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Abstract

Recent studies on mobile network design have demon-

strated the remarkable effectiveness of channel atten-

tion (e.g., the Squeeze-and-Excitation attention) for lifting

model performance, but they generally neglect the posi-

tional information, which is important for generating spa-

tially selective attention maps. In this paper, we propose a

novel attention mechanism for mobile networks by embed-

ding positional information into channel attention, which

we call “coordinate attention”. Unlike channel attention

that transforms a feature tensor to a single feature vec-

tor via 2D global pooling, the coordinate attention factor-

izes channel attention into two 1D feature encoding pro-

cesses that aggregate features along the two spatial di-

rections, respectively. In this way, long-range dependen-

cies can be captured along one spatial direction and mean-

while precise positional information can be preserved along

the other spatial direction. The resulting feature maps are

then encoded separately into a pair of direction-aware and

position-sensitive attention maps that can be complemen-

tarily applied to the input feature map to augment the rep-

resentations of the objects of interest. Our coordinate at-

tention is simple and can be flexibly plugged into classic

mobile networks, such as MobileNetV2, MobileNeXt, and

EfficientNet with nearly no computational overhead. Exten-

sive experiments demonstrate that our coordinate attention

is not only beneficial to ImageNet classification but more

interestingly, behaves better in down-stream tasks, such as

object detection and semantic segmentation. Code is avail-

able at https://github.com/Andrew-Qibin/

CoordAttention.

1. Introduction

Attention mechanisms, used to tell a model “what” and

“where” to attend, have been extensively studied [47, 29]

and widely deployed for boosting the performance of mod-

ern deep neural networks [18, 44, 3, 25, 10, 14]. How-

ever, their application for mobile networks (with limited

model size) significantly lags behind that for large networks

Figure 1. Performance of different attention methods on three clas-

sic vision tasks. The y-axis labels from left to right are top-1 ac-

curacy, mean IoU, and AP, respectively. Clearly, our approach

not only achieves the best result in ImageNet classification [33]

against the SE block [18] and CBAM [44] but performs even better

in down-stream tasks, like semantic segmentation [9] and COCO

object detection [21]. Results are based on MobileNetV2 [34].

[36, 13, 46]. This is mainly because the computational over-

head brought by most attention mechanisms is not afford-

able for mobile networks.

Considering the restricted computation capacity of mo-

bile networks, to date, the most popular attention mech-

anism for mobile networks is still the Squeeze-and-

Excitation (SE) attention [18]. It computes channel atten-

tion with the help of 2D global pooling and provides no-

table performance gains at considerably low computational

cost. However, the SE attention only considers encoding

inter-channel information but neglects the importance of

positional information, which is critical to capturing object

structures in vision tasks [42]. Later works, such as BAM

[30] and CBAM [44], attempt to exploit positional informa-

tion by reducing the channel dimension of the input tensor

and then computing spatial attention using convolutions as

shown in Figure 2(b). However, convolutions can only cap-

ture local relations but fail in modeling long-range depen-

dencies that are essential for vision tasks [48, 14].

In this paper, beyond the first works, we propose a novel

and efficient attention mechanism by embedding positional

information into channel attention to enable mobile net-

works to attend over large regions while avoiding incur-

ring significant computation overhead. To alleviate the po-

sitional information loss caused by the 2D global pooling,

we factorize channel attention into two parallel 1D feature

encoding processes to effectively integrate spatial coordi-
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nate information into the generated attention maps. Specifi-

cally, our method exploits two 1D global pooling operations

to respectively aggregate the input features along the ver-

tical and horizontal directions into two separate direction-

aware feature maps. These two feature maps with embed-

ded direction-specific information are then separately en-

coded into two attention maps, each of which captures long-

range dependencies of the input feature map along one spa-

tial direction. The positional information can thus be pre-

served in the generated attention maps. Both attention maps

are then applied to the input feature map via multiplication

to emphasize the representations of interest. We name the

proposed attention method as coordinate attention as its op-

eration distinguishes spatial direction (i.e., coordinate) and

generates coordinate-aware attention maps.

Our coordinate attention offers the following advantages.

First of all, it captures not only cross-channel but also

direction-aware and position-sensitive information, which

helps models to more accurately locate and recognize the

objects of interest. Secondly, our method is flexible and

light-weight, and can be easily plugged into classic build-

ing blocks of mobile networks, such as the inverted resid-

ual block proposed in MobileNetV2 [34] and the sandglass

block proposed in MobileNeXt [49], to augment the fea-

tures by emphasizing informative representations. Thirdly,

as a pretrained model, our coordinate attention can bring

significant performance gains to down-stream tasks with

mobile networks, especially for those with dense predic-

tions (e.g., semantic segmentation), which we will show in

our experiment section.

To demonstrate the advantages of the proposed approach

over previous attention methods for mobile networks, we

conduct extensive experiments in both ImageNet classifi-

cation [33] and popular down-stream tasks, including ob-

ject detection and semantic segmentation. With a compa-

rable amount of learnable parameters and computation, our

network achieves 0.8% performance gain in top-1 classifi-

cation accuracy on ImageNet. In object detection and se-

mantic segmentation, we also observe significant improve-

ments compared to models with other attention mechanisms

as shown in Figure 1. We hope our simple and efficient

design could facilitate the development of attention mecha-

nisms for mobile networks in the future.

2. Related Work

In this section, we give a brief literature review of this

paper, including prior works on efficient network architec-

ture design and attention or non-local models.

2.1. Mobile Network Architectures

Recent state-of-the-art mobile networks are mostly

based on the depthwise separable convolutions [16] and

the inverted residual block [34]. HBONet [20] introduces

down-sampling operations inside each inverted residual

block for modeling the representative spatial information.

ShuffleNetV2 [27] uses a channel split module and a chan-

nel shuffle module before and after the inverted residual

block. Later, MobileNetV3 [15] combines with neural ar-

chitecture search algorithms [50] to search for optimal ac-

tivation functions and the expansion ratio of inverted resid-

ual blocks at different depths. Moreover, MixNet [39], Ef-

ficientNet [38] and ProxylessNAS [2] also adopt different

searching strategies to search for either the optimal kernel

sizes of the depthwise separable convolutions or scalars to

control the network weight in terms of expansion ratio, in-

put resolution, network depth and width. More recently,

Zhou et al. [49] rethought the way of exploiting depth-

wise separable convolutions and proposed MobileNeXt that

adopts a classic bottleneck structure for mobile networks.

2.2. Attention Mechanisms

Attention mechanisms [41, 40] have been proven helpful

in a variety of computer vision tasks, such as image classifi-

cation [18, 17, 44, 1] and image segmentation [14, 19, 10].

One of the successful examples is SENet [18], which sim-

ply squeezes each 2D feature map to efficiently build inter-

dependencies among channels. CBAM [44] further ad-

vances this idea by introducing spatial information encod-

ing via convolutions with large-size kernels. Later works,

like GENet [17], GALA [22], AA [1], and TA [28], extend

this idea by adopting different spatial attention mechanisms

or designing advanced attention blocks.

Non-local/self-attention networks are recently very pop-

ular due to their capability of building spatial or channel-

wise attention. Typical examples include NLNet [43], GC-

Net [3], A2Net [7], SCNet [25], GSoP-Net [11], or CC-

Net [19], all of which exploit non-local mechanisms to cap-

ture different types of spatial information. However, be-

cause of the large amount of computation inside the self-

attention modules, they are often adopted in large mod-

els [13, 46] but not suitable for mobile networks.

Different from these approaches that leverage expensive

and heavy non-local or self-attention blocks, our approach

considers a more efficient way of capturing positional in-

formation and channel-wise relationships to augment the

feature representations for mobile networks. By factorizing

the 2D global pooling operations into two one-dimensional

encoding processes, our approach performs much better

than other attention methods with the lightweight property

(e.g., SENet [18], CBAM [44], and TA [28]).

3. Coordinate Attention

A coordinate attention block can be viewed as a com-

putational unit that aims to enhance the expressive power

of the learned features for mobile networks. It can take

any intermediate feature tensor X = [x1,x2, . . . ,xC ] ∈
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Figure 2. Schematic comparison of the proposed coordinate attention block (c) to the classic SE channel attention block [18] (a) and CBAM

[44] (b). Here, “GAP” and “GMP” refer to the global average pooling and global max pooling, respectively. ‘X Avg Pool’ and ’Y Avg

Pool’ refer to 1D horizontal global pooling and 1D vertical global pooling, respectively.

R
C×H×W as input and outputs a transformed tensor with

augmented representations Y = [y1,y2, . . . ,yC ] of the

same size to X. To provide a clear description of the pro-

posed coordinate attention, we first revisit the SE attention,

which is widely used in mobile networks.

3.1. Revisit Squeeze­and­Excitation Attention

As demonstrated in [18], the standard convolution it-

self is difficult to model the channel relationships. Explic-

itly building channel inter-dependencies can increase the

model sensitivity to the informative channels that contribute

more to the final classification decision. Moreover, using

global average pooling can also assist the model in captur-

ing global information, which is a lack for convolutions.

Structurally, the SE block can be decomposed into two

steps: squeeze and excitation, which are designed for global

information embedding and adaptive recalibration of chan-

nel relationships, respectively. Given the input X, the

squeeze step for the c-th channel can be formulated as fol-

lows:

zc =
1

H ×W

H∑

i=1

W∑

j=1

xc(i, j), (1)

where zc is the output associated with the c-th channel. The

input X is directly from a convolutional layer with a fixed

kernel size and hence can be viewed as a collection of local

descriptors. The squeeze operation makes collecting global

information possible.

The second step, excitation, aims to fully capture

channel-wise dependencies, which can be formulated as

X̂ = X · σ(ẑ), (2)

where · refers to channel-wise multiplication, σ is the sig-

moid function, and ẑ is the result generated by a transfor-

mation function, which is formulated as follows:

ẑ = T2(ReLU(T1(z))). (3)

Here, T1 and T2 are two linear transformations that can be

learned to capture the importance of each channel.

The SE block has been widely used in recent mobile net-

works [18, 4, 38] and proven to be a key component for

achieving state-of-the-art performance. However, it only

considers reweighing the importance of each channel by

modeling channel relationships but neglects positional in-

formation, which as we will prove experimentally in Sec-

tion 4 to be important for generating spatially selective at-

tention maps. In the following, we introduce a novel at-

tention block, which takes into account both inter-channel

relationships and positional information.

3.2. Coordinate Attention Blocks

Our coordinate attention encodes both channel relation-

ships and long-range dependencies with precise positional

information in two steps: coordinate information embed-

ding and coordinate attention generation. The diagram of

the proposed coordinate attention block can be found in the

right part of Figure 2. In the following, we will describe it

in detail.

3.2.1 Coordinate Information Embedding

The global pooling is often used in channel attention to

encode spatial information globally, but it squeezes global

spatial information into a channel descriptor and hence is

difficult to preserve positional information, which is essen-

tial for capturing spatial structures in vision tasks. To en-

courage attention blocks to capture long-range interactions

spatially with precise positional information, we factorize

the global pooling as formulated in Eqn. (1) into a pair of
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1D feature encoding operations. Specifically, given the in-

put X, we use two spatial extents of pooling kernels (H, 1)
or (1,W ) to encode each channel along the horizontal co-

ordinate and the vertical coordinate, respectively. Thus, the

output of the c-th channel at height h can be formulated as

zhc (h) =
1

W

∑

0≤i<W

xc(h, i). (4)

Similarly, the output of the c-th channel at width w can be

written as

zwc (w) =
1

H

∑

0≤j<H

xc(j, w). (5)

The above two transformations aggregate features along

the two spatial directions respectively, yielding a pair of

direction-aware feature maps. This is rather different from

the squeeze operation (Eqn. (1)) in channel attention meth-

ods that produce a single feature vector. These two transfor-

mations also allow our attention block to capture long-range

dependencies along one spatial direction and preserve pre-

cise positional information along the other spatial direction,

which helps the networks more accurately locate the objects

of interest.

3.2.2 Coordinate Attention Generation

As described above, Eqn. (4) and Eqn. (5) enable a global

receptive field and encode precise positional information.

To take advantage of the resulting expressive representa-

tions, we present the second transformation, termed coordi-

nate attention generation. Our design refers to the following

three criteria. First of all, the new transformation should be

as simple and cheap as possible regarding the applications

in mobile environments. Second, it can make full use of the

captured positional information so that the regions of inter-

est can be accurately highlighted. Last but not the least, it

should also be able to effectively capture inter-channel rela-

tionships, which has been demonstrated essential in existing

studies [18, 44].

Specifically, given the aggregated feature maps produced

by Eqn. 4 and Eqn. 5, we first concatenate them and then

send them to a shared 1 × 1 convolutional transformation

function F1, yielding

f = δ(F1([z
h, zw])), (6)

where [·, ·] denotes the concatenation operation along the

spatial dimension, δ is a non-linear activation function and

f ∈ R
C/r×(H+W ) is the intermediate feature map that en-

codes spatial information in both the horizontal direction

and the vertical direction. Here, r is the reduction ratio

for controlling the block size as in the SE block. We then

split f along the spatial dimension into two separate tensors

(a)

Conv 1×1

Conv 1×1

+

Dwise 3×3

Attention

(b)

Dwise 3×3

Conv 1×1

Conv 1×1

Dwise 3×3

+

×

Attention

×

Figure 3. Network implementation for different network architec-

tures. (a) Inverted residual block proposed in MobileNetV2 [34];

(b) Sandglass bottleneck block proposed in MobileNeXt [49].

fh ∈ R
C/r×H and fw ∈ R

C/r×W . Another two 1× 1 con-

volutional transformations Fh and Fw are utilized to sepa-

rately transform fh and fw to tensors with the same channel

number to the input X, yielding

gh = σ(Fh(f
h)), (7)

gw = σ(Fw(f
w)). (8)

Recall that σ is the sigmoid function. To reduce the over-

head model complexity, we often reduce the channel num-

ber of f with an appropriate reduction ratio r (e.g., 32). We

will discuss the impact of different reduction ratios on the

performance in our experiment section. The outputs gh and

gw are then expanded and used as attention weights, respec-

tively. Finally, the output of our coordinate attention block

Y can be written as

yc(i, j) = xc(i, j)× ghc (i)× gwc (j). (9)

Discussion. Unlike channel attention that only focuses on

reweighing the importance of different channels, our coor-

dinate attention block also considers encoding the spatial

information. As described above, the attention along both

the horizontal and vertical directions is simultaneously ap-

plied to the input tensor. Each element in the two attention

maps reflects whether the object of interest exists in the cor-

responding row and column. This encoding process allows

our coordinate attention to more accurately locate the exact

position of the object of interest and hence helps the whole

model to recognize better. We will demonstrate this exhaus-

tively in our experiment section.

3.3. Implementation

As the goal of this paper is to investigate a better way

to augment the convolutional features for mobile networks,

here we take two classic light-weight architectures with dif-

ferent types of residual blocks (i.e., MobileNetV2 [34] and

MobileNeXt [49]) as examples to demonstrate the advan-

tages of the proposed coordinate attention block over other
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Table 1. Result comparisons under different experiment settings

of the proposed coordinate attention. Here, r is the reduction ratio

and the baseline result is based on the MobileNetV2 model. As

can be seen, the model with either the horizontal (X) attention or

the vertical (Y) attention added achieves the same performance as

the one with SE attention. However, when taking both horizon-

tal and vertical attentions into account (coordinate attention), our

approach yields the best result. The latency is tested on a Google

Pixel 4 device.

Settings Param. M-Adds r Latency Top-1 (%)

Baseline 3.5M 300M - 14-16ms 72.3

+ SE 3.89M 300M 24 16-18ms 73.5+1.2

+ X Attention 3.89M 300M 24 16-18ms 73.5+1.2

+ Y Attention 3.89M 300M 24 16-18ms 73.5+1.2

+ Coord. Attention 3.95M 310M 32 17-19ms 74.3+2.0

famous light-weight attention blocks. Figure 3 shows how

we plug attention blocks into the inverted residual block in

MobileNetV2 and the sandglass block in MobileNeXt.

4. Experiments

In this section, we first describe our experiment settings

and then conduct a series of ablation experiments to demon-

strate the contribution of each component in the proposed

coordinate attention to the performance. Next, we compare

our approach with some attention based methods. Finally,

we report the results of the proposed approach compared to

other attention based methods on object detection and se-

mantic segmentation.

4.1. Experiment Setup

We use the PyTorch toolbox [31] to implement all our

experiments. During training, we use the standard SGD op-

timizer with decay and momentum of 0.9 to train all the

models. The weight decay is set to 4 × 10−5 always. The

cosine learning schedule with an initial learning rate of 0.05

is adopted. We use four NVIDIA GPUs for training and the

batch size is set to 256. Without extra declaration, we take

MobileNetV2 as our baseline and train all the models for

200 epochs. For data augmentation, we use the same meth-

ods as in MobileNetV2. We report results on the ImageNet

dataset [33] in classification.

4.2. Ablation Studies

Importance of coordinate attention. To demonstrate the

performance of the proposed coordinate attention, we per-

form a series of ablation experiments, the corresponding re-

sults of which are all listed in Table 1. We remove either the

horizontal attention or the vertical attention from the coordi-

nate attention to see the importance of encoding coordinate

information. As shown in Table 1, the model with atten-

tion along either direction has comparable performance to

Table 2. Comparisons of different attention methods under differ-

ent multipliers when taking MobileNetV2 as the baseline.

Settings Param. (M) M-Adds (M) Top-1 Acc (%)

MobileNetV2-1.0 3.5 300 72.3

+ SE 3.89 300 73.5+1.2

+ CBAM 3.89 300 73.6+1.3

+ CA 3.95 310 74.3+2.0

MobileNetV2-0.75 2.5 200 69.9

+ SE 2.86 210 71.5+1.6

+ CBAM 2.86 210 71.5+1.6

+ CA 2.89 210 72.1+2.2

MobileNetV2-0.5 2.0 100 65.4

+ SE 2.1 100 66.4+1.0

+ CBAM 2.1 100 66.4+1.0

+ CA 2.1 100 67.0+1.6

the one with the SE attention. However, when both the hor-

izontal attention and the vertical attention are incorporated,

we obtain the best result as highlighted in Table 1. These ex-

periments reflect that with comparable learnable parameters

and computational cost, coordinate information embedding

is more helpful for image classification.

Different weight multipliers. Here, we take two clas-

sic mobile networks (including MobileNetV2 [34] with in-

verted residual blocks and MobileNeXt [49] with sandglass

bottleneck block) as baselines to see the performance of

the proposed approach compared to the SE attention [18]

and CBAM [44] under different weight multipliers. In this

experiment, we adopt three typical weight multipliers, in-

cluding {1.0, 0.75, 0.5}. As shown in Table 2, when taking

the MobileNetV2 network as baseline, models with CBAM

have similar results to those with the SE attention. However,

models with the proposed coordinate attention yield the best

results under each setting. Similar phenomenon can also be

observed when the MobileNeXt network is used as listed in

Table 3. This indicates that no matter which of the sandglass

bottleneck block or the inverted residual block is considered

and no matter which weight multiplier is selected, our coor-

dinate attention performs the best because of the advanced

way to encode positional and inter-channel information si-

multaneously.

The impact of reduction ratio r. To investigate the im-

pact of different reduction ratios of attention blocks on the

model performance, we attempt to decrease the size of the

reduction ratio and see the performance change. As shown

in Table 4, when we reduce r to half of the original size, the

model size increases but better performance can be yielded.

This demonstrates that adding more parameters by reducing

the reduction ratio matters for improving the model perfor-

mance. More importantly, our coordinate attention still per-

forms better than the SE attention and CBAM in this exper-
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Table 3. Comparisons of different attention methods under differ-

ent multipliers when taking MobileNeXt [49] as the baseline.

Settings Param. (M) M-Adds (M) Top-1 Acc (%)

MobileNeXt 3.5 300 74.0

+ SE 3.89 300 74.7+0.7

+ CA 4.09 330 75.2+1.2

MobileNeXt-0.75 2.5 210 72.0

+ SE 2.9 210 72.6+0.6

+ CA 3.0 220 73.2+1.2

MobileNeXt-0.5 2.1 110 67.7

+ SE 2.4 110 68.7+1.0

+ CA 2.4 110 69.4+1.7

Table 4. Comparisons of models equipped with different attention

blocks under different reduction ratios r. The baseline result is

based on the MobileNetV2 model. Obviously, when the reduction

ratio decreases, our approach still yields the best results.

Settings Param. M-Adds r Top-1 Acc (%)

Baseline 3.5M 300M - 72.3

+ SE 3.89M 300M 24 73.5+1.2

+ CBAM 3.89M 300M 24 73.6+1.3

+ CA (Ours) 3.95M 310M 32 74.3+2.0

+ SE 4.28M 300M 12 74.1+1.8

+ CBAM 4.28M 300M 12 74.1+1.8

+ CA (Ours) 4.37M 310M 16 74.7+2.4

iment, reflecting the robustness of the proposed coordinate

attention to the reduction ratio.

4.3. Comparison with Other Methods

Attention for Mobile Networks. We compare our coor-

dinate attention with other light-weight attention methods

for mobile networks, including the widely adopted SE at-

tention [18] and CBAM [44] in Table 2. As can be seen,

adding the SE attention has already raised the classification

performance by more than 1%. For CBAM, it seems that its

spatial attention module shown in Figure 2(b) does not con-

tribute in mobile networks compared to the SE attention.

However, when the proposed coordinate attention is con-

sidered, we achieve the best results. We also visualize the

feature maps produced by models with different attention

methods in Figure 4. Obviously, our coordinate attention

can help better in locating the objects of interest than the

SE attention and CBAM.

We argue that the advantages of the proposed positional

information encoding manner over CBAM are two-fold.

First, the spatial attention module in CBAM squeezes the

channel dimension to 1, leading to information loss. How-

ever, our coordinate attention uses an appropriate reduction

ratio to reduce the channel dimension in the bottleneck,

avoiding too much information loss. Second, CBAM uti-

B
ef

.
S

E
A

ft
.

S
E

B
ef

.
C

B
A

M
A

ft
.

C
B

A
M

B
ef

.
C

A
A

ft
.

C
A

Leaf beetle Flamingo Screen Beer glass Black bear

Figure 4. Visualization of feature maps produced by models with

different attention methods in the last building block. We use

Grad-CAM [35] as our visualization tool. Both feature maps be-

fore and after each attention block are visualized. It is obvious

that our coordinate attention (CA) can more precisely locate the

objects of interest than other attention methods.

lizes a convolutional layer with kernel size 7× 7 to encode

local spatial information while our coordinate attention en-

codes global information by using two complementary 1D

global pooling operations. This enables our coordinate at-

tention to capture long-range dependencies among spatial

locations that are essential for vision tasks.

Stronger Baseline. To further demonstrate the advantages

of the proposed coordinate attention over the SE attention

in more powerful mobile networks, we take EfficientNet-b0

[38] as our baseline here. EfficientNet is based on archi-

tecture search algorithms. and contains SE attention. To

investigate the performance of the proposed coordinate at-

tention on EfficientNet, we simply replace the SE attention

with our proposed coordinate attention. For other settings,

we follow the original paper. The results have been listed in

Table 5. Compared to the original EfficientNet-b0 with SE

attention included and other methods that have comparable

parameters and computations to EfficientNet-b0, our net-

work with coordinate attention achieves the best result. This

demonstrates that the proposed coordinate attention can still

performance well in powerful mobile networks.
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Table 5. Experimental results when taking the powerful

EfficientNet-b0 [38] as baseline. We also compare with other

methods that have comparable parameters and computations to

EfficientNet-b0.

Settings Param. M-Adds Top-1 Acc (%)

PNAS [23] 5.1M 588M 72.7

DARTS [24] 4.7M 574M 73.3

ProxylessNAS-M [2] 4.1M 330M 74.4

AmoebaNet-A [32] 5.1M 555M 74.5

FBNet-C [45] 5.5M 375M 74.9

MobileNeXt [49] 6.1M 590M 76.1

MNasNet-A3 [37] 5.2M 403M 76.7

EfficientNet-b0 (w/ SE) [38] 5.3M 390M 76.3

EfficientNet-b0 (w/ CA) 5.4M 400M 76.9

4.4. Applications

In this subsection, we conduct experiments on both the

object detection task and the semantic segmentation task to

explore the transferable capability of the proposed coordi-

nate attention against other attention methods.

4.4.1 Object Detection

Implementation Details. Our code is based on PyTorch

and SSDLite [34, 26]. Following [34], we connect the first

and second layers of SSDLite to the last pointwise convo-

lutions with output stride of 16 and 32, respectively and

add the rest SSDLite layers on top of the last convolutional

layer. When training on COCO, we set the batch size to

256 and use the synchronized batch normalization. The co-

sine learning schedule is used with an initial learning rate of

0.01. We train the models for totally 1,600,000 iterations.

When training on Pascal VOC, the batch size is set to 24

and all the models are trained for 240,000 iterations. The

weight decay is set to 0.9. The initial learning rate is 0.001,

which is then divided by 10 at 160,000 and again at 200,000

iterations. For other settings, readers can refer to [34, 26].

Results on COCO. In this experiment, we follow most pre-

vious work and report results in terms of AP, AP50, AP75,

APS , APM , and APL, respectively. In Table 6, we show the

results produced by different network settings on the COCO

2017 validation set. It is obvious that adding coordinate at-

tention into MobileNetV2 substantially improve the detec-

tion results (24.5 v.s. 22.3) with only 0.5M parameters over-

head and nearly the same computational cost. Compared to

other light-weight attention methods, such as the SE atten-

tion and CBAM, our version of SSDLite320 achieves the

best results in all metrics with nearly the same number of

parameters and computations.

Moreover, we also show results produced by previous

state-of-the-art models based on SSDLite320 as listed in Ta-

ble 6. Note that some methods (e.g., MobileNetV3 [15] and

MnasNet-A1 [37]) are based on neural architecture search

methods but our model does not. Obviously, our detection

model achieves the best results in terms of AP compared to

other approaches with close parameters and computations.

Results on Pascal VOC. In Table 7, we show the detection

results on Pascal VOC 2007 test set when different atten-

tion methods are adopted. We observe that the SE attention

and CBAM cannot improve the baseline results. However,

adding the proposed coordinate attention can largely raise

the mean AP from 71.7 to 73.1. Both detection experiments

on COCO and Pascal VOC datasets demonstrate that classi-

fication models with the proposed coordinate attention have

better transferable capability compared to those with other

attention methods.

4.4.2 Semantic Segmentation

We also conduct experiments on semantic segmenta-

tion. Following MobileNetV2 [34], we utilize the classic

DeepLabV3 [6] as an example and compare the proposed

approach with other models to demonstrate the transferable

capability of the proposed coordinate attention in semantic

segmentation. Specifically, we discard the last linear opera-

tor and connect the ASPP to the last convolutional operator.

We replace the standard 3× 3 convolutional operators with

the depthwise separable convolutions in the ASPP to reduce

the model size considering mobile applications. The output

channels for each branch in ASPP are set to 256 and other

components in the ASPP are kept unchanged (including the

1×1 convolution branch and the image-level feature encod-

ing branch). We report results on two widely used semantic

segmentation benchmarks, including Pascal VOC 2012 [9]

and Cityscapes [8]. For experiment settings, we strictly fol-

low the DeeplabV3 paper except for the weight decay that is

set to 4e-5. When the output stride is set to 16, the dilation

rates in the ASPP are {6, 12, 18} while {12, 24, 36} when

the output stride is set to 8.

Results on Pascal VOC 2012. The Pascal VOC 2012 seg-

mentation benchmark has totally 21 classes including one

background class. As suggested by the original paper, we

use the split with 1,464 images for training and the split

with 1,449 images for validation. Also, as done in most

previous work [6, 5], we augment the training set by adding

extra images from [12], resulting in totally 10,582 images

for training.

We show the segmentation results when taking differ-

ent models as backbones in Table 8. We report results un-

der two different output strides, i.e., 16 and 8. Note that

all the results reported here are not based on COCO pre-

training. According to Table 8, models equipped with our

coordinate attention performs much better than the vanilla

MobileNetV2 and other attention methods.

Results on Cityscapes. Cityscapes [8] is one of the most
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Table 6. Object detection results on the COCO validation set. In all experiments here, we use the SSDLite320 detector. As can be seen, the

backbone model with our coordinate attention achieves the best results in terms of all kinds of measuring metrics. Note that all the results

are based on single-model test. Besides hand-designed mobile networks, we also show results produced by architecture search-based

methods (i.e., MobileNetV3 [15] and MnasNet-A1 [37]).

No. Method Backbone Param. (M) M-Adds (B) AP AP50 AP75 APS APM APL

1 SSDLite320 MobileNetV1 [16] 5.1 1.3 22.2 - - - - -

2 SSDLite320 MobileNetV2 [34] 4.3 0.8 22.3 37.4 22.7 2.8 21.2 42.8

3 SSDLite320 MobileNetV3 [15] 5.0 0.62 22.0 - - - - -

4 SSDLite320 MnasNet-A1 [37] 4.9 0.8 23.0 - - 3.8 21.7 42.0

5 SSDLite320 MobileNeXt [49] 4.4 0.8 23.3 38.9 23.7 2.8 22.7 45.0

6 SSDLite320 MobileNetV2 + SE 4.7 0.8 23.7 40.0 24.3 2.2 25.4 44.7

7 SSDLite320 MobileNetV2 + CBAM 4.7 0.8 23.0 38.6 23.3 2.7 22.2 44.5

8 SSDLite320 MobileNetV2 + CA 4.8 0.8 24.5 40.7 25.4 2.3 26.2 45.9

Table 7. Object detection results on the Pascal VOC 2007 test

set. We can observe that when the same SSDLite320 detector

is adopted, MobileNetV2 network with our coordinate attention

added achieves better results in terms of mAP.

Backbone Param. (M) M-Adds (B) mAP (%)

MobileNetV2 [34] 4.3 0.8 71.7

MobileNetV2 + SE 4.7 0.8 71.7

MobileNetV2 + CBAM 4.7 0.8 71.7

MobileNetV2 + CA 4.8 0.8 73.1

Table 8. Semantic segmentation results on the Pascal VOC 2012

validation set. All the results are based on single-model test and

no post-processing tools are used. We can see that the models

equipped with all attention methods improve the segmentation re-

sults. However, when the proposed coordinate attention is used,

we achieve the best result, which is much better than models with

other attention methods. ‘Stride’ here denotes the output stride of

the segmentation network.

Backbone Param. (M) Stride mIoU (%)

MobileNetV2 [34] 4.5 16 70.84

MobileNetV2 + SE 4.9 16 71.69

MobileNetV2 + CBAM 4.9 16 71.28

MobileNetV2 + CA (ours) 5.0 16 73.32

MobileNetV2 [34] 4.5 8 71.82

MobileNetV2 + SE 4.9 8 72.52

MobileNetV2 + CBAM 4.9 8 71.67

MobileNetV2 + CA (ours) 5.0 8 73.96

popular urban street scene segmentation datasets, contain-

ing totally 19 different categories. Following the official

suggestion, we use the split with 2,975 images for training

and 500 images for validation. Only the fine-annotated im-

ages are used for training. In training, we randomly crop

the original images to 768×768. During testing, all images

are kept the original size (1024× 2048).

In Table 9, we show the segmentation results pro-

duced by models with different attention methods on the

Cityscapes dataset. Compared to the vanilla MobileNetV2

Table 9. Semantic segmentation results on the Cityscapes [8] val-

idation set. We report results on single-model test and full image

size (i.e., 1024 × 2048) is used for testing. We do not use any

post-processing tools.

Backbone Param. (M) Output Stride mIoU (%)

MobileNetV2 4.5 8 71.4

MobileNetV2 + SE 4.9 8 72.2

MobileNetV2 + CBAM 4.9 8 71.4

MobileNetV2 + CA 5.0 8 74.0

and other attention methods, our coordinate attention can

improve the segmentation results by a large margin with

comparable number of learnable parameters.

Discussion. We observe that our coordinate attention yields

larger improvement on semantic segmentation than Ima-

geNet classification and object detection. We argue that

this is because our coordinate attention is able to capture

long-range dependencies with precise postional informa-

tion, which is more beneficial to vision tasks with dense

predictions, such as semantic segmentation.

5. Conclusions

In this paper, we present a novel light-weight atten-

tion mechanism for mobile networks, named coordinate

attention. Our coordinate attention inherits the advan-

tage of channel attention methods (e.g., the Squeeze-and-

Excitation attention) that model inter-channel relationships

and meanwhile captures long-range dependencies with pre-

cise positional information. Experiments in ImageNet

classification, object detection and semantic segmentation

demonstrate the effectiveness of our coordination attention.
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