangled into a verb and

an object, in which the verb also indicates one of the pos-

sible affordances (or functionalities) of the object [12, 16],

i.e. what actions can be applied to a particular object [11].

Therefore, we are able to jointly learn the affordances of

object from the HOI samples, making it possible to com-
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pose new HOIs by combining the affordance representa-

tions in existing HOIs with novel object representations.

Meanwhile, the composition of object representations and

the corresponding affordance representations transfers the

affordance representation (verb) to novel objects, which we

term as affordance transfer learning or ATL. The affordance

transfer learning empowers the shared affordance represen-

tation learning among different objects, and further facili-

tates the detection on HOIs with novel objects. For exam-

ple, with the shared affordance representation (e.g., “ride-

able”) between “tiger” and “horse” as illustrated in Figure 1,

we are able to compose new HOIs (i.e., “ride tiger”), and

thus enable the detection of unseen HOIs. The proposed

affordance transfer learning framework further generalizes

the compositional learning for HOI detection [18] with the

ability to detect HOI with additional unseen objects, rather

than only the objects from existing HOI samples.

The proposed affordance transfer learning also empow-

ers the HOI detection model to learn object affordance in

a weakly supervised manner. Recent HOI detection ap-

proaches [9, 21, 2, 22, 18, 8] usually fail to explore the

possibility of object affordance recognition with the HOI

detection model, and previous affordance learning methods

[16] largely ignore transferring shared affordance represen-

tations from existing HOIs to novel objects by HOI detec-

tion model. By composing new HOI samples from the af-

fordance representations and novel object representations,

affordance transfer learning enables the HOI model to dis-

tinguish whether a novel object representation can be com-

bined or not with an affordance representation (i.e., verb).

We thus recognize object affordances with HOI model as

follows: 1) we maintain a feature bank of decoupled affor-

dance representations from the HOI detection dataset; 2) we

extract object representations from additional object detec-

tion datasets using the same HOI backbone network; and 3)

we combine the object representations with all affordance

representations in the feature bank as the input of the HOI

classifier. Finally, we are able to obtain a set of HOI predic-

tions, which are further used to infer the object affordances.

Overall, the main contribution of this paper can be summa-

rized as follows,

• We introduce an affordance transfer learning frame-

work to exploit a broader source of data for HOI de-

tection, especially for human interactions with novel

objects.

• We incorporate HOI detection network with decom-

posed affordances to infer the affordance of novel ob-

jects.

• The proposed method not only improves recent state-

of-the-art HOI detection methods but also facilitates

the recognition of object affordance at the same time.

2. Related Works

2.1. HOI Understanding

Human-object interaction (HOI) detection are receiving

increasing attention from the community [4]. HOI detection

aims to not only detect object and human in an image, but

also reason the relationships between human and objects.

Since Gputa et al. [13] presented a Human-Object Interac-

tion approach, massive traditional methods [39, 40] were

introduced for HOI recognition using spatial relation [13],

pose [39], human part [40] in the early. Recently, Chao et al.

[5] introduced a large HOI recognition data HICO [5] and a

challenging HOI detection dataset HICO-DET [4] for HOI

understanding. Meanwhile, Gupta et al. [14] introduced the

V-COCO dataset, which mainly focuses on the grounding

of verbs and their semantic roles.

Currently, there are a large number of HOI detection

approaches [9, 21, 38, 35, 31, 2, 27, 34, 32, 42, 19] im-

proving the HOI benchmark [4, 14, 18]. According to

the target, current methods can be categoried into two-

stage HOI detection, which contains common HOI detec-

tion [9, 21, 33, 35, 24] and few-and zero-shot HOI detection

[31, 2, 37, 18, 27, 19, 34, 25], and one-stage HOI detec-

tion [22, 36, 3]. Recently, Hou et al. [18] propose a visual

compositional learning framework to compose novel HOI

samples between pair-wise HOI images for low-and zero-

shot HOI detection. However, VCL [18] can not compose

human-novel-object interactions and ignores the possibility

of affordance recognition with HOI model. We introduce a

novel framework, Affordance Transfer Learning, to transfer

the affordance representation to novel objects via compos-

ing affordance and novel object representations, and thus

enable the detection of HOIs with novel objects.

2.2. Object Affordance

James J. Gibson defined the word affordance in [11]. Ob-

ject affordances are those action possibilities that are per-

ceiveable by an actor [26, 11, 16], that is also the possi-

bilities of Human-Object Interactions. In the early, Kjellstr

et al. [20] investigated learning the affordances of objects

from human demonstration. Yao & Li et al. [41] presented

a weak supervised approach to discover object funtionali-

ties from HOI data in the environment where the person is

interacting with musical instruments. Fouhey et al. [7] in-

troduced an approach to estimate functional surfaces by ob-

serving human actions. Recently, Fang et al. [6] introduces

Demo2Vec to learn interaction region and action label from

online video. Differently, we demonstrate to learn a shared

affordance representation with HOI model, and recognize

object affordance via classifying the composite HOIs of

shared affordance representations from existing HOIs and

the target object representation.
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Figure 2. An overview of affordance transfer learning or ATL for HOI detection. We first extract the human, object, and affordance features

via the ROI-Pooling from the feature pyramids [28], respectively. Meanwhile, we also extract new object features from an additional object

datasets using the same backbone network. After that, we concatenate the affordance and the object features (from HOI datasets) as the

real HOIs. We also compose new HOIs using the affordance features and the object features extracted from additional object datasets,

which transfer the affordance to novel objects. Both the composite HOIs and real HOIs share the same HOI classifier. In addition, human

features and spatial pattern features are combined to construct the spatial HOI branch.

3. Method

In this section, we first give an overview of the proposed

method, and then introduce the affordance transfer learning

for HOI detection. Lastly, we describe the recognition of

object affordances with the proposed HOI detection model.

3.1. Overview

The motivation of affordance transfer learning is to trans-

fer the affordance to novel objects for exploring unseen

HOIs, i.e., combining the affordance representations and

novel object representations. The affordance transfer learn-

ing meanwhile enables HOI network to recognize object

affordance. Similar to [9, 38, 15, 32], we utilize the pop-

ular two-stage HOI detection framework: 1) we first de-

tect the objects in a given image using a common object

detector (e.g., Faster-R-CNN [28]); and 2) we then con-

struct HOIs from object and affordance representations to

perform HOI classification. The main framework of our af-

fordance transfer learning is illustrated in Figure 2, which

consists of three branches, spatial HOI, real HOI, and com-

posite HOI. Inspired by [9, 21, 18], we utilize the spatial

HOI branch to further improve the HOI detection perfor-

mance. Specifically, the spatial pattern representation con-

sists of two 64 × 64 binary feature maps to indicate hu-

man and object relative positions, i.e., the pixels within the

human (or object) bounding box are assigned the value 1.

Both real HOIs and composite HOIs are constructed from

object/affordance features and share the same HOI classi-

fier [29], while the difference between them is that the ob-

jects in the composite HOIs are extracted from additional

object image datasets. Furthermore, by transferring the

shared affordance representations extracted from HOI sam-

ples to novel objects, we are also able to use the HOI detec-

tion model to recognize the affordance of novel objects.

3.2. Affordance Transfer Learning

The proposed affordance transfer learning first composes

novel HOI samples between object representations from ad-

ditional object images (e.g., images from COCO dataset

[23]) and decoupled affordance representation as illustrated

in Figure 2, and then generalize the affordance represen-

tation to novel objects via jointly optimizing the network

with the composite HOIs. With the additional objects, the

affordance transfer learning effectively decouples the affor-

dance representation from the scenes, and then enables the

composition of affordance and novel objects to recognize

the affordance of novel objects. In this subsection, we in-

troduce how to efficiently compose new HOIs and remove
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invalid HOIs for affordance transfer learning.

Efficient HOI Composition. The label assignment for

the composite HOIs can be integrated from the verb label

(or the affordance label) and the object label. The object

label l̃o is provided by the object datasets, and we obtain

the verb label lv by decoupling the HOI label. Similar to

[18], we decouple the HOI label space into a verb-HOI

co-occurrence matrix Av ∈ RNv×C a the object-HOI co-

occurrence matrix Ao ∈ RNo×C , where Nv , No, and C in-

dicate the numbers of verbs, objects and HOI categories, re-

spectively. Here, both Av and Ao are binary matrix. Given

the one-hot HOI label y ∈ RC , we then obtain the verb la-

bel lv from yAT
v . To compose a new HOI by the object l̃o

and verb lv , we assign the label to the composite HOI as

follows,

ȳ = (l̃oAo)&(lvAv), (1)

where & indicates the element-wise “and” logical opera-

tion. Both l̃oAo and lvAv are binary vectors (i.e. HOI la-

bels), which represent all possible HOIs corresponding to

l̃o and lv , respectively. Therefore, the intersection between

l̃oAo and lvAv indicates the label of the verb-object pair〈
lv, l̃o

〉
, i.e., the label of the composite HOI.

Invalid HOI Elimination. With additional object

datasets, we can compose a large number of new types

of HOI samples by combining object and affordance fea-

tures. Considering a variety of object categories, there is

nevertheless some invalid HOIs (e.g., “ride orange”), i.e.,

the invalid HOIs are out the space of ground truth HOI

labels. Furthermore, the same verb might have different

meanings in different scenes [10, 42], while the verbs in

current HOI dataset (e.g., HICO-DET) mainly represents

action (affordance) and are usually not ambiguous [10].

Meanwhile, a variety of recent HOI detection methods

do not distinguish the same affordance among different

HOIs [31, 2, 15, 19, 37, 27]. To this end, we also equally

treat the same affordance from different HOIs for the eval-

uation of the transfer affordance learning. Following [18],

we simply remove those HOIs, which is out of the HOI la-

bel space (e.g., “ride dog” in HICO-DET) as illustrated in

the right part of Figure 2. In addition, the one-hot labels

of those invalid HOIs are all zeros according to Equation 1.

That is, we can easily remove those composite HOIs ac-

cording to the one-hot labels.

3.3. Object Affordance Recognition

In this subsection, we introduce how to infer the object

affordance during the testing phase. Considering that we

jointly optimize the decoupled components (i.e., object fea-

tures and affordance features from object and HOI images)

in HOI samples and novel object samples with affordance

transfer learning, the proposed method thus is able to dis-

tinguish whether a novel object is combinable or not with a

Affordance Feature Bank

+

Interactions

Affordance Predictions

+ + +CNN

Feature Extractor
MLP

HOI Classifier

ride cut cut eat…

- (cut, ) (cut, ) (eat, )…

ride cut eat …wear open

0.01 0.8 0.9 0. 0.02

Figure 3. An illustration of object affordance recognition with HOI

network. Here, we use verb to represent affordance. We first con-

struct an affordance feature bank from the decoupled affordance

representations. For any object (e.g. strawberry), we extract the

object feature by the Feature Extractor according to bounding box.

Then, the object feature is combined with all affordances in the

bank to input into HOI classifier for obtaining predicted interac-

tions. The interactions are further converted into affordances (e.g.

eatable).

specific affordance (i.e., valid HOIs). Therefore, we design

a simple yet effective object affordance recognition method

using the HOI detection model. Specifically, we first build

an affordance feature bank as follows.

Affordance Feature Bank. We construct the affordance

feature bank from HOI datasets (e.g. HICO-DET and HOI-

COCO). In order to reduce storage space and computation,

we randomly choose a maximun of M instances for each af-

fordance in HICO-DET. In our experiment, M is 100. Then,

we extract the features of those affordances to construct an

off-the-shelf affordance feature bank.

Given an object feature extracted from the object image,

we combine it with all affordances in the feature bank to

obtain a set of HOIs. As illustrated in Figure 3, we obtain

all HOI predictions from the HOI classifier. After that, we

are able to convert all HOI predictions to affordance predic-

tions according to the HOI-verb co-occurrence matrix Av .

Specifically, we remove the predicted affordances whose la-

bel is not the same as the corresponding affordance labels in

the feature bank. As a result, we obtain a list of affordances

with many repeated elements. Let Fi denotes the frequency

(count) of the affordance i and Si indicates the number of

affordance (or verb) i in the feature bank, we evaluate the

probability of the affordance i as Fi

Si

.

3.4. Optimization and Inference

During the training stage, we train the proposed method

with an unique loss LATL for transferring the affordance

to novel objects. Meanwhile, similar to [9], we also incor-
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porate spatial pattern loss Lsp to optimize the learning of

the HOI spatial pattern representation. In addition, an HOI

loss Lhoi is used for HOI classification. Lastly, the overall

training loss function is defined as follows,

L = Lhoi sp + λ1Lhoi + λ2LATL, (2)

where λ1 and λ2 are two hyper-parameters to balance dif-

ferent losses. Both the feature extractors and the HOI de-

tection modules are jointly trained in an end-to-end manner.

Lhoi sp, Lhoi, LATL are binary cross entropy losses.

During the testing stage, affordance transfer learning

module is not necessary. Similar to [9, 21, 18], we predict

the final HOIs with spatial HOI predictions and verb-object

HOI predictions. Formally, given a human-object bounding

box pair (bh, bo), we predict the score Sc
h,o as sh·so·s

c
hoi·s

c
sp

for each HOI category c ∈ 1, ..., C, where C denotes the to-

tal number of possible HOI types, sh and so are the human

and object detection scores respectively, scsp represents the

spatial HOI prediction score and schoi is the verb-object HOI

prediction score.

4. Experiments

We conduct a number of experiments to evaluate the our

method for HOI detection using two HOI datasets: HICO-

DET [4] and HOI-COCO (built from V-COCO [14]). Fur-

thermore, we also evaluate the HOI detection model with af-

fordance transfer learning for object affordance recognition

on COCO dataset [23], HICO-DET dataset [4], and COCO

classes and non-COCO classes in Object365 [30].

4.1. Datasets and Evaluation Metrics

HICO-DET [4] dataset consists of 38,118 images in the

training set and 9,658 test images over 600 types of interac-

tions (80 object categories in COCO dataset and 117 unique

verbs) with over 90,000 HOI instances.

HOI-COCO is built from the V-COCO dataset [14],

which contains 10,346 images with 16,199 person in-

stances. Each annotated person in V-COCO has binary la-

bels for 26 different actions. V-COCO mainly focuses on

verb recognition, and has limited object categories (only

two). Thus we construct a new benchmark HOI-COCO

for the evaluation of verb-object pairs as follows. We

use 21 actions from all 26 actions in V-COCO (i.e., five

non-interaction actions, “walk”, “run, “smile”, “stand” and

“point ”, are removed). As a result, we build HOI-COCO

benchmark with 222 HOI categories over 21 verbs and 80

objects. Meanwhile, we use the same train/val split in V-

COCO for HOI-COCO. Similar to HICO-DET [4], we eval-

uate the performance on HOI-COCO under three different

settings: Full (222 types), Rare (97 types), and NonRare

(115 types). The HOI type in Rare category contains less

than 10 training instances, and the distribution of HOI cate-

gories is long-tailed.

COCO [23] dataset is a widely-used benchmark for

common object detection with 80 different object classes.

Considering that both HICO-DET [4] and HOI-COCO con-

sist of the same object label sets to COCO, we thus di-

rectly incorporate the COCO dataset as the additional object

dataset in our experiments.

Object365 [30] is a recently proposed large-scale com-

mon object detection dataset with 365 object categories.

The domain of Object365 is different from COCO [23]. In

detail, we select objects that are labeled as COCO classes

from Object365 validation dataset to evaluate the affor-

dance recognition of objects on new domain. Meanwhile,

we choose 12 new types of objects and label manually the

affordance of those objects according to the HICO-DET and

HOI-COCO, respectively. Those objects are used to eval-

uate affordance recognition on new types of objects. See

more details in supplementary materials.

Evaluation Metrics. We follow the standard evaluation

metric [9, 38] and report mean average precision for HICO-

DET dataset [4] and HOI-COCO. A prediction is a true pos-

itive only when the detected human and object bounding

boxes have IoUs larger than 0.5 with reference to ground

truth, and the HOI category is accurately predicted. Ob-

ject affordance recognition is a multiple label classification

problem (i.e. an object usually has multiple affordances).

Thus, we compare Precision, Recall and F1-Score for eval-

uating object affordance recognition.

4.2. Implementation Details

For HICO-DET, similar to recent methods [2, 22, 36,

18], we use the object detector fine-tuned on HICO-DET,

i.e. the detector provided in [18]. For HOI-COCO, we di-

rectly use the object detector pre-trained on COCO. Be-

sides, all HOI classifiers consist of two fully-connected lay-

ers with 1024 hidden units. To compare with recent meth-

ods on HICO-DET, we use two object images in each mini-

batch. On HOI-COCO, we only use one object image for

evaluation. Besides, we also use an auxiliary verb loss

[17] to improve our baseline. During training, following

[9, 21, 18], we augment the ground truth boxes via random

crop and random shift. During inference, we keep human

and objects with the score larger than 0.3 and 0.1 on HICO-

DET respectively. Following [18], we set λ1 = 2, λ2 = 0.5
on HICO-DET, and λ1 = 0.5, λ2 = 0.5 on HOI-COCO,

respectively. To prevent composite interactions from dom-

inating the training of the model, we keep the number of

composite interactions not more than the number of ob-

jects in each mini-batch by randomly sampling composite

HOIs. We train the model for 1.2M iterations on HICO-

DET dataset and 300K iterations on HOI-COCO with an

initial learning rare of 0.01. For object affordance recogni-

tion, we use the actions of each HOI dataset as affordances

and remove the “no interaction” categories on HICO-DET
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Table 1. Comparison to recent state-of-the-art methods with fine-

tuned detector on HICO-DET dataset [4]. The content in brackets

indicates the source of the object images. The last two rows are

one-stage HOI detection results.

Method
Default Known Object

Full Rare NonRare Full Rare NonRare

FG [2] 21.96 16.43 23.62 - - -

IP-Net [36] 19.56 12.79 21.58 22.05 15.77 23.92

PPDM [22] 21.73 13.78 24.10 24.58 16.65 26.84

VCL [18] 23.63 17.21 25.55 25.98 19.12 28.03

DRG [8] 24.53 19.47 26.04 27.98 23.11 29.43

ATL (HICO-DET) 23.67 17.64 25.47 26.01 19.60 27.93

ATL (COCO) 24.50 18.53 26.28 27.23 21.27 29.00

ATL (HICO-DET) DRG 27.68 20.31 29.89 30.05 22.40 32.34

ATL (COCO) DRG 28.53 21.64 30.59 31.18 24.15 33.29

Baseline (One-Stage) 22.77 16.54 24.63 26.31 21.60 27.72

ATL (One-Stage) 23.81 17.43 25.72 27.38 22.09 28.96

dataset. We keep the object affordance predictions if the

affordance score is large than 0.5. All experiments are con-

ducted on a single Tesla V100 GPU with TensorFlow [1].

4.3. HOI Detection

HICO-DET. We report the performance on three differ-

ent settings: Full (600 categories), Rare (138 categories)

and NonRare (462 categories) in “Default” and “Known”

modes on HICO-DET. As shown in Table 1, the proposed

method outperforms recent state-of-the-art methods among

all categories. Furthermore, with better object detection re-

sults provided in [8], the performance of ATL dramatically

increases to 28.53%. Meanwhile, we find ATL is more

effective on Rare category. Specifically, when using the

objects from the training set of HICO-DET, the proposed

method is similar to VCL [18] as shown in Table 1. ATL

also improves the baseline effectively based on One-Stage

method. Here, the baseline is the model without composi-

tional learning. Details of One-Stage method is provided in

supplementary materials.

HOI-COCO. We find the proposed method has simi-

lar performance to VCL when using HOI-COCO as the

source of object images in Table 2. Here, we evaluate

the performance of VCL on HOI-COCO dataset using the

official code from [18]. When using the COCO object

dataset, the proposed method signifcantly improves the per-

formance, especially on Rare categories, e.g., over 1.5%

than VCL and 2.9% than the baseline, respectively. Mean-

while, the proposed method also gives a larger improvement

than baseline in NonRare category comparing with VCL,

suggesting that ATL also increases the diversity of HOIs

via composing new samples. Furthermore, when using both

HICO-DET and COCO to provide object images, we fur-

ther improve the performance to 25.29%.

4.4. Zero­Shot HOI detection

The proposed affordance transfer learning enables the

detection of HOIs with novel objects due to the mecha-

Table 2. Comparison to recent state-of-the-art methods on HOI-

COCO dataset.

Method object data Full Rare NonRare

Baseline - 22.86 6.87 35.27

VCL [18] HOI-COCO 23.53 8.29 35.36

ATL HOI-COCO 23.40 8.01 35.34

ATL COCO 24.84 9.79 36.51

ATL COCO, HICO-DET 25.29 9.85 37.27

Table 3. Comparison of Zero Shot Detection results of our pro-

posed method. UC means unseen composition HOI detection. NO

means novel object HOI detection. * means we only use the boxes

of the detection results. Here, the baseline means we do not use

affordance transfer learning (i.e. without LATL).

Method Type Unseen Seen Full

Shen et al. [31] UC 5.62 - 6.26

FG [2] UC 10.93 12.60 12.26

VCL [18] (rare first) UC 10.06 24.28 21.43

ATL (rare first) UC 9.18 24.67 21.57

VCL [18] (non-rare first) UC 16.22 18.52 18.06

ATL (non-rare first) UC 18.25 18.78 18.67

FG [2] NO 11.22 14.36 13.84

Baseline NO 12.84 20.63 19.33

ATL (HICO-DET) NO 11.35 20.96 19.36

ATL (COCO) NO 15.11 21.54 20.47

Baseline* NO 0.00 14.13 11.77

ATL (HICO-DET)* NO 0.00 13.67 11.39

ATL (COCO)* NO 5.05 14.69 13.08

nism of composing HOI samples of unseen classes. There-

fore, we evaluate the proposed method for zero-shot HOI

detection on HICO-DET [4]. We report the performance

on two settings: 1) Unseen Composition and 2) Novel Ob-

ject. Specifically, Unseen Composition means there are un-

seen HOIs in the test but the verbs and objects of the un-

seen HOIs exist in training data, while the objects of un-

seen HOIs in novel object HOI detection do not exist in

training data. For compositional zero-shot learning, we fol-

low [18] to evaluate on rare-first unseen HOIs (firstly select

tail HOIs in HICO-DET as unseen data) and non-rare first

unseen HOIs (firstly select head HOIs in HICO-DET as un-

seen data). We evaluate zero-shot HOI detection on three

categories: Unseen (120 categories), Seen (480 categories)

and Full (600 categories). For novel object HOI detection,

similar to [2], we choose 100 unseen categories (includes

12 unseen objects) and 500 seen categories. We choose the

object detector provided in [18] to compare fairly with [18].

Compositional Zero-Shot HOI Detection. In Table 3,

we find our approach effectively improves the non-rare

first zero-shot HOI detection. Meanwhile, our approach

achieves better result on seen category in rare first zero-

shot HOI detection. Particularly, the affordances in tail

part of HOIs are usually rare, the composite samples of tail

HOIs with additional objects are much less than that of head
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Table 4. Comparison of object affordance recognition with HOI network among different datasets (based on Mean average Precision).

Val2017 is the validation 2017 of COCO [23]. Subset of Object365 is the validation of Object365 [30] with only COCO labels. Novel

classes are selected from Object365 with non-COCO labels. Object means what object dataset we use. ATLZS means novel object zero-

shot HOI detection model in Table 3 on HICO-DET. For ATLZS , we show the results of the 12 classes of novel objects in Val2017, Subset

of Object365 and HICO-DET.

Method HOI Data Object
Val2017 of COCO Subset of Object365 HICO-DET Novel classes

Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1

Baseline HOI - 28.62 32.34 27.08 21.75 22.20 19.83 36.64 49.83 37.67 12.39 8.63 9.62

VCL [18] HOI HOI 76.93 71.79 72.15 68.60 67.52 65.82 87.98 82.59 83.84 54.75 35.85 40.43

ATL HOI HOI 80.71 72.79 74.44 71.76 67.34 67.13 90.29 83.21 85.30 58.73 37.75 42.75

ATL HOI COCO 90.94 87.33 87.65 82.95 82.13 80.80 93.35 90.77 91.02 53.65 40.94 43.57

Baseline HICO - 8.11 29.21 11.81 6.77 26.1 9.97 8.11 29.21 15.55 8.12 15.87 8.78

VCL [18] HICO HICO 9.63 43.62 14.89 10.66 38.69 15.77 10.76 53.54 16.82 7.81 22.63 11.02

ATL HICO HICO 14.01 46.45 20.24 17.71 50.92 24.61 15.54 52.25 22.54 12.78 28.8 16.78

ATL HICO COCO 33.69 79.54 44.32 28.25 63.56 35.24 30.27 73.53 40.31 12.41 14.56 12.86

ATLZS HICO HICO 4.28 22.96 6.98 3.54 19.35 5.8 6.02 32.22 9.93 5.02 11.63 6.79

ATLZS HICO COCO 19.41 66.70 29.01 15.57 55.58 23.49 19.36 67.55 28.81 14.00 28.60 18.07

HOIs. Therefore, our approach achieves even worse result

on unseen category.

Novel Object HOI Detection. Table 3 demonstrates that

transferring affordance representation to novel objects ef-

fectively facilitates the detection of unseen HOIs with novel

objects. Here we use the network without affordance trans-

fer learning as our baseline. We find using HICO-DET (re-

move HOIs with unseen objects) as object images even de-

grades the performance on unseen categories compared to

the baseline because we compose massive seen HOI sam-

ples but not unseen HOI samples with HICO-DET. Besides,

similar to [2], we use an generic object detector to enable

HOI detection with novel object, which provides a strong

baseline. While we only use the boxes of the detector (not

use the object label predicted by detector), the performances

of baseline and ATL (HICO-DET) on unseen category de-

crease to 0. However, ATL (COCO) still achieves 5.05% on

unseen category.

4.5. Object Affordance Recognition

Table 4 shows ATL significantly improves the baseline

by over 40 % in F1 score among all datasets with COCO

categories, and by over 30% on novel object classes on

HOI-COCO. On HICO-DET, ATL improves the baseline by

nearly 10% among all categories in datasets with COCO

categories, and by around 5% on novel object classes.

Those experiments indicate that the affordance transfer

learning via composing novel HOIs effectively disentangles

the affordance and object representations from the scenes

and endows the HOI network with the ability of affordance

recognition. Noticeably, ATLZS (COCO), that composing

interactions from affordances and novel objects, largely im-

proves the baseline model ATLZS (HICO) on the 12 novel

classes among all evaluation datasets.

With the object images from the HOI dataset, our method

Table 5. Illustration of the number of object images in each batch

on HICO-DET dataset.

#Images Full Rare NonRare

1 24.07 18.17 25.83

2 24.50 18.53 26.28

3 24.19 17.33 26.24

Table 6. Illustration of the effect of different object detectors on

HOI detection in HICO-DET. Fine-tuned detector is provided in

[18]. GT means ground truth boxes. The last column is the detec-

tion mAP on HICO-DET test dataset.

Model Detector Full Rare NonRare mAP

Baseline COCO 21.07 16.79 22.35 20.82

ATL COCO 20.08 15.57 21.43 20.82

Baseline Fine-tuned 23.44 16.80 25.43 30.79

ATL Fine-tuned 24.50 18.53 26.28 30.79

Baseline GT 43.32 33.84 46.15 100

ATL GT 44.27 35.52 46.89 100

is similar to VCL [18] on HOI-COCO dataset, because both

two methods compose HOI samples between two images.

On HICO-DET, the proposed method has a better perfor-

mance than VCL [18], while the two methods have sim-

ilar performance on HOI detection, as shown in Table 1.

We find Recall, Precision and F1-Score are sensitive to the

threshold. Thus, we further illustrates the Mean average

Precision results of all models in Supplementary Materials.

4.6. Ablation Studies

The number of object images in each batch. Table 5

shows ATL achieves best performance with 2 object images.

We think more object images increase the diversity of object

features and balance the object distribution. However, too

much object images also hampers the performance.

Object detector. Due to the domain shift between
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Table 7. Illustration of effect of domain shift on ATL between ob-

ject images and HOI images on HOI-COCO dataset. Sub-COCO

is a subset of COCO images that we randomly choose the same

number of object instances to the objects of HICO-DET from

COCO dataset.

Method Object images Full Rare NonRare

ATL HICO-DET 24.21 9.52 35.61

ATL Sub-COCO 24.74 9.60 36.50

Figure 4. Comparison of object affordance recognition (F1) be-

tween ATL and the conversion from object detection results on

HICO-DET. Confidence is the object detection confidence for

choosing object boxes. Red is our method and Blue is the con-

version from object detection results.

HICO-DET and COCO, COCO detector usually achieves

worse result. we thus use the same fine-tuned object detec-

tor as [18]. Table 6 illustrates better detected object boxes

improves the performance largely. Meanwhile, we find ATL

is apparently sensitive to worse boxes. Under worse ob-

ject detector (i.e. COCO detector), ATL does not improve

the result. It might be because composing affordance fea-

tures and object features from additional images results in

poor generalization to worse boxes. When we transfer af-

fordance representation to objects from a large number of

additional images via composing novel HOI samples, we

improve the scene generalization (i.e. the model generalizes

to novel scenes) of the affordance representation learning,

while degrading the generalization to worse object boxes

on HICO-DET test set. The object affordance recognition

in Table 4 illustrates the scene generalization of affordance

and object representations. Noticeably, worse object de-

tector largely hampers HOI detection in two-stage method.

Thus, it is necessary to utilize better object detector for eval-

uating HOI detection, and ATL further improves HOI detec-

tion effectively with better object detector.

Domain difference. From the large performance gap

between different object detectors in Table 6, we find the

HICO-DET dataset has a different domain to COCO. Ta-

ble 7 shows with the same number of object instances,

COCO dataset improves the performance larger than HICO-

DET dataset due to the domain difference on HOI-COCO.

There is a similar trend in Table 1 and Table 2. With the

same COCO dataset, our method facilitates HOI detection

on HOI-COCO dataset better than that on HICO-DET.

hold sandwich

eat sandwich

carry sandwich

hold pizza

carry pizza

hold sandwich 

eat sandwich 

carry sandwich 

carry hot_dog

hold hot_dog

hold skateboard 

no_inter skateboard

ride skateboard

carry skateboard

stand_on skateboard

stand_on snowboard 

wear snowboard 

ride snowboard 

jump bicycle 

drag suitcase

hit sports_ball

inspect bottle 

carry bottle 

serve sports_ball

hold umbrella

hold baseball_bat

feed cow 

hit sports_ball

wield knife 

carry baseball_bat

Ours Baseline

Figure 5. Illustration of unseen object zero-shot detection result

(top 5) between the proposed method and Baseline. The correct

results are highlighted in red.

Affordance comparison with object detection results.

Our method can also be applied to detected boxes of an ob-

ject detector. For a robust comparison, we directly compare

ATL with the object affordance result converted from object

detection results according to the object affordance annota-

tion (i.e. the ground truth affordances of an object category)

on HICO-DET test set. Here we use the detected box of

a COCO pretrained Faster-RCNN. We train our model on

HOI-COCO dataset and COCO (2014) dataset, which has

a same training set to COCO pretrained Faster-RCNN. Fig-

ure 4 illustrates ATL achieves better affordance recognition

results among different confidences. Meanwhile, ATL has

better performance than object affordance detection when

the confidence of detected box is lower.

4.7. Qualitative Results

We demonstrate the result of exploring unseen HOIs

with novel objects in Figure 5. We find the baseline can

not recognize the object at all, while the proposed method

effectively detects the HOI with unseen objects.

5. Conclusion

In this paper, we introduce a novel approach, affordance

transfer learning or ATL, to transfer the affordance to novel

objects via composing objects (from object images) and af-

fordances (from HOI images) for HOI detection. ATL ef-

fectively facilitates HOI detection in long-tailed settings,

especially for HOIs with novel objects. In addition, we de-

vise a simple yet effective method to incorporate HOI detec-

tion model for object affordance recognition and ATL sig-

nificantly improves the performance of the HOI detection

model for object affordance recognition.
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