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Abstract

Human-Object Interaction (HOI) detection, inferring

the relationships between human and objects from im-

ages/videos, is a fundamental task for high-level scene un-

derstanding. However, HOI detection usually suffers from

the open long-tailed nature of interactions with objects,

while human has extremely powerful compositional percep-

tion ability to cognize rare or unseen HOI samples. In-

spired by this, we devise a novel HOI compositional learn-

ing framework, termed as Fabricated Compositional Learn-

ing (FCL), to address the problem of open long-tailed HOI

detection. Specifically, we introduce an object fabricator

to generate effective object representations, and then com-

bine verbs and fabricated objects to compose new HOI sam-

ples. With the proposed object fabricator, we are able to

generate large-scale HOI samples for rare and unseen cat-

egories to alleviate the open long-tailed issues in HOI de-

tection. Extensive experiments on the most popular HOI

detection dataset, HICO-DET, demonstrate the effective-

ness of the proposed method for imbalanced HOI detection

and significantly improve the state-of-the-art performance

on rare and unseen HOI categories. Code is available at

https://github.com/zhihou7/HOI-CL.

1. Introduction

Human-Object Interaction (HOI) detection, which aims

to localize and infer relationships between human and ob-

jects in images/videos, 〈human, verb, object〉, is an es-

sential step towards deeper scene and action understand-

ing [7, 13]. In real-world scenarios, long-tailed distribu-

tions are common for the data perceived by human vision

system, e.g., actions/verbs and objects [39]. The combina-

torial nature of HOI further highlights the issues of long-

tailed distributions in HOI detection, while human can effi-
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Figure 1. Open long-tailed HOI detection addresses the problem of

imbalanced learning and zero-shot learning in a unified way. We

propose to compose new HOIs for open long-tailed HOI detection.

Specifically, the blurred HOIs, e.g., “ride bear”, are composite.

See more examples in supplementary materials.

ciently learn to recognize seen and even unseen HOIs from

limited samples. An intuitive example of open long-tailed

HOI detection is shown in Figure 1, in which one can eas-

ily recognize the unseen action “ride bear”, nevertheless it

never even happened. However, existing HOI detection ap-

proaches usually focus on either the head [13, 36, 57], the

tail [62] or unseen categories [48, 43], leaving the problem

of open long-tailed HOI detection poorly investigated.

Open long-tailed HOI detection falls into the category

of the long-tailed zero-shot learning problem, which is

usually referred into several isolated problems, including

long-tailed learning [26, 22], few-shot learning [10, 52],

zero-shot learning [33]. To address the problem of im-

balanced training data, existing methods mainly focus on

three strategies: 1) re-sampling [9, 19, 27]; 2) re-weighted

loss functions [8, 5, 21]; and 3) knowledge transfer [58, 39,

10, 33, 47, 11]. Specifically, re-sampling and re-weighted

loss functions are usually designed for imbalance prob-

lem, while knowledge transfer is introduced to relieve all

the long-tailed [58], few-shot [49], and zero-shot prob-

lem [61, 11]. Recently, two popular knowledge transfer

methods have received increasing attention from the com-
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Figure 2. Illustration of distribution of the number of object box

in HICO-DET dataset. The categories are sorted by the number of

instances.

munity, data generation [58, 57, 61, 39, 10, 33, 47, 29]

(transferring head/base classes to tail/unseen classes) and

visual-semantic embedding [11, 42] (transferring from lan-

guage knowledge). Along the first way, we address the

problem of open long-tailed HOI detection from the per-

spective of HOI generation.

Unlike the samples in typical long-tailed zero-shot learn-

ing for visual recognition, each HOI sample is composed

of a verb and an object, and different HOIs may share the

same verb or object (e.g., “ride bike” and “ride horse”). In

cognitive science, human perceives concepts as the com-

positions of shareable components [4, 23] (e.g., verb and

object in HOI), which indicates that human can conceive

a new concept through a composition of existing compo-

nents. Inspired by this, several zero-and few-shot HOI de-

tection approaches have been proposed to enforce the fac-

tored primitive (verb and object) representation of the same

primitive class to be similar among different HOIs, such as

factorized model [48, 3] and factor visual-language model

[62, 43, 3]. However, regularizing factor representation, i.e.

enforcing the same verb/object representation to be similar

among different HOIs, is only sub-optimal for HOI detec-

tion. Recently, Hou et al. [24] present to compose novel

HOI samples via combining decomposed verbs and objects

between pair-wise images and within image. Nevertheless,

it still remains a great challenge to compose massive HOI

samples in each minibatch from images due to limited num-

ber of HOIs in each image, especially when the distribution

of objects/verbs is also long-tailed. We demonstrate the dis-

tribution of the number of objects in Figure 2.

The long-tailed distribution of objects/verbs makes it

difficult to compose new HOIs from each mini-batch,

significantly degrading the performance of compositional

learning-based methods for rare and zero-shot HOI detec-

tion [24]. Inspired by recent success of visual object repre-

sentation generation [61, 20, 57], we thus apply fabricated

object representation, instead of fabricated verb representa-

tion, to compose more balanced HOIs. We referred to the

proposed compositional learning framework with fabricated

object representation as Fabricated Compositional Learning

or FCL. Specifically, we first extract verb representations

from input images, and then design a simple yet efficient

object fabricator to generate object representation. Next, the

generated visual object features are further combined with

the verb features to compose new HOI samples. With the

proposed object fabricator, we are able to generate balanced

objects for each verb within the mini-batch of training data

as well as compose massive balanced HOI training samples.

The main contributions of this paper can be summa-

rized as follows: 1) proposing to compose HOI samples

for Open Long-Tailed HOI detection; 2) designing an ob-

ject fabricator to generate objects for HOI composition; 3)

significantly outperforming recent state-of-the-art methods

on HICO-DET dataset among rare and unseen categories.

2. Related Works

HOI Detection. HOI detection is essential for deeper

scene and action understanding [7]. Recent HOI detec-

tion approaches usually focus on representation learning

[13, 66, 51, 55, 53], zero/few-shot generalization [48, 62,

43, 3, 24], and One-Stage HOI detection [36, 56]. Specif-

ically, existing methods improve HOI representation learn-

ing by exploring the relationships among different features

[44, 66, 51], including pose information [35, 53, 34], con-

text [13, 55], and human parts [66]; Generalization methods

for HOI detection mainly include visual-language model

[43, 62], factorized model [48, 18, 51, 3], and HOI com-

position [24]. Recently, Liao et al. [36] and Wang et al.

[56] propose to detect the interaction point for HOI by

heatmap-based localization [41]. Wang et al. [54] try to

detect HOI with novel objects by leveraging human visual

clues to localize interacting objects. However, existing HOI

approaches usually fail to investigate the imbalance issue

and zero-shot detection. Inspired by the factorized model

[48], we propose to compose visual verb and fabricated ob-

jects to address the open long-tailed issue in HOI detec-

tion. Furthermore, according to whether detect the objects

with a separated detector or not, existing HOI detection ap-

proaches can be divided into two categories: 1) one-stage

[48, 36, 56, 14] and two-stage [13, 35, 66, 51, 55, 62, 3, 51].

Two-stage methods usually achieve better performance and

our method falls into this category.

Compositional Learning. Irving Biederman illustrates

that human representations of concepts are decompos-

able [4]. Meanwhile, Lake et al. [32] argue composition-

ality is one of the key blocks in a human-like learning sys-

tem. Tokmakov et al. [50] apply the compositional deep

representation into few-shot learning. External knowledge

graph and graph convolutional networks in [28] are used to

compose verb-object pairs for HOI recognition. Recently,

Hou et al. [24] propose a novel visual compositional learn-

ing framework to compose HOIs from image-pairs for HOI

detection, failing to address the open and long-tailed issues.

Therefore, we further compose verb and fake object repre-

sentations for HOI detection.

Generalized Zero/Few-Shot Learning. Different from

typical zero/few-shot learning [10, 33, 52], generalized
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Figure 3. An overview of the proposed multi-branch fabricated compositional learning framework for HOI detection. We first detect

human and object with Faster-RCNN [45] from the image. Next, with ROI-Pooling and residual CNN blocks, we extract human features,

verb features and object features. Meanwhile, an object identity embedding, verb feature and noise are input into Fabricator to generate

fake object feature. Then, these features are fed into the following branches: individual spatial HOI branch, HOI branch and fabricated

compositional HOI branch. Finally, HOI representations from HOI branch and fabricated branch are optimized by a shared FC-Classifier,

while HOI representations from spatial branch are classified by an individual FC-Classifier. In fabricated compositional HOI branch, verb

features are combined with fabricated objects to construct fabricated HOIs.

zero/few-shot learning [60] is a more realistic variant, since

the performance is evaluated on both seen and unseen

classes [47, 6]. The distribution of HOIs is naturally long-

tailed [7], i.e., most classes have a few training examples.

Moreover, the open long-tailed HOI detection aims to han-

dle the long-tailed, low-shot and zero-shot issue in a unified

way. The long-tailed data distribution [26, 22, 25] is one

of challenging problem in visual recognition. Currently, re-

sampling [16, 27], specific loss [37, 8, 65, 5, 21], knowl-

edge transfer [58, 39], and data generation [57, 31, 61, 2]

are major strategies for imbalanced learning [26, 22, 25].

To make full use of the composition characteristic of HOI,

we aim to compose HOI samples by visual feature genera-

tion to relieve the open long-tailed issue in HOI detection.

Recent feature generation methods [31, 61] mainly depend

on Variational Autoencoder [30] and Generative Adversar-

ial Network [15], which usually suffer from the problem of

model collapse [46]. Wang et al. [57] present a new method

for low-shot learning that directly learns to hallucinate ex-

amples that are useful for classification. Similar to [57], we

compose HOI samples with an object fabricator in an end-

to-end optimization without using the adversarial loss.

3. Method

In this section, we first describe the multi-branch compo-

sitional learning framework for HOI detection. We then in-

troduce the proposed fabricated compositional learning for

open long-tailed HOI detection.

3.1. Multi­branch HOI Detection

HOI detection aims to find the interactions between hu-

man and different objects in a given image/video. Existing

HOI detection methods [13, 35, 3] usually contain two sep-

arated stages: 1) human and object detection; and 2) inter-

action detection. Specifically, we first use a common object

detector, e.g., Faster R-CNN [45], to localize the positions

and extract the features for both human and objects. Ac-

cording to the union of human and object bounding boxes,

we then extract the verb feature from the feature map of

backbone networks via the ROI-Pooling operation. Similar

to [13, 18, 35], an additional stream for spatial pattern, i.e.,

spatial stream, is defined as the concatenation of human and

object masks, i.e., the value in the human/object bounding

box region is 1 and 0 elsewhere. As a result, we obtain sev-

eral input streams from the first stage, i.e., human stream,

object stream, verb stream, and spatial stream.

The input streams from the first stage then are used to
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construct different branches in the second stage: 1) the spa-

tial HOI branch, which concatenates the spatial and the

human streams to construct spatial HOI feature for HOI

recognition; 2) the HOI branch, which concatenates the

verb and the object streams; and 3) the fabricated compo-

sitional branch, which is based on a new stream, the fab-

ricator stream, to generate fake object features for compos-

ing new HOIs. Specifically, the fabricated compositional

branch generates novel HOIs by combining visual verb fea-

tures and generated object features. The main multi-branch

HOI detection framework is shown in Figure 3, and we

leave the details of the fabricated compositional branch in

next section.

3.2. Fabricated Compositional Learning

The motivation of compositional learning is to decom-

pose a model/concept into several sub-models/concepts, in

which each sub-model/concept focuses on a specific task,

and then all responses are coordinated and aggregated to

make the final prediction [4]. Recent compositional learn-

ing method for HOI detection considers each HOI as the

combination of a verb and an object to compose new HOIs

from objects and verbs within the mini-batch of training

samples [28, 24]. However, existing compositional learning

methods fail to address the problem of long-tailed distribu-

tion on objects.

To address the open long-tailed issue, we propose to gen-

erate balanced objects for each decoupled visual verb as fol-

lows. Formally, we denote lv as the label of a verb xv , lo as

the label of an object xo and y as the HOI label of 〈xv, xo〉.
Given another verb representation x̂v (sharing the same la-

bel lv with xv), and another object representation x̂o (shar-

ing the same label lo with xo), regardless of the sources of

the verb and object representations, an effective composi-

tion of verb and object should be

ghoi(x̂v, x̂o) ≈ ghoi(xv, xo), (1)

where ghoi indicates the HOI classification network. By

doing this, we can compose new verb-object pair 〈x̂v, x̂o〉,
which have similar semantic type y to the real pair 〈xv, xo〉,
to relieve the scarcity of rare and unseen HOI categories. To

generate effective verb-object pair 〈x̂v, x̂o〉, we regularize

the verb representation x̂v and object representation x̂o such

that same verbs/objects have similar feature representation.

Similar to previous approaches, such as factor visual-

language joint embedding [62, 43] and factorized model

[48, 18], when x̂v is similar to xv and x̂o is similar to

xo, we then have that Equation (1) can be generalized to

HOI detection via the compositional branch. We refer to

the proposed compositional learning framework with fab-

ricated object representation as Fabricated Compositional

Learning or FCL. We train the proposed method with com-

posited HOI samples 〈x̂v, x̂o〉 in an end-to-end manner, and
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Figure 4. For a given visual verb feature and each jth (0 ≤ j <

No), we firstly select the jth object identity embedding. Then, we

concatenate verb feature, object embedding and Gaussian noise to

input to fabricator for generating a fake object feature. We can fab-

ricate No objects for a verb feature. We finally remove nonexisting

HOIs as described in Section 3.2.2.

the overall loss function are defined as follows:

L = λ1Lhoi + λ2LCL + λ3Lreg + Lhoi sp, (2)

where Lreg aims to regularize verb and object features,

LCL indicates a typical compositional learning loss func-

tion for the classification network ghoi with composite HOI

samples 〈x̂v, x̂o〉 as the input, Lhoi sp is the loss for Spatial

HOI Branch. λ1, λ2, λ3 are the hyper-parameters to bal-

ance different loss functions. Specifically, object feature ex-

tracted from a pre-trained object detector backbone network

(i.e. Faster-RCNN [45]) are usually discriminative. Thus,

we only regularize verb representation.

3.2.1 Object Generation

The HOI is composed of a verb and an object, in which

the verb is usually a very abstract notation compared to

the object, making it difficult to directly generate verb

features. Recent visual feature generation methods have

demonstrated the effectiveness of feature generation for vi-

sual object recognition [57, 61]. Therefore, we devise an

object fabricator to generate object feature representations

for composing novel HOI samples.

The overall framework of object generation is shown in

Figure 4. Specifically, we maintain a pool of object identity

embeddings, i.e., vid. We provide three kinds of embed-

dings in supplementary material. In each HOI, the pose of

the object is usually influenced by the human who is in-

teracting the object [64], and the person who is interact-

ing with the object is firmly related to verb feature repre-

sentation. Thus, for each extracted verb and the jth object

(0 ≤ j < No and No is the number of all different objects),

we concatenate the jth object identity embedding v
j
id, the

verb feature xv and a noise vector ǫ ∼ N (0, 1), as the input

of the object fabricator, i.e.,

x̂o = fobj({v
j
id, xv, ǫ}), (3)
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where x̂o is the fake object feature and f indicates the ob-

ject fabricator network. Here, the noise ǫ is used to increase

the diversity of generated objects. We then combine the

fake object feature x̂o and the verb xv to compose a new

HOI sample 〈xv, x̂o〉. Specifically, during training, both

real HOIs and composite HOIs share the same HOI clas-

sification network ghoi.

3.2.2 Efficient HOI Composition

To compose new HOIs from verb and object representa-

tions, we need to remove some infeasible composite HOIs

(e.g., “ride vase”) as illustrated in Figure 4. To avoid fre-

quently checking the pair (xv, xo), we use an efficient HOI

composition similar to [24]. Specifically, the HOI label

space is decoupled into verb and object spaces, i.e., the

co-occurrence matrices Av ∈ RNv×C and Ao ∈ RNo×C ,

where Nv , No, and C indicate the number of verbs, objects

and HOI categories, respectively. Given an one-hot HOI

label vector y ∈ RC , we then have the verb label vectors,

lv = yAT

v , (4)

where lv ∈ RNv can be a multi-hot vector with mul-

tiple verbs, e.g., 〈{hold, read}, book〉). Similarly, com-

bining the verb lv with all No objects, we have the ma-

trix l̂o ∈ RNo×No as labels of all No fake objects. Let

l̂v ∈ RNo×Nv denote the verb labels corresponding to fake

object features l̂o, the new interaction label can then be eval-

uated as follows,

ŷ = (̂loAo) & (̂lvAv), (5)

where & indicates the logical operation “and”. Finally,

the logical operation automatically filters out the infeasible

HOIs since the labels of those infeasible HOIs are all-zero

vectors in the label space.

3.3. Optimization

Training. The verb feature contains the pose informa-

tion of the object, making it difficult to jointly train the net-

work with an object fabricator from scratch. Therefore, we

introduce a step-wise training strategy for the long-tailed

HOI detection. Firstly, we pre-train the network by Lhoi,

Lhoi sp and Lreg without the fabricator branch. Then, we

fix the pre-trained model and train the randomly initial-

ized object fabricator via the loss function for the fabricator

branch LCL. Lastly, we jointly fine-tune all branches by

L in an end-to-end manner. To avoid the bias to seen data

in the first step, we optimize the network in one step for

zero-shot HOI detection (See analysis in Section 4.4).

Inference. The fabricated branch is only used in the

training stage, i.e., we remove it during the inference stage.

Similar to previous multi-branch methods [13, 35, 24], for

each human-object bounding box pair (bh, bo), the final HOI

prediction Sc
h,o for each category c ∈ 1, ..., C, can be eval-

uated as follows,

Sc
h,o = sh · so · S

c
sp · S

c
hoi, (6)

where sh and so indicate the object detection scores for the

human and object, respectively. Sc
sp and Sc

hoi are the scores

from the Spatial branch and the HOI branch, respectively.

4. Experiments

In this section, we first introduce datasets and metrics,

and then provide the details of the implementation of our

method. Next, we present our experimental results com-

pared with state-of-the-art approaches. Finally, we conduct

ablation studies to validate the components in our work.

4.1. Datasets and Metrics

We adopt the largest HOI datasets HICO-DET [7], which

contains 47,776 images including 38,118 images for train-

ing and 9,658 images for testing. All 600 HOI categories

are constructed from 80 object categories and 117 verb cat-

egories. HICO-DET provides more than 150k annotated

human-object pairs. In addition, V-COCO is another small

HOI dataset with 29 categories [17]. Considering that V-

COCO mainly focuses to verb recognition and do not con-

tain a severe long-tailed issue, we mainly evaluate the pro-

posed method on HICO-DET. We also illustrate the result

on visual relation detection [40, 63], which requires to de-

tect the triplet (subject, predicate, object) in supplementary

materials. We follow the evaluation settings in [7], i.e. a

HOI prediction is a true positive if 1) both the human and

object bounding boxes have IoUs larger than 0.5 with the

reference ground truth bounding boxes; and 2) the HOI pre-

diction is accurate.

4.2. Implementation Details

Similar to [3, 24], our HOI detection model contains two

separated stages: 1) we finetune the Faster R-CNN detector

pre-trained on COCO [38] using HICO-DET to detect the

human and objects 1; 2) we use the proposed FCL model

for HOI classification. Specifically, all branches are two-

layer MLP sigmoid classifiers with 2048-d input and 1024-

d hidden units. Fabricator is a two-layer MLP. The Lreg

is a sigmoid classifier for verb representation. LCL, Lhoi

and Lhoi sp are binary cross entropy losses. Av and Ao

are set according to HOI dataset, and we can also set them

by prior knowledge to detect more types of unseen HOIs.

Besides, to prevent the fabricated HOIs from dominating

the model optimization process, we randomly sample fab-

ricated HOIs in each mini-batch to keep that the number of

1We use the Faster R-CNN detector implemented in detectron2 [59].
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fabricated HOIs is not more than three times the number of

non-fabricated HOIs. We train our network for one million

iterations by SGD optimizer on the HICO-DET dataset with

an initial learning rate of 0.01, a weight decay of 0.0005,

and a momentum of 0.9. We set λ1 as 2.0, λ2 as 0.5 and λ3

as 0.3, while we set 1 for the coefficient of Lhoi sp. The

hyper-parameters are ablated in supplementary materials.

We jointly fine-tune the model with the object fabricator for

500k iterations, and decay the initial learning rate 0.01 with

a cosine annealing schedule. All our experiments on HICO-

DET are conducted using TensorFlow [1] on a single Nvidia

GeForce RTX 2080Ti GPU. We evaluate V-COCO based on

PMFNet [53] with two GPUs. We do not use auxiliary verb

loss since there are only two kinds of objects on V-COCO.

We set λ1 as 1 and λ2 as 0.25 on V-COCO.

4.3. Comparison to Recent State­of­the­Arts

Our method aims to relieve open long-tailed HOI detec-

tion. However current approaches usually focus on full cat-

egories, rare categories and unseen categories separately. In

order to compare with state-of-the-art methods, we evaluate

our method on long-tailed detection and generalized zero-

shot detection separately. The HOI detection result is eval-

uated with mean average precision (mAP) (%).

4.3.1 Effectiveness for Zero-Shot HOI Detection

There are different settings [3] for zero-shot HOI detec-

tion: 1) unseen composition; and 2) unseen object. Specif-

ically, for the unseen composition setting, it indicates that

the training data contains all factors (i.e., verbs and objects)

but misses the verb-object pairs; for the unseen object set-

ting, it requires to detect unseen HOIs, in which the object

do not appear in the training data. For unseen composi-

tion HOI detection, similar to [24], we select two groups

of 120 unseen HOIs from tail preferentially (rare first) and

from head preferentially (non-rare first) separately, which

roughly compares the lowest and highest performances. As

a result, we report our result in the following settings: Un-

seen (120 HOIs), Seen (480 HOIs), Full (600 HOIs) in the

“Default” mode on HICO-DET dataset. For a better com-

parison, we implement the factorized model [48] under our

framework for unseen composition zero-shot HOI detec-

tion. For unseen object HOI detection, we use the same HOI

categories for unseen data as [3] (i.e. randomly selecting 12

objects from the 80 objects and picking all HOIs containing

there objects as unseen HOIs). Then, we report our results

in the setting: Unseen (100 HOIs), Seen (500 HOIs), Full

(600 HOIs). To compare with the contemporary work [24],

we use the same object detection result released by [24].

Here, our baseline method is the model without object fab-

ricator, i.e., the compositional branch.

Table 1. Comparison of zero-shot detection results of our proposed

method. UC indicates unseen composition zero-shot HOI detec-

tion. UO indicates unseen object zero-shot HOI detection. For

better illustration, we choose the mean UC result of [3].

Method Type Unseen Seen Full

Shen et al. [48] UC 5.62 - 6.26

FG [3] UC 11.31 12.74 12.45

VCL [24] (rare first) UC 10.06 24.28 21.43

Baseline (rare first) UC 8.94 24.18 21.13

Factorized (rare first) UC 7.35 22.19 19.22

FCL (rare first) UC 13.16 24.23 22.01

VCL [24] (non-rare first) UC 16.22 18.52 18.06

Baseline (non-rare first) UC 13.47 19.22 18.07

Factorized (non-rare first) UC 15.72 16.95 16.71

FCL (non-rare first) UC 18.66 19.55 19.37

FG [3] UO 11.22 14.36 13.84

Baseline UO 12.86 20.77 19.45

FCL UO 15.54 20.74 19.87

Table 2. Comparison to the state-of-the-art approaches on HICO-

DET dataset [7]. FCL DRG is FCL with object detector provided

by [12]. FCL + VCL means we fuse the result provided in [24]

with FCL. VCLDRG uses the released model of VCL.

Method
Default Known Object

Full Rare NonRare Full Rare NonRare

FG [3] 21.96 16.43 23.62 - - -

IP-Net [56] 19.56 12.79 21.58 22.05 15.77 23.92

PPDM [36] 21.73 13.78 24.10 24.58 16.65 26.84

VCL [24] 23.63 17.21 25.55 25.98 19.12 28.03

DRG [12] 24.53 19.47 26.04 27.98 23.11 29.43

Baseline 23.35 17.08 25.22 25.44 18.78 27.43

FCL 24.68 20.03 26.07 26.80 21.61 28.35

FCL + VCL 25.27 20.57 26.67 27.71 22.34 28.93

VCL [24] DRG 28.33 20.69 30.62 30.59 22.40 33.04

BaselineDRG 28.12 21.07 30.23 30.13 22.30 32.47

FCL DRG 29.12 23.67 30.75 31.31 25.62 33.02

(FCL + VCL) DRG 30.11 24.46 31.80 32.17 26.00 34.02

VCL [24] GT 43.09 32.56 46.24 - - -

FCLGT 44.26 35.46 46.88 - - -

(FCL + VCL)GT 45.25 36.27 47.94 - - -

Unseen composition. Table 1 shows that FCL achieves

large improvement on Unseen category by 4.22% and

5.19% than baseline, and by 3.10% and 2.44% compared

to previous works [3, 24] on the two selection strategies re-

spectively. Meanwhile, the two selection strategies witness

a consistent improvement with FCL on nearly all categories,

which indicates that composing novel HOI samples con-

tributes to overcome the scarcity of HOI samples. In rare

first selection, FCL has a similr result to baseline and VCL

[24] on Seen category. But step-wise optimization can im-

prove the result on Seen category and Full category (See

Table 6). In addition, the factorized model has a very poor

performance in the head classes compared to our baseline.

Noticeably, factorized model achieves better performance

on Unseen category than baseline in non-rare first selection

while has worse result on Unseen category in rare first se-

lection. FCL witnesses a consistent improvement in differ-
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Table 3. Illustration of proposed modules under step-wise opti-

mization. FCL means proposed Fabricated Compositional Learn-

ing. V indicates the verb regularization loss.

FCL V Full Rare NonRare Unseen

- - 18.12 15.99 20.65 12.41

X - 19.08 17.47 20.95 14.90

- X 18.32 16.73 20.82 12.23

X X 19.61 18.69 21.13 15.86

ent evaluation settings. In the remaining data, unseen HOIs

of rare first zero-shot have more rare verbs (less than 10 in-

stances) than that of non-rare first zero-shot.

Unseen object. We further evaluate FCL in novel object

zero-shot HOI detection, which requires to detect HOIs that

is interacting with novel objects. Table 1 shows FCL effec-

tively improves the baseline by 2.68% on Unseen Category,

although there are no real objects of unseen HOIs in training

set. This illustrates the ability of FCL for detecting unseen

HOIs with novel objects. Here, the same as [3], we also use

a generic detector to enable unseen object detection.

4.3.2 Effectiveness for Long-Tailed HOI Detection

We compare FCL with recent state-of-the-art HOI detec-

tion approaches [56, 36, 3, 24, 12] using fine-tuned object

detector on HICO-DET to validate its effectiveness on long-

tailed HOI detection. For fair comparison, we use the same

fine-tuned object detector provided by [24]. For evaluation,

we follow the settings in [7]: Full (600 HOIs), Rare (138

HOIs), Non-Rare (462 HOIs) in “Default” and “Known Ob-

ject” on HICO-DET.

In Table 2, we find that the proposed method achieves

new state-of-the-art performance, 24.68% and 26.80%

mAP on “Default” and “Known Object”. Meanwhile, we

achieve a significant performance improvement of 2.82%

over the contemporary best rare performance model [24]

under the same object detector, which indicates the ef-

fectiveness of the proposed compositional learning for the

long-tailed HOI detection. Furthermore, with the same ob-

ject detection result to [12], our results surprisingly increase

to 29.12% on “Default” mode. Here, we merely change the

detection result provided in [24] to that provided in [12] dur-

ing inference. Particularly, we find our method is comple-

mentary to compose HOIs between images [24]. By simply

fusing the result provided by [24] with FCL, we can further

largely improve the results under different object detectors.

4.3.3 Effectiveness on V-COCO

We also evaluate FCL on V-COCO. Although the data on

V-COCO is balanced, FCL still improves the baseline (re-

produced PMFNet [53]) in Table 5.

Table 4. Ablation study of fabricator under step-wise optimization.

FCL within image means we compose HOIs within image. + verb

fabricator is we fabricate verb and object features.

Method Full Rare NonRare Unseen

FCL 19.61 18.69 21.13 15.86

FCL w/o noise 19.45 17.69 21.22 15.74

FCL w/o verb 19.20 18.02 21.04 14.71

FCL + verb fabricator 19.47 16.93 21.43 15.89

Table 5. Illustration of Fabricated Compositional Learning on V-

COCO based on PMFNet [53]

Method AProle

PMFNet [53] 52.0

Baseline 51.85

FCL 52.35

4.4. Ablation Studies

For a robust validation of the proposed method in rare

categories and unseen categories simultaneously, we select

24 rare categories and 96 non-rare categories for zero-shot

learning (remained 30,662 training instances). This result

is roughly between non-rare first selection and rare first se-

lection in Table 1. See supplementary material for unseen

type details and ablation study of long-tailed HOI detection

based on Table 2. We conduct ablation study on FCL, verb

regularization loss, verb fabricator, step-wise optimization

and the effect of object detector.

Fabricated Compositional Learning. In Table 3, we

find that the proposed compositional method with fabricator

can steadily improve the performance and it is orthogonal to

verb feature regularization (verb regularization loss).

Verb Feature Regularization. We use a simple auxil-

iary verb loss to regularize verb features. Although verb

regularization loss can slightly improve the rare and un-

seen category performance (See row 1 and row 3 in Ta-

ble 3), FCL further achieves better performance. This in-

dicates that regularizing factor features is suboptimal com-

pared to the proposed method. Semantic verb regularization

like [62] has a similar result (See supplementary materials).

Verb and Noise for Fabricator. Table 4 demon-

strates that performance drops without verb representation

or noise. This shows verb representations can provide use-

ful information for generating objects and noise efficiently

improves the performance by increasing feature diversity.

We meanwhile find the fabricator still effectively improves

the baseline without verb or noise by comparing Table 3 and

Table 4, which indicates the efficiency of FCL.

Verb Fabricator. The result of fabricating verb features

(from verb identity embedding, object features and noise)

is even worse as in Table 4. This verifies that it is difficult

to directly generate useful verb or HOI samples due to the

complexity and abstraction. Supplementary materials pro-

vide more visualized analysis of verb and object feature.
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Figure 5. Illustration of the improvement in those improved categories between FCL and baseline on HICO-DET dataset under default

setting. The graph is sorted by the frequency of category samples and the horizontal axis is the number of training samples for each

category. The result is reported in mAP (%). The details of category name are provided in supplementary materials.

Table 6. Comparison between step-wise optimization and one step

optimization. ZS is the setting in our ablation study.

Method Full Rare NonRare Unseen

one step (long-tailed) 24.03 18.42 25.70 -

step-wise (long-tailed) 24.68 20.03 26.07 -

one step (ZS) 19.69 18.22 20.82 17.64

step-wise (ZS) 19.61 18.69 21.13 15.86

one step (rare first ZS) 22.01 15.55 24.56 13.16

step-wise (rare first ZS) 22.45 17.19 25.34 12.12

one step (non-rare ZS) 19.37 15.39 20.56 18.66

step-wise (non-rare ZS) 19.11 17.12 21.02 15.97

Table 7. Illustration of the effect of fine-tuned detectors on FCL.

The COCO detector is trained on COCO dataset provided in [59].

We fine-tune the ResNet-101 Faster R-CNN detector based on De-

tectron2 [59]. Here, the baseline is our model without fabricator.

The last column is object detection result on HICO-DET test.

Method Detector Full Rare NonRare Object mAP

Baseline COCO 21.24 17.44 22.37 20.82

FCL COCO 21.80 18.73 22.71 20.82

Baseline HICO-DET 23.94 17.48 25.87 30.79

FCL HICO-DET 24.68 20.03 26.07 30.79

Baseline GT 43.63 34.23 46.43 100.00

FCL GT 44.26 35.46 46.88 100.00

Step-wise Optimization. Table 6 illustrates that step-

wise training has better performance in rare and non-rare

categories while has worse performance in unseen cate-

gories. We think it might be because the model with the

step-wise training has the bias to seen categories in the first

step since there are no training data for unseen categories.

Object Detector. The quality of detected objects has

important effect on two-stage HOI Detection methods [24].

Table 7 shows that the improvement of FCL over baseline

is higher with the fine-tuned detector on HOI data. COCO

detector without finetuning on HICO-DET contains a large

number of false positive and false negative boxes on HICO-

DET due to domain shift, which is in fact less useful to

evaluate the effectiveness of modeling human interactions

for HOI detection. If the detected boxes during inference

are false, the features extracted from the false boxes are also

unreal and have large shift to the fabricated objects during

training. This causes that fabricated objects are less use-

ful for inferring HOIs during inference. Besides, GT boxes

Figure 6. The changing trend of cosine similarity between fabri-

cated object features and real object features during optimization

in long-tailed HOI detection in step-wise training.

provide a strong object label prior for verb recognition.

5. Qualitative Analysis

Illustration of improvement among categories. In Fig-

ure 5, we find that the rarer the category is, the more the

proposed method can improve. The result illustrates the

benefit of FCL for long-tailed issue in HOI Detection.

Visualized Analysis between fabricated and real ob-

ject features. Figure 6 presents that cosine similarity be-

tween fabricated and real object features gradually goes

down to stability in step-wise training. This demonstrates

the end-to-end optimization with shared HOI classifier

helps fabricate efficient and similar objects during optimiza-

tion process. More analysis of generated object representa-

tions by t-SNE is provided in Supplementary Materials.

6. Conclusion

In this paper, we introduce a Fabricated Compostional

Learning approach to compose samples for open long-tailed

HOI Detection. Specifically, we design an object fabricator

to fabricate object features, and then stitch the fake object

features and real verb features to compose HOI samples.

Meanwhile, we utilize an auxiliary verb regularization loss

to regularize the verb feature for improving Human-Object

Interaction generalization. Extensive experiments illustrate

the efficiency of FCL on the largest HOI detection bench-

marks, particularly for low-shot and zero-shot detection.
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