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Abstract

Cross-domain weakly supervised object detection aims

to adapt object-level knowledge from a fully labeled source

domain dataset (i.e., with object bounding boxes) to train

object detectors for target domains that are weakly labeled

(i.e., with image-level tags). Instead of domain-level distri-

bution matching, as popularly adopted in the literature, we

propose to learn pixel-wise cross-domain correspondences

for more precise knowledge transfer. It is realized through

a novel cross-domain co-attention scheme trained as region

competition. In this scheme, the cross-domain correspon-

dence module seeks for informative features on the target

domain image, which if warped to the source domain im-

age, could best explain its annotations. Meanwhile, a col-

laborative mask generator competes to mask out the rel-

evant target image region to make the remaining features

uninformative. Such competitive learning strives to corre-

late the full foreground in cross-domain image pairs, reveal-

ing the accurate object extent in target domain. To allevi-

ate the ambiguity of inter-domain correspondence learning,

a domain-cycle consistency regularizer is further proposed

to leverage the more reliable intra-domain correspondence.

The proposed approach achieves consistent improvements

over existing approaches by a considerable margin, demon-

strated by the experiments on various datasets.

1. Introduction

With decades of efforts made in improving feature rep-

resentations [7, 20, 13], learning architectures [9, 28, 36]

and large-scale datasets [8, 31, 23], performance of modern

object detectors has been raised to a brand new level. Never-

∗Equal contribution. Part of this work is done during Luwei’s internship

with SenseTime Research.
†Correspondence should be addressed to Jia Li (jiali@buaa.edu.cn) and

Yu Zhang (zhangyulb@gmail.com).

...

...

Source Domain

Target Domain

(a)

(b)

Tag: Person, Bicycle

Person

Bicycle

Figure 1. Motivation of the proposed approach to address cross-

domain object detection. (a) Conventional approaches project im-

ages from different domains into a unified feature space such that

a domain classifier cannot easily separate them. (b) Assuming the

target domain is weakly labeled, we explicitly establish pixel-wise

correspondence among the semantic regions of cross-domain im-

ages and form semantic clusters in feature space for accurate, lo-

calized domain transfer. Best viewed in color.

theless, generalizing existing detection models to novel un-

seen domains still remains an issue, as the models are often

biased to dataset-specific patterns rather than data-invariant

“common knowledge”. It often takes huge efforts to collect

the well-annotated training data of the novel target domains

from scratch to feed the data-hungry modern architectures.

Recently this issue is addressed via unsupervised do-

main adaptation [3, 10], that transfers task knowledge from

a richly annotated source domain to poorly annotated tar-

get domains. Yet, domain discrepancy lie in various fre-

quency patterns [45], visual styles [21] and class distribu-

tions [40], making it nontrivial to align knowledge transfer

to the desired task objective. Heuristic strategies (e.g. adap-

tive weighting [48, 42, 18], foreground mining [14, 43, 2],

self-supervision [30, 19]) were proposed to guide the do-

main transfer to focus more on detecting foreground ob-

jects. However, with the lack of direct knowledge about the
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object distributions in target domain, it is difficult to achieve

accurate object-level domain transfer.

To address this issue, a relaxed setting was proposed by

Inoue et al. [15], that the target domain images are assumed

to be tagged with semantic labels. This novel setting, called

cross-domain weakly supervised object detection, gives ac-

cess to direct knowledge of the target domain with minimal

annotation cost. As such, foreground/background ambigu-

ity of object localization within target domain was greatly

reduced. However, knowledge adaptation is still conducted

globally at domain level, while local feature alignment and

knowledge transfer that could be mined from the weak an-

notations in the target domain, is less explored.

In this paper, we embrace the weakly supervised setting

of [15] and propose a novel approach for cross-domain ob-

ject detection. As shown in Fig. 1, different from previ-

ous works that perform knowledge transfer at domain-level,

our approach explicitly establishes pixel-wise semantic cor-

respondences in each pair of cross-domain images for ac-

curate local knowledge transfer. As the target domain is

weakly labeled, the core idea is to divide each image into

semantic clusters in weakly supervised manner that can well

explain the region annotations of source domain image, un-

der the cross-domain warping indicated by their correspon-

dences. Specifically, a cross-domain co-attention module is

trained to seek for informative features on the target domain

image so as to well reconstruct the annotations of the corre-

sponding source domain image. At the same time, a jointly

trained mask generator competes to mask out the relevant

target image region, to make the remaining correspondences

uninformative. Such competitive process facilitates the cor-

relation of full extent of the underlying objects across do-

mains. To reduce the ambiguity of cross-domain matching,

we further propose a novel domain-cycle consistency reg-

ularizer to leverage intra-domain correspondence as robust

self-supervision. The proposed approach sets new state-of-

the-art results, improves over previous works consistently

by 4% ∼ 6% in mean average precision on 3 datasets.

We highlight the following contributions. 1) We propose

a novel approach formulated as region competition, capa-

ble of establishing explicit pixel-wise semantic correspon-

dences across domains and enabling accurate local knowl-

edge transfer. 2) We introduce the cycle consistency reg-

ularizer to cross-domain object detection, which provides

robust and cost-free self-supervision by leveraging both in-

ter and intra-domain cues. 3) We conduct extensive exper-

iments to evaluate the proposed modules, showing notably

and consistently improved results on three benchmarks.

2. Related Works

Object detection owns a long story in computer vision

research since its emerge. It has benefited greatly by re-

cent advance in deep learning architectures [28, 36, 22, 12].

Their success also attributes to the development of large-

scale, manually annotated datasets [8, 31, 23]. However,

manually annotating a large number of images usually costs

a lot and is not scalable. This largely hinders the applica-

tion of the state-of-the-art detectors in unseen domains or

datasets. There are two ideas proposed to solve this issue.

Weakly supervised object detection is a potential solu-

tion that assumes labour-friendly, yet weaker forms of man-

ual annotations (e.g. class labels), while inferring poten-

tial object locations using the “collective knowledge” pro-

vided by the joint distribution of weak labels in the dataset.

The crucial challenge is to recover the full object extent,

not only the discriminative parts indicated by classification

activations [50, 33]. It was achieved by hiding the cur-

rent discriminative parts then seeking for next ones, while

the hiding strategy was set randomly [35], via attentional

dropout [5], adversarial dropout [29], or complementary

learning [46]. Full localization was also guided by fore-

ground expansion [47], weighted region voting [4, 37], net-

work optimization [34] and geometrical priors [26]. How-

ever, without knowledge to “general objects”, localizing the

full extent could be difficult due to the diversity of object de-

formations, poses, viewpoints and background appearance.

Cross-domain object detection is an alternate solution

that assumes large-scale manually annotated datasets avail-

able and studies how to generalize the knowledge of source

domain to novel datasets. It was achieved with adversarial

feature alignment [3, 38], so that a domain classifier cannot

easily distinguish between the features coming from dif-

ferent domains. Yet, the distribution gap of images from

different domains is typically multi-modal, lying in various

aspects such as frequency patterns [45], visual styles [21]

and class distributions [40]. Regularizations were proposed

to guide the alignment process, via adaptive region weight-

ing [2, 18, 49], foreground mining [53, 43, 30, 14], heuristic

class sampling [19, 42, 32]. In [15], a weakly supervised

setting of cross-domain object detection is proposed, with

novel datasets and baselines introduced. In this work we

attempt to provide deeper investigations to this approach.

3. Proposed Approach

3.1. Overview

For the proposed task we assume two datasets S and T ,

from the source and target domains, respectively. For each

image in S , objects coming from a predefined set of seman-

tic classes C are fully annotated with bounding boxes and

the class labels. We are interested in training detectors that

generalize to T , where only presence of object classes from

C are annotated for each image.

Characteristically we follow recent detector adaptation

pipeline [3, 2] that applies the two-stage Faster-RCNN [28]

detector and adversarial learning, which is summarized in
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Figure 2. Pipeline of our approach. During training we sample two images from the target domain and one from the source domain. This

triplet is passed to the backbone of Faster-RCNN, yielding feature maps to be fed into the Region Proposal Networks (RPN). We enforce

regularizations on these feature maps with Informative Correspondence Mining and Consistent Correspondence Mining. These feature

maps are then forwarded to the RCNN head (details omitted due to the limit of space) for classification and bounding box regression.

Fig. 2. At each training step, pairs of source and target

domain images (denoted with IS and IT ) are sampled.

Since IS is fully annotated, the associated semantic labels

YS = {yB ∈ {0, 1}
1×(|C|+1)|B ∈ B} and bounding box

coordinates PS = {pB ∈ IR|B|×4|B ∈ B} are available,

where symbols IR and B denote the real number field and

the set of groundtruth object bounding boxes, respectively.

Detector training is fully supervised for source domain:

LS (IS ,YS ,PS) = Lrpn (IS ,PS) + Ldet (IS ,YS ,PS) ,
(1)

where Lrpn and Ldet summarize the loss functions for train-

ing Region Proposal Networks (RPN) and bounding box

prediction heads. Their further details are referred to [28].

To bridge the domain gap between S and T , various pre-

vious works (e.g. [18, 32, 49, 2]) propose to impose adver-

sarial alignment on the features of IS and IT :

LT (IS , IT ) = E [logD (fS)] + E [log (1−D (fT ))] , (2)

where fS and fT are feature maps extracted from IS and

IT , before being fed into the RPN. Adversarial training

projects them into aligned feature space so that a discrim-

inator D cannot distinguish between their domains. How-

ever, criterion (2) favors minimizing the most discrimina-

tive variance between domains, which may have weak effect

on transferring desired instance-level knowledge. To solve

this issue, we introduce Informative Correspondence Min-

ing (ICM) and Consistent Correspondence Mining (CCM)

as explicit semantic regularizations.

3.2. Informative Correspondence Mining

Formulation. We explicitly impose semantically consis-

tent matching constraints between fS and fT , i.e. a source

image region belonging to a certain class should be matched

to the target image area occupied by the same class. For

each image region R from RS , i.e., the set of all possible

sub-image regions on fS , we assume a correspondence field

that searches for the matched area on the target feature maps

fT . Such field is generally expressible with a column vector

wR � 0, wT
R1 = 1, where each element in wR denotes

the soft activation of a certain pixel in fT . In this manner,

representation of the (warped) matched region can write as

wT
RfT . Suppose CS∩T ⊆ C ∪ {C0} (C0 denotes the back-

ground) be the shared classes between IS and IT , which

are ready to compute given image labels in both domains.

As we cannot observe region-level annotations in target do-

main, we propose to divide fT via weakly supervised clus-

tering, generating consistent semantic partition of fT that

can best explain the source domain annotations.

To this end, we assume that the target domain image has

a non-overlapping partition {ΩC}C∈CS∩T
, ∀C1, C2 ∈ CS∩T ,

C1 6= C2, ΩC1 ∩ ΩC2 = ∅, and ∪C∈CS∩T
ΩC = IT . For

each source image region R, let wCR denote the correspon-

dence field of R, but restricted to searching regions only in

ΩC , i.e. elements of wCR are zeros for pixels outside ΩC .

To derive the optimal partition we propose an unsupervised

criterion, which we draw inspiration from Fig. 2. Since the

class of source image region R is known (the class assign-

ment rule will be elaborated later), suppose that R belongs

to class CR, and the correspondence wCRR matches R to a

target region A in ΩCR with a particular pattern (e.g. the

horse head in Fig. 2). If ΩCR does not cover the full object

but only a proportion of it, it is highly possible that there

exists B ⊆ ΩC− , C− 6= CR, such that B possesses a pattern

with similar features with those of ΩCR , while consistently
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appeared in many images with the same shared label (e.g.

the horse body in Fig. 2). If it happens, a good instantiation

of w
C−
R is to correlate R with B to explain the class CR. If

ΩCR covers the full extent of CR, then it is difficult to find

such consistent patterns in ΩC− . In this case, knowing the

match in ΩCR tells us little about knowing where to match

in ΩC− . Such optimal condition could be formally modelled

by minimizing the concept of mutual information:

min
Ω

∑

C−∈CS∩T

C− 6=CR

I
(

w
C−
R ,wCRR |I = (IS , IT )

)

, (3)

where the mutual information

I(w
C−
R ,wCRR |I) = H(w

C−
R |I)−H(w

C−
R |w

CR
R , I), (4)

and H(·) denotes the entropy. We assume uniform distri-

bution on P (w
C−
R |I) regardless of R and I, and its entropy

becomes a constant. The only remaining term that matters

requires solving the posterior P (w
C−
R |w

CR
R , I), which, how-

ever, is difficult to directly compute.

Variational approximation. We make use of source do-

main annotations as immediate random variables, approxi-

mating posterior P (w
C−
R |w

CR
R , I) with a factorizable one:

Q(w
C−
R |w

CR
R , I) =

∫

P (aR|w
CR
R , I)P (w

C−
R |aR, I)daR,

(5)

where aR denotes the annotation of source region R. It

could be shown1 that usingQ as the surrogate posterior, the

problem (3) could be simplified to

max
Ω

A (S, T ) =
1

ZA

∑

I

∑

R∈RS

∑

C−

H
(

aR|w
C−
R , I

)

,

s.t. aR =argmax
a

P
(

a|wCRR , I
)

,

(6)

where ZA is a normalization constant. Note the constraint

in (6) requires wCRR to find correct semantic pattern to ex-

plain CR, while its objective is making such explanation dif-

ficult for any remaining region, which meets our intuition.

Note that so far we assume that the learned semantic cor-

respondence w
C−
R is perfect enough to correctly localize any

semantic region informed by wCRR . It naturally gives rise to

a min-max interpretation: while current partition Ω should

raise the entropy (or uncertainty) to find good correspon-

dences in ΩC− , the correspondence field w
C−
R should be as-

sumed as powerful as possible to find such match and mini-

mize the entropy. Further relaxing the constraints in (6), we

arrive at the following problem

min
w

(

λN (S, T ) + max
Ω

A (S, T )
)

, (7)

1Please check our supplementary material for detailed derivation.

where N (S, T ) = − 1
ZN

∑

I

∑

R∈RS
logP (aR|w

CR
R , I)

denotes the negative log-posterior, and λ > 0 is a tolerance

parameter and set to 1 in our experiments.

Implementation. The simplified objective (7) only in-

volves solving the posterior P (aR|w
C
R, I). We define

P
(

aR|w
C
R, I
)

= P
(

yR|w
C
R, I
)

P
(

oR|w
C
R, I
)

, (8)

where aR = (yR,oR) and yR consists of the annotated

class and position of region R, respectively. We set yR to

the one-hot class vector of the closest groundtruth bounding

box if their intersection-over-union overlap exceeds 0.7. If

R has unconvincing overlap with any groundtruth (below

0.3), then yR is set to background. The position annota-

tion oR ∈ IR1×4 is defined only for positive regions, as the

offset vector towards the closest bounding box.

We parameterize the posteriors (8) with deep neural net-

works. It is achieved by first obtaining the warped features

fCR =
(

wCR
)T

fT , then feeding them into two separate fully

connected layers Fc (·) and Fo (·) to produce the logits. We

make use of the common softmax and Laplacian distribu-

tions to define the posteriors:

P
(

yCR|w
C
R, I
)

∼ softmax
(

yCR,Fc

(

fCR
))

,

P
(

oCR|w
C
R, I
)

∼ exp

(

−
‖oCR −Fo

(

fCR
)

‖1
σ2
o

)

.
(9)

The semantic correspondence field wCR and image par-

tition Ω lie in exponential solution space, whose complex-

ity is also addressed with neural networks. Since fT is ex-

pected to convey rich semantic information, our partition

generator G : fT → (0, 1)HW×|C| is simply a single con-

volutional layer followed by channel-wise softmax normal-

ization. Computing the correspondence field wCR for each

region R and class C individually would be expensive. We

resort to computing cross-image co-attention followed by

pooling the correspondence vectors in each region:

wCR = avgpool (norm (m (ΩC)⊙ κ (fS , fT )) ,R) ,

where κ (fS , fT ) = softmax
(

fTSWfT
)

.
(10)

Here W is a learnable weight matrix. With row-wise soft-

max normalization, each row of κ (·, ·) represents the affini-

ties from a certain location on fS to all the locations on fT .

Using the region mask m (ΩC) output from the generator G,

we restrict affinity computation valid in ΩC (⊙ denotes the

point-wise multiplication with channel broadcasting). The

affinities in ΩC are renormalized and finally pooled in the

region R to obtain wCR. This formula allows us to process

hundreds of regions with negligible cost in parallel.

Discussion. A prevailing strategy proposed for weakly

supervised object localization is region-based dropout [35,

5, 29], which iteratively erases the most discriminative re-

gions and pushes the classifiers to find the next informative
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ones. ICM could be deemed as “correspondence dropout”,

as it adversarially drops the information on the target im-

age to make the correspondence searching harder. Another

difference is that ICM is defined over local regions, using

local instead of global classification cues. ICM also corre-

lates with region competition [44, 6], as expanding, for ex-

ample, ΩC0 , would gain the information it contains and de-

crease the uncertainty to explain the source image regions

for class C0, yet go the opposite way for other Cs. Thus,

terms in (7) naturally balance each other and avoid trivial

solution, acting as class proportion regularization [11, 16].

3.3. Consistent Correspondence Mining

While inter-domain semantic correspondence could be

learned with weakly supervised clustering, we show another

mining source derived from the cross-domain cycle consis-

tency. As shown in Fig. 2, the high-level idea is to leverage

more robust intra-domain matching as guidance, as the se-

mantic representations of such two images have no domain

discrepancy. It provides a strong signal to regularize inter-

domain correspondence by forming a matching cycle.

To this end, to form the smallest valid cycle we sam-

ple a triplet of images IS , IT1 and IT2 , where IS is from

the source domain and the other two are from the tar-

get domain. We introduce the cycle consistency regular-

izer [39, 51, 41, 52] to cross-domain object detection: warp-

ing the semantic features of IT2 to the coordinate frame of

IT1 should be equivalent to first warping it to the coordinate

frame of IS then that of IT1 . This effectively prevents erro-

neous matching that is inconsistent to propagate. Formally,

for a sampled triplet J = (IS , IT1 , IT2) we minimize

C (S, T ) =
1

ZC

∑

J

RJ ‖KT1←T2 −KT1←SKS←T2‖
2
2 ,

(11)

where KB←A = κ(fA, fB)fB and κ (·, ·) denotes the cross-

attention matrix defined in (10). The matrix RJ has the

same spatial dimensions with those of KB←A, and quan-

tifies the “transferablility” at each position. For instance, if

IT1 and IT2 share a class that is absent in IS , we cannot

expect to reconstruct the warping T1 ← T2 faithfully every-

where using the immediate warpings T1 ← S and S ← T2.

We measure the transferability of B ← A for the ith

feature pixel of A, i.e. f
(i)
A , as the uncertainty of search-

ing for correspondence on fB, where B is assumed from the

source domain. This is achieved by firstly computing nor-

malized affinities p
(i)
A,B = softmax((f

(i)
A )TWfB). As B

is annotated, we can generate per-class affinities by max-

pooling p
(i)
A,B’s elements within the semantic area defined

by the coverage of groundtruth object bounding boxes for

each class. Assume it gives us (normalized) class affinities

c
(i)
A,B ∈ (0, 1)

1×(|C|+1)
, ‖c

(i)
A,B‖1 = 1, where its component

is simply set to a small constant near zero if the correspond-

ing class is absent inB. The transferability is then defined as

r
(i)
A,B = exp(−H(c

(i)
A,B)), where H(·) is the entropy. Intu-

itively, if f
(i)
A is a confident match, c

(i)
A tends to have peaks,

leading to low uncertainty (high transferability).

Let rA,B denote the matrix collecting r
(i)
A,Bs of all pixels.

As B is assumed a source image, RJ is accumulated as:

RJ = rT1,S ⊙ (KT1←T2rT2,S) . (12)

Note that during training RJ is detached from optimiza-

tion and precomputed using the estimations from the trained

model of latest epoch, to prevent gradient instability issues.

3.4. Implementation Details

Our full training objective is

min
θ0

(

LS + α(N +max
θΩ

A) + βC

)

, (13)

where LS is the source domain loss terms defined in (1),

α and β are balancing weights, and θΩ and θ0 are training

parameters of the partition generator G and the remaining

network, respectively. We perform adversarial training by

ascending the gradients of G via gradient reversal [10]. Note

that ICM and CCM only affect training, which outputs an

adapted detector that directly applies to target domain.

Class-agnostic ICM. The original multi-class version of

ICM repeats correspondence learning for every class, which

would be slow if the number of classes is large. A walka-

round is to unify all the object classes as “foreground”, ren-

dering it a binary foreground/background setting. In prac-

tice, we do not observe performance degeneration for this

class-agnostic setting, yet saving training time significantly.

4. Experiments

4.1. Experimental Settings

Datasets. We follow [15, 19] to organize the evalua-

tion data, where the trainval sets of Pascal-VOC 2007 and

Pascal-VOC 2012 [8] are treated as source domain, while

the Clipart1k, Watercolor2k, and Comic2k datasets [15] as

target domains. There are 16551 real-world photos from 20

object classes to form the source domain. The target domain

images are unrealistic, e.g. with cartoon or painting styles.

Clipart1k consists of 1000 images from 20 object classes,

while Watercolor2k and Comic2k both contain 2000 im-

ages from 6 classes. These classes are all included by the 20

classes of the source domain. We follow previous train/test

split: for Clipart1k all its 1000 images are used for train-

ing/evaluation, while for Watercolor2k and Comic2k, there

are 1000 for training and another 1000 for evaluation.

State-of-the-art methods. We compare our approach

with 9 recent works with released results and/or codes, or-

ganized into 3 groups: 1) Weakly Supervised (WS) Group

including WSDDN [1], CLNet [17], EDRN [34], PCL [37],
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Table 1. Average Precisions (AP) and mean AP on Clipart1k. Bold highlights the top place while underline the second place.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Source only 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32 27.8

WL Group

WSDDN [1] 1.6 3.6 0.6 2.3 0.1 11.7 4.5 0.0 3.2 0.1 2.8 2.3 0.9 0.1 14.4 16.0 4.5 0.7 1.2 18.3 4.4

CLNet [17] 3.2 22.3 2.2 0.7 4.6 4.8 17.5 0.2 4.8 1.6 6.4 0.6 4.7 0.6 12.5 13.1 14.1 4.1 8.0 29.7 7.8

EDRN [34] 2.7 13.5 1.2 4.2 1.8 10.3 25.7 0.4 8.4 0.3 3.2 2.7 1.1 0.7 29.4 17.2 5.2 1.6 2.9 19.1 7.6

PCL [37] 3.4 10.6 2.3 1.7 5.2 3.4 23.3 1.2 5.6 0.4 7.8 3.7 5.6 0.3 24.5 19.7 11.9 3.6 9.2 25.4 8.4

UDA Group

ADDA [38] 20.1 50.2 20.5 23.6 11.4 40.5 34.9 2.3 39.7 22.3 27.1 10.4 31.7 53.6 46.6 32.1 18.0 21.1 23.6 18.3 27.4

SWDA [32] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1

STABR [19] 28.0 64.5 23.9 19.0 21.9 64.3 43.5 16.4 42.2 25.9 30.5 7.9 25.5 67.6 54.5 36.4 10.3 31.2 57.4 43.5 35.7

HTD [2] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3

CDWS Group

CDWSDA [15] 32.0 40.9 29.5 29.3 32.0 84.7 38.2 12.4 24.3 54.8 24.7 15.4 36.1 72.1 51.0 41.9 19.0 18.5 47.2 21.4 36.3

Proposed 39.8 66.7 37.2 42.5 43.3 48.1 48.1 21.3 46.5 73.0 29.0 29.8 57.3 78.6 67.8 48.7 46.3 19.3 42.8 48.5 46.7

Table 2. Average Precisions (AP) and mean AP on Watercolor2k.

Bold highlights the top place while underline the second place.

Method bike bird car cat dog person mAP

Source only 68.8 46.8 37.2 32.7 21.3 60.7 44.6

WL Group

WSDDN [1] 1.5 26.0 14.6 0.4 0.5 33.3 12.7

CLNet [17] 4.5 27.9 19.6 14.3 6.4 31.4 17.4

EDRN [34] 5.2 29.3 15.3 1.4 0.9 34.9 14.5

PCL [37] 6.7 28.8 20.2 9.5 5.4 27.4 16.3

UDA Group

ADDA [38] 79.9 49.5 39.5 35.3 29.4 65.1 49.8

SWDA [32] 82.3 55.9 46.5 32.7 35.5 66.7 53.3

STABR [19] 75.6 45.8 49.3 34.1 30.3 64.1 49.4

HTD [2] 69.2 49.5 49.5 34.9 30.8 61.2 49.2

CDWS Group

CDWSDA [15] 68.6 46.6 37.7 35.2 36.0 62.5 47.8

Proposed 86.6 64.2 52.6 32.4 41.2 67.4 57.4

which directly apply to the target domain without adapta-

tion; 2) Unsupervised Domain Adaptation (UDA) Group

including ADDA [38], SWDA [32], STABR [19], HTD [2],

which assumes labeled source domain and unlabeled target

domain; and Cross-Domain Weakly Supervised (CDWS)

Group, including CDWSDA [15] and our approach, assum-

ing weakly labeled target domain. Note that CDWSDA re-

ports results using the SSD300 variant [24], which deviates

from [2, 32] and ours that adopt Faster-RCNN as backbone.

For fair comparison, we implement its Faster-RCNN vari-

ant using the processed immediate data released by authors.

Our reimplementation is guaranteed to produce higher num-

bers on Clipart1k than those reported by the authors.

Training details. If not explained, we set the parameters

α and β in (7) with 0.001 and 0.01, respectively. Their influ-

ences are also analysed in Sect. 4.3. The newly added layers

(e.g. the learnable weights and classifiers in ICM and CCM)

Table 3. Average Precisions (AP) and mean AP on Comic2k. Bold

highlights the top place while underline the second place.

Method bike bird car cat dog person mAP

Source only 28.8 13.5 18.6 14.8 15.9 33.9 20.9

WL Group

WSDDN [1] 1.5 0.1 11.9 6.9 1.4 12.1 5.6

CLNet [17] 0.0 0.0 2.0 4.7 1.2 14.9 3.8

EDRN [34] 1.6 0.5 13.2 7.2 2.5 13.2 6.4

PCL [37] 1.2 0.4 8.9 2.9 2.3 15.6 5.2

UDA Group

ADDA [38] 39.5 9.8 17.2 12.7 20.4 43.3 23.8

SWDA [32] 30.3 19.6 28.8 15.2 24.9 46.9 27.6

STABR [19] 50.6 13.6 31.0 7.5 16.4 41.4 26.8

HTD [2] 35.4 14.8 26.6 13.7 26.9 40.0 26.2

CDWS Group

CDWSDA [15] 47.0 21.1 30.1 29.0 29.6 40.6 32.9

Proposed 50.6 23.3 35.4 32.3 33.8 47.1 37.1

are all initialized with Normal distribution with zero mean

and 0.01 standard deviation. We perform 70k training steps

for Clipart1k and 140k for Watercolor2k/Comic2k. At each

training step a mini-batch of 3 images (one from the source

domain and two from the target domain) is sampled. We

use SGD optimizer with momentum, with an initial learn-

ing rate 0.001 decayed by 10x at the 50kth step.

4.2. Comparisons with StateoftheArt Methods

Performance comparisons with the state-of-the-art meth-

ods on Clipart1k, Watercolor2k and Comic2k are summa-

rized in Table 1, 2 and 3, respectively. The proposed ap-

proach achieves the leading results for all the datasets, im-

proving over previous results by 4% ∼ 6% in mAP. Con-

versely, the WS group fails achieving reasonable results be-

cause of the large appearance and style diversity of the tar-

get datasets, which is also reported in [15]. By introduc-
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Figure 3. Representative results generated by different approaches (visualized in different rows). Best viewed with zoom in.

Table 4. Contributions to the final mAP by different components,

evaluated on the Clipart1k dataset.

Source
ICM

CCM mAP
w/o adv. full w/o reg.

✓ 27.8

✓ ✓ 44.3

✓ ✓ 45.0

✓ ✓ ✓ 45.7

✓ ✓ ✓ 45.5

✓ ✓ ✓ 46.7

ing the weak knowledge of target domain, performance of

CDWSDA [15] is significantly better than that of the UDA

group on certain categories, yet meanwhile degenerate for

several others (e.g. chair), partly caused by the inaccuracy

of pseudo labels when training target domain detectors. As

for the proposed approach, dominant improvements are ob-

served on several major classes (e.g. animal categories) that

are richly spread in the datasets yet difficult to handle by

previous works, due to largely non-rigid deformations. Our

approach explicitly groups the objects of diverse appearance

into semantic clusters, making their representations similar

in feature space, gaining robustness to handling such ap-

pearance diversity. However, our approach does not achieve

meaningful improvements for minor poputation categories,

such as train and tv).

Fig. 3 shows a qualitative comparison of 4 reprentative

approaches: SWDA [32], HTD [2], CDWSDA [15] and the

proposed. The proposed approach generates better results

in case of multiple objects (2nd and 3rd columns), cluttered

scenes (5th and 8th columns), and has fewer false positives

and missing detections (1st, 7∼10th columns). More visual

comparisons could be found in our supplementary material.

4.3. Performance Analysis

The proposed approach contains several novel modules,

whose effectiveness is evaluated via a series of experiments:

Ablation study. We quantitatively analyse the contribu-

tions of different components in Table 4. The performance

is limited with only source domain training. Using the pro-

posed ICM (without adversarial correspondence dropout),

it improves the mAP remarkably by 16.5%, demonstrating

the advantage of pixel-wise knowledge transfer. Adversar-

ial mask generation further improves it by 0.7%. Includ-

ing the CCM module brings with 1.4% improvement. We

also analyse the necessity of region offset regression in the

proposed ICM module (eq. (8)), similar with bounding box

regression in Faster RCNN [28]. Surprisingly, excluding it

causes a notable drop of 1.2% mAP. It indicates that ex-

plaining not only the class labels, but also the object posi-

tions of source domain is beneficial for the ICM module.

Analysis of error reduction. We further analyse the

types of detection error reduced by the proposed ICM and

CCM modules. We consider the baseline approach for un-

supervised domain adaptation, i.e. source domain training

plus inter-domain adversarial feature alignment, the state-

of-the-art weakly supervised approach CDWSDA [15], the

proposed approach equipped with the ICM module, and its

full version (ICM + CCM). For each approach, we collect

detection results in descending order of their scores in the

whole Clipart1k dataset, and count the percentage of detec-

tions of different types as explained in Fig. 4. The top-left

figure of Fig. 4 shows that both CDWSDA and ICM im-

proves over the UDA baseline dramatically in classification

and localization accuracy, while ICM beats CDWSDA by

a large margin. The top-right and bottom-left figures in-
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Figure 4. Percentage of detections within each type as a function

of the number of detections. Top-left: detections with correct clas-

sification and localization. Top-right: classification is correct, but

localization is weak (0.1 < IoU < 0.5). Bottom-left: wrong

classification, but correct localization (IoU with at least one object

exceeds 0.5). Bottom-right: detections with wrong labels and lo-

calization (IoU < 0.1). Note that higher percentage is preferred

for only the top-left figure, as it counts for true positive detections.

dicate that ICM mainly reduce classification errors of cor-

rectly localized regions, partly because ICM does not have

pseudo labeling process that may introduce undesired label-

ing noise. Finally, it is clearly shown that CCM has consis-

tent positive effect in reducing all kinds of detection errors.

Visualizing the effect of ICM and CCM. Fig. 5 visu-

alizes how ICM and CCM affects the results. To this end,

we treat the pixels within the bounding boxes of the person

and bicycle in Fig. 5 (a) as seeds, computing the matched

positions on the target domain image according to their co-

attention matrix (κ defined in (10)). For each matched po-

sition, we predict a bounding box by feeding its feature to

the RCNN head, and accumulate all these bounding boxes

as the coverage of the matched regions of source seeds on

the target image. Note that seeds are weighted using a spa-

tial Gaussian to suppress the contributions of background

seeds. The results illustrate that without adversarial mask-

ing in ICM, only parts of object are matched in target image

to explain the annotated source classes. Adversarial mask-

ing render the correspondences uniformly spread along the

full objects. It also shows that excluding CCM makes the

match of the person erroneously located on the background,

while including it results into more accurate localization.

Parameter tuning results. Fig. 6 summarizes the sensi-

tivity analysis of the parameters α and β in (7). The results

show that the performance tend to drop if both parameters

are set small. Otherwise, the performance is stably floating

around 46.1% ∼ 46.7%, while variations are both caused

by parameter change and randomness during training.

(a) (b)

(c) (d)

Figure 5. Visualizing the effect of Informative Correspondence

Mining (ICM) and Consistent Correspondence Mining (CCM). (a)

Seeds on the source domain image, weighted with a spatial Gaus-

sian. (b) (c) (d): Visualization of the distribution of matched re-

gions, corresponding to: (b) with naive ICM, but without adver-

sarial masking; (c) the full ICM module; (d) without CCM.
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Figure 6. Mean average precision as a function of parameters α

and β defined in Eqn. (7), evaluated on the Clipart1k dataset.

5. Conclusion and Limitation

In this work we propose two novel modules, Informa-

tive Correspondence Mining (ICM) and Consistent Corre-

spondence Mining (CCM), to address cross-domain weakly

supervised object detection. ICM finds informative cross-

domain correspondences for local semantics transfer, while

CCM incorporates cycle learning as consistency regularizer.

New state-of-the-art results are set on three benchmarks.

Limitation. A drawback or our approach is the imbal-

anced sampling issue on cross-domain triplets, as exten-

sively discussed in various tasks [25, 27]. Due to the uni-

form sampling, our approach does not treat the categories

with different population in balancing way. This is why for

minor categories the proposed approach does not achieve

results as good as those of the major ones. Further explo-

rations of sampling mechanisms are left as future work.
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