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Abstract

A source model trained on source data and a target

model learned through unsupervised domain adaptation

(UDA) usually encode different knowledge. To understand

the adaptation process, we portray their knowledge dif-

ference with image translation. Specifically, we feed a

translated image and its original version to the two mod-

els respectively, formulating two branches. Through up-

dating the translated image, we force similar outputs from

the two branches. When such requirements are met, dif-

ferences between the two images can compensate for and

hence represent the knowledge difference between models.

To enforce similar outputs from the two branches and de-

pict the adapted knowledge, we propose a source-free im-

age translation method that generates source-style images

using only target images and the two models. We visual-

ize the adapted knowledge on several datasets with differ-

ent UDA methods and find that generated images success-

fully capture the style difference between the two domains.

For application, we show that generated images enable fur-

ther tuning of the target model without accessing source

data. Code available at https://github.com/hou-

yz/DA_visualization.

1. Introduction

Domain transfer or domain adaptation aims to bridge

the distribution gap between source and target domains.

Many existing works study the unsupervised domain adap-

tation (UDA) problem, where the target domain is unla-

beled [27, 6, 46, 1, 11]. In this process, we are interested

in what knowledge neural networks learn and adapt.

Essentially, we should visualize the knowledge differ-

ence between models: a source model trained on the source

domain, and a target model learned through UDA for the

target domain. We aim to portray the knowledge difference

with image generation. Given a translated image and its

original version, we feed the two images to the source and

the target model, respectively. It is desired that differences

between image pairs can compensate for the knowledge dif-

(a) Target images (real-world)

(b) Generated source-style images

(c) Unseen source images (synthetic)

Figure 1: Visualization of adapted knowledge in unsuper-

vised domain adaptation (UDA) on the VisDA dataset [38].

To depict the knowledge difference, in our source-free im-

age translation (SFIT) approach, we generate source-style

images (b) from target images (a). Instead of accessing

source images (c), the training process is guided entirely

by the source and target models, so as to faithfully portray

the knowledge difference between them.

ference between models, leading to similar outputs from

the two branches (two images fed to two different models).

Achieving this, we could also say that the image pair repre-

sent the knowledge difference.

This visualization problem is very challenging and

heretofore yet to be studied in the literature. It focuses on a

relatively understudied field in transfer learning, where we

distill knowledge differences from models and embed it in

generated images. A related line of works, traditional image

translation, generates images in the desired style utilizing

content images and style images [7, 13, 48], and is applied

13824

https://github.com/hou-yz/DA_visualization
https://github.com/hou-yz/DA_visualization


in pixel-level alignment methods for UDA [26, 2, 44, 11].

However, relying on images from both domains to indicate

the style difference, such works cannot faithfully portray

the knowledge difference between source and target models,

and are unable to help us understand the adaptation process.

In this paper, we propose a source-free image translation

(SFIT) approach, where we translate target images to the

source style without using source images. The exclusion of

source images prevents the system from relying on image

pairs for style difference indication, and ensures that the

system only learns from the two models. Specifically, we

feed translated source-style images to the source model and

original target images to the target model, and force similar

outputs from these two branches by updating the generator

network. To this end, we use the traditional knowledge dis-

tillation loss and a novel relationship preserving loss, which

maintains relative channel-wise relationships between fea-

ture maps. We show that the proposed relationship preserv-

ing loss also helps to bridge the domain gap while chang-

ing the image style, further explaining the proposed method

from a domain adaptation point of view. Some results of

our method are shown in Fig. 1. We observe that even un-

der the source-free setting, knowledge from the two models

can still power the style transfer from the target style to the

source style (SFIT decreases color saturation and whitens

background to mimic the unseen source style).

On several benchmarks [19, 36, 39, 38], we show that

generated images from the proposed SFIT approach signifi-

cantly decrease the performance gap between the two mod-

els, suggesting a successful distillation of adapted knowl-

edge. Moreover, we find SFIT transfers the image style

at varying degrees, when we use different UDA methods

on the same dataset. This further verifies that the SFIT

visualizations are faithful to the models and that different

UDA methods can address varying degrees of style differ-

ences. For applications, we show that generated images can

serve as an additional cue and enable further tuning of target

models. This also falls into a demanding setting of UDA,

source-free domain adaptation (SFDA) [17, 20, 24], where

the system has no access to source images.

2. Related Work

Domain adaptation aims to reduce the domain gap be-

tween source and target domains. Feature-level distribution

alignment is a popular strategy [27, 6, 46, 40]. Long et

al. [27] use the maximum mean discrepancy (MMD) loss

for this purpose. Tzeng et al. [46] propose an adversarial

method, ADDA, with a loss function based on the gen-

erative adversarial network (GAN). Pixel-level alignment

with image translation is another popular choice in UDA

[26, 2, 44, 42, 1, 11]. Hoffman et al. propose the Cy-

CADA [11] method based on CycleGAN [48] image trans-

lation. Other options are also investigated. Saito et al. [40]

align the task-specific decision boundaries of two classi-

fiers. Source-free domain adaptation (SFDA) does not use

the source data and therefore greatly alleviates the privacy

concerns in releasing the source dataset. As an early at-

tempt, AdaBN [22] adapts the statistics of the batch normal-

ization layers in the source CNN to the target domain. Li et

al. [20] generate images with the same distribution of the

target images and use them to fine-tune the classifier. Liang

et al. [24] fine-tune a label smoothed [34] source model on

the target images. To the authors’ knowledge, there is still

yet to be any visualization that can indicate what models

learn during adaptation.

Knowledge distillation transfers knowledge from a pre-

trained teacher model to a student model [10], by maxi-

mizing the mutual information between teacher outputs and

student outputs. Some existing works consider the relation-

ship between instance or pixels for better distillation per-

formance [45, 23, 37]. Instead of distilling teacher knowl-

edge on a given training dataset, data-free knowledge dis-

tillation (DFKD) [30, 35, 3, 33, 8, 47] first generates train-

ing data and then learns a student network on this gener-

ated dataset. Training data can be generated by aligning

feature statistics [30, 8, 47], enforcing high teacher confi-

dence [30, 35, 3, 8, 47], and adversarial generation of hard

examples for the student [33, 47]. In [8, 47], batch normal-

ization statistics are matched as regularization. Our work,

while also assuming no access to source images, differs sig-

nificantly from these works in that our image translation

has to portray the transferred knowledge, whereas data-free

knowledge distillation just generates whatever images that

satisfy the teacher networks.

Image translation renders the same content in a differ-

ent artistic style. Some existing works adopt a GAN-based

system for this task [26, 44, 14, 48, 11], while others use a

pre-trained feature extractor for style transfer [7, 15, 32, 13].

Zhu et al. adopt a cycle consistency loss in the image trans-

lation loop to train the CycleGAN system [48]. Gatys

et al. consider a content loss on high-level feature maps,

and a style loss on feature map statistics for style transfer

[7]. Huang and Belongie [13] propose a real-time AdaIN

style transfer method by changing the statistics in instance

normalization layers. Based on AdaIN, Karras et al. pro-

pose StyleGAN for state-of-the-art image generation [16].

Our work differs from traditional image translations in that

rather than images from the two domains, only models from

two domains are used to guide the image update.

3. Problem Formulation

To achieve our goal, i.e., visualizing adapted knowledge

in UDA, we translate a image x from a certain domain to

a new image x̃. It is hoped that feeding the original image

to its corresponding model (trained for that certain domain)

and the generated image to the other model can minimize
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Figure 2: The proposed source-free image translation (SFIT) method for visualizing the adapted knowledge in UDA. The

system includes two branches: original target images are fed to the target CNN, whereas generated source-style images are

fed to the source CNN. We minimize the knowledge distillation loss and the relationship preserving loss, and update the

generator network accordingly. If the two branches get similar results while adopting different models, then the difference

between the original target image x and the generated source-style image x̃ should be able to mitigate and therefore exhibit

the knowledge difference between models. Dashed lines indicate fixed network parameters.

the output difference between these two branches. The up-

date process is directed only by the source model fS (·) and

the target model fT (·), and we prevent access to the images

from the other domain to avoid distractions. We formulate

the task of visualizing adapted knowledge as a function of

the source model, the target model, and the image from a

certain domain,

G (fS, fT,x) → x̃. (1)

In contrast, traditional image translation needs access to im-

ages from both domains for content and style specification.

In addition to the source image xS and the target image xT,

traditional image translation also relies on certain neural

network d (·) as the criterion. Instead of the source and tar-

get models, ImageNet [4] pre-trained VGG [43] and adver-

sarially trained discriminator networks are used for this task

in style transfer [7, 13] and GAN-based methods [48, 11],

respectively. Traditional image translation task can thus be

formulated as,

G (d,xS,xT) → x̃. (2)

Comparing our goal in Eq. 1 and traditional image transla-

tion in Eq. 2, we can see a clear gap between them. Tradi-

tional image translation learns the style difference indicated

by images from both domains, whereas our goal is to learn

to visualize the knowledge difference between the source

and target models fS (·) , fT (·).

4. Method

To investigate what neural networks learn in do-

main adaptation, we propose source-free image translation

(SFIT), a novel method that generates source-style images

from original target images, so as to mitigate and represent

the knowledge difference between models.

4.1. Overview

Following many previous UDA works [6, 27, 46, 24], we

assume that only the feature extractor CNN in the source

model is adapted to the target domain. Given a source CNN

fS (·) and a target CNN fT (·) sharing the same classifier

p (·), we train a generator g (·) for the SFIT task. We discuss

why we choose this translation direction in Section 4.3. As

the training process is source-free, for simplicity, we refer

to the target image as x instead of xT in what follows.

As shown in Fig. 2, given a generated image x̃ = g (x),
the source model outputs a feature map fS (x̃) and a prob-

ability distribution p (fS (x̃)) over all C classes. To depict

the adapted knowledge in the generated image, in addition

to the traditional knowledge distillation loss, we introduce a

novel relationship preserving loss, which maintains relative

channel-wise relationships between the target-image-target-

model feature map fN
T (x) and the generated-image-source-

model feature map fN
S (x̃).

4.2. Loss Functions

With a knowledge distillation loss LKD and a relationship

preserving loss LRP, we have the overall loss function,

L = LKD + LRP. (3)

In the following sections, we detail the loss terms.

Knowledge distillation loss. In the proposed source-

free image translation method, portraying the adapted

knowledge in the target model fT (·) with source model

and generator combined fS (g (·)) can be regarded as a spe-

cial case of knowledge distillation, where we aim to distill

the adapted knowledge to the generator. In this case, we

include a knowledge distillation loss between generated-

image-source-model output p (fS (x̃)) and target-image-
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target-model output p (fT (x)),

LKD = DKL (p (fT (x)) , p (fS (x̃))) , (4)

where DKL (·, ·) denotes the Kullback-Leibler divergence.

Relationship preserving loss. Similar classification

outputs indicate a successful depiction of the target model

knowledge on the generated images. As we assume a fixed

classifier for UDA, the global feature vectors from the tar-

get image target CNN and the generated image source CNN

should be similar after a successful knowledge distillation.

Promoting similar channel-wise relationships between fea-

ture maps fN
T (x) and fN

S (x̃) helps to achieve this goal.

Previous knowledge distillation works preserve relative

batch-wise or pixel-wise relationships [45, 23]. However,

they are not suitable here for the following reasons. Relative

batch-wise relationships can not effectively supervise the

per-image generation task. Besides, the efficacy of pixel-

wise relationship preservation can be overshadowed by the

global pooling before the classifier. By contrast, channel-

wise relationships are computed on a per-image basis, and

are effective even after global pooling. As such, we choose

the channel-wise relationship preserving loss that is com-

puted in the following manner.

Given feature maps fN
T (x) , fN

S (x̃), we first reshape

them into feature vectors FS and FT,

fN
S (x̃) ∈ R

D×H×W → FS ∈ R
D×HW ,

fN
T (x) ∈ R

D×H×W → FT ∈ R
D×HW ,

(5)

where D,H , and W are the feature map depth (number of

channels), height, and width, respectively. Next, we calcu-

late their channel-wise self correlations, or Gram matrices,

GS = FS · F
T
S , GT = FT · FT

T , (6)

where GS, GT ∈ R
D×D. Like other similarity preserving

losses for knowledge distillation [45, 23], we then apply the

row-wise L2 normalization,

G̃S[i,:] =
GS[i,:]∥∥GS[i,:]

∥∥
2

, G̃T[i,:] =
GT[i,:]∥∥GT[i,:]

∥∥
2

, (7)

where [i, :] indicates the i-th row in a matrix. At last, we

define the relationship preserving loss as mean square error

(MSE) between the normalized Gram matrices,

LRP =
1

D

∥∥∥G̃S − G̃T

∥∥∥
2

F
, (8)

where ‖·‖F denotes the Frobenius norm (entry-wise L2

norm for matrix). In Section 4.3, we further discuss the rela-

tionship preserving loss from the viewpoint of style transfer

and domain adaptation, and show it can align feature map

distributions in a similar way as style loss [7] for style trans-

fer and MMD loss [27] for UDA, forcing the generator to

portray the knowledge difference between the two models.

(a) Relationship preserving loss (b) Traditional style loss

Figure 3: Comparison between the proposed relationship

preserving loss and the traditional style loss. In (a) and (b),

given 256-dimensional feature maps, we show differences

of row-wise normalized Gram matrix (Eq. 8) and original

Gram matrix (Eq. 9). Deeper colors indicate larger dif-

ferences and therefore stronger supervision. The proposed

relationship preserving loss provides evenly distributed su-

pervision for all channels, whereas the traditional style loss

focuses primarily on several channels.

4.3. Discussions

Why transfer target images to the source style. Ac-

cording to the problem formulation in Eq. 1, we should be

able to visualize the adapted knowledge by generating ei-

ther source-style images from target images, or target-style

images from source images. In this paper, we select the for-

mer direction as it might be further applied in fine-tuning

the target model (see Section 5.4 for application).

Style transfer with the relationship preserving loss.

The proposed relationship preserving loss can be regarded

as a normalized version of the traditional style loss intro-

duced by Gatys et al. [7],

Lstyle =
1

D2
‖GS −GT‖

2
F , (9)

which computes MSE between Gram matrices.

In the proposed relationship preserving loss (Eq. 8), in-

stead of original Gram matrices, we use a row-wise normal-

ized version. It focuses on relative relationships between

channels, rather than absolute values of self correlations as

in the traditional style loss. Preserving relative relation-

ships provides more evenly-distributed supervision for all

channels, instead of prioritizing several channels as in the

traditional style loss (Fig. 3). Experiments find this evenly-

distributed supervision better preserves the foreground ob-

ject and allows for easier training and higher performance,

while also changing the image style (see Section 5.5).

Distribution alignment with the relationship preserv-

ing loss. As proved by Li et al. [21], the traditional style

13827



loss Lstyle is equivalent to the MMD loss [27] for UDA. We

can also see the relationship preserving loss as a modified

version of the MMD loss, which aligns the distribution of

the generated image source CNN feature map fN
S (x̃) to the

target image target CNN feature map fN
T (x).

5. Experiments

5.1. Datasets

We visualize the knowledge difference between source

and target models on the following datasets.

Digits is a standard UDA benchmark that focuses on

10-class digit recognition. Specifically, we experiment on

MNIST [19], USPS, and SVHN [36] datasets.

Office-31 [39] is a standard benchmark for UDA that

contains 31 classes from three distinct domains: Amazon

(A), Webcam (W), and DSLR (D).

VisDA [38] is a challenging large-scale UDA benchmark

for domain adaptation from 12 classes of synthetic CAD

model images to real-world images in COCO [25].

5.2. Implementation Details

Source and target models. We adopt source and tar-

get models from a recent SFDA work SHOT-IM [24] if not

specified. SFDA is a special case of UDA, and it is even

more interesting to see what machines learn in the absence

of source data. We also include UDA methods DAN [27]

and ADDA [46] for SFIT result comparisons. For network

architectures, on digits dataset, following Long et al. [28],

we choose a LeNet [18] classifier. On Office-31 and VisDA,

we choose ResNet-50 and ResNet-101 [9], respectively.

Generator for SFIT. We use a modified CycleGAN [48]

architecture with 3 residue blocks due to memory concerns.

Training schemes. During training, we first initialize

the generator as a transparent filter, which generates im-

ages same as the original input. To this end, we use the

ID loss LID = ‖x̃− x‖1 and the content loss Lcontent =∥∥fN
S (x̃)− fN

S (x)
∥∥
2

to train the generator for initializa-

tion. The initialization performance is shown in Table 4,

where we can see a mild 1.9% accuracy drop from original

target images. Then, we train the generator with the overall

loss function in Eq. 3 for visualizing the adapted knowl-

edge. Specifically, we use an Adam optimizer with a cosine

decaying [31] learning rate starting from 3 × 10−4 and a

batch size of 16. All experiments are finished using one

RTX-2080Ti GPU.

5.3. Evaluation

Recognition accuracy on generated images. To ex-

amine whether the proposed SFIT method can depict the

knowledge difference, in Table 1-3, we report recogni-

tion results using the generated-image-source-model branch

(referred as “generated images”). On the digits dataset,

Method SVHN→MNIST USPS→MNIST MNIST→USPS

Source only [11] 67.1±0.6 69.6±3.8 82.2±0.8

DAN [27] 71.1 - 81.1

DANN [6] 73.8 73 85.1

CDAN+E [28] 89.2 98.0 95.6

CyCADA [11] 90.4±0.4 96.5±0.1 95.6±0.4

MCD [40] 96.2±0.4 94.1±0.3 94.2±0.7

GTA [41] 92.4±0.9 90.8±1.3 95.3±0.7

3C-GAN [20] 99.4±0.1 99.3±0.1 97.3±0.2

Source model [24] 72.3±0.5 90.5±1.6 72.7±2.3

Target model [24] 98.8±0.1 98.1±0.5 97.9±0.2

Generated images 98.6±0.1 97.4±0.3 97.6±0.3

Table 1: Classification accuracy (%) on digits datasets. In

Table 1-3, “Generated images” refers to feeding images

generated by SFIT to the source model.

Method A→W D→W W→D A→D D→A W→A Avg.

ResNet-50 [9] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN [27] 80.5 97.1 99.6 78.6 63.6 62.8 80.4

DANN [6] 82.6 96.9 99.3 81.5 68.4 67.5 82.7

ADDA [46] 86.2 96.2 98.4 77.8 69.5 68.9 82.9

JAN [29] 86.0 96.7 99.7 85.1 69.2 70.7 84.6

CDAN+E [28] 94.1 98.6 100.0 92.9 71.0 69.3 87.7

GTA [41] 89.5 97.9 99.8 87.7 72.8 71.4 86.5

3C-GAN [20] 93.7 98.5 99.8 92.7 75.3 77.8 89.6

Source model [24] 76.9 95.6 98.5 80.3 60.6 63.4 79.2

Target model [24] 90.8 98.4 99.9 88.8 73.6 71.7 87.2

Generated images 89.1 98.1 99.9 87.3 69.8 68.7 85.5

Fine-tuning 91.8 98.7 99.9 89.9 73.9 72.0 87.7

Table 2: Classification accuracy (%) on the Office-31

dataset. In Table 2 and Table 3, “Fine-tuning” refers to tar-

get model fine-tuning result with both generated images and

target images (see Section 5.4 for more details).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck per-class

ResNet-101 [9] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DAN [27] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [6] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

JAN [29] 75.7 18.7 82.3 86.3 70.2 56.9 80.5 53.8 92.5 32.2 84.5 54.5 65.7

ADDA [46] 88.8 65.7 85.6 53.1 74.9 96.2 83.3 70.7 75.9 26.4 83.9 32.4 69.7

MCD [40] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

CDAN+E [28] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9

SE [5] 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3

3C-GAN [20] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

Source model [24] 58.3 17.6 54.2 69.9 64.4 5.5 82.2 30.7 62.2 24.6 86.2 6.0 46.8

Target model [24] 92.5 84.7 81.3 54.6 90.5 94.7 80.9 79.1 90.8 81.5 87.9 50.1 80.7

Generated images 88.9 65.8 83.0 61.7 88.5 76.8 89.5 69.6 91.4 51.9 84.3 34.3 73.8

Fine-tuning 94.3 79.0 84.9 63.6 92.6 92.0 88.4 79.1 92.2 79.8 87.6 43.0 81.4

Table 3: Classification accuracy (%) on the VisDA dataset.

in terms of performance gaps, the knowledge differ-

ences between source and target models are 26.5% on

SVHN→MNIST, 7.6% on USPS→MNIST, and 25.2%

on MNIST→USPS. Generated images from SFIT bridges

these differences to 0.2%, 0.7%, and 0.3%, respectively.

On the Office-31 dataset, the performance gap between the

two models is 8.0% on average, and the generated images

shrink this down to 1.7%. Notably, the performance drops

from the target-image-target-model branch to the generated-

image-source-model branch are especially pronounced on

D→A and W→A, two settings that transfer Amazon im-

ages with white or no background to real-world background
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(a) Target images (MNIST)

(b) Generated source-style images

(c) Unseen source images (SVHN)

Figure 4: Results from the SFIT method on digits datasets

SVHN→MNIST. In Fig. 1 and Fig. 4-6, we show in (a):

target images, (b): generated source-style images, each of

which corresponds to the target image above it, and (c):

the unseen source images. For gray-scale target images

from MNIST, our SFIT approach adds random RGB colors

to mimic the full-color style in the unseen source (SVHN)

without changing the content.

(a) Target images (Webcam)

(b) Generated source-style images

(c) Unseen source images (Amazon)

Figure 5: Results from the SFIT method on the Office-

31 dataset Amazon→Webcam. Our translation method

whitens backgrounds while increasing contrast ratios of the

object (Webcam) for more appealing appearances as in the

online shopping images (Amazon).

in Webcam or DSLR. In fact, in experiments we find gen-

erating an overall consistent colored background is very de-

manding, and the system usually generates a colored back-

ground around the outline of the object. On the VisDA

dataset, generated images bridge the performance gap from

33.9% to 6.9%, even under a more demanding setting and

a larger domain gap going from real-world images to syn-

thetic CAD model images. Overall, on all three datasets,

generated images significantly mitigate the knowledge dif-

ference in terms of performance gaps, indicating that the

proposed SFIT method can successfully distill the adapted

knowledge from the target model to the generated images.

Visualization of source-free image translation results.

For digits datasets SVHN→MNIST (Fig. 4), the generator

learns to add RGB colors to the gray-scale MNIST (target)

images, which mimics the full-color SVHN (source) im-

ages. For Office-31 dataset Amazon→Webcam (Fig. 5), the

generated images whiten the background, while having a

white or no background rather than real-world background

is one of the main characteristics of the Amazon (source)

domain when compared to Webcam (target). Moreover,

Amazon online shopping images also have higher contrast

ratios for more appealing appearances, and our translated

images also capture these characteristics, e.g., keys in the

calculator, case of the desktop computer. For VisDA dataset

SYN→REAL (Fig. 1 and Fig. 6), the generator learns to

decrease the overall saturation of the real-world (target)

objects which makes them more similar to the synthetic

(source) scenario, while at the same time whitens the back-

ground, e.g., horse, truck, and plane in Fig. 1, car and skate-

board in Fig. 6, and brings out the green color in the plants.

Overall, image generation results exhibit minimal content

changes from target images, while successfully capturing

the unseen source style.

In terms of visual quality, it is noteworthy that generation

results for digits datasets SVHN→MNIST contain colors

and patterns that are not from the source domain, whereas

our results on the Office-31 dataset and VisDA dataset are

more consistent with the unseen source. Due to the lack

of source images, rather than traditional image translation

approaches [7, 13, 11, 44], SFIT only relies on source and

target models, and portrays adapted knowledge according

to the two models. Since a weaker LeNet classifier is used

for the digits dataset, it is easier to generate images that sat-

isfy the proposed loss terms without requiring the generated

images to perfectly mimic the source style. On Office-31

and VisDA datasets, given stronger models like ResNet, it

is harder to generate images that can satisfy the loss terms.

Stricter restrictions and longer training time lead to gener-

ation results more coherent with unseen source images that

also have better visual quality.

Visualization for different UDA methods. In Fig. 7,

we show SFIT visualization results using different UDA

methods. Given source and target domain, a traditional im-

age translation method generates a certain type of images

regardless of the UDA methods, indicating its incapabil-

ity of presenting the knowledge difference between mod-
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(a) Target images (real-world)

(b) Generated source-style images

(c) Unseen source images (synthetic)

Figure 6: Results from the SFIT method on the VisDA dataset SYN→REAL. Our translation method decreases the target

(real-world) image saturation and whitens the background while keeping the semantics unchanged.

(a) (b) (c) (d)

Figure 7: SFIT results on VisDA dataset with different UDA

methods. (a) Target images; (b) DAN [27]; (c) ADDA [46];

(d) SHOT-IM [24].

els. In contrast, the proposed SFIT method generates differ-

ent images for different UDA methods. Specifically, when

comparing visualization results of the adapted knowledge

in DAN [27], ADDA [46], and SHOT-IM [24], we find

stronger UDA methods can better transfer the target style

to the unseen source style. As shown in Fig. 7, in terms

of whitening the background for style transfer, SFIT re-

sults on ADDA are less coherent than SHOT-IM but better

than DAN. This further verifies that our SFIT method in-

deed visualizes the knowledge difference between models,

and stronger adaptation methods can better endure the style

difference (leading to larger knowledge difference and thus

stronger style transfer results).

5.4. Application

The generated images from SFIT allows for further tun-

ing of the target model in SFDA systems, where no source

image is available. We include a diversity loss on all train-

ing samples to promote even class-wise distributions,

Ldiv = −H
(
E
x∼Ptarget(x) [p (fT (x))]

)
, (10)

where H (·) denotes the information entropy function. We

also incluse a pseudo-label fine-tuning loss, if pseudo

label ŷS = argmax p (fS (x̃)) from the generated-

image-source-model branch equals to the pseudo label

ŷT = argmax p (fT (x)) from the target-image-target-

model branch. We then use this pseudo label ŷ = ŷS = ŷT

to fine-tune the target model,

Lpseudo =

{
H (p (fT (x)) , ŷ) , if ŷ = ŷS = ŷT,

0, else,
(11)

where H (·, ·) denotes the cross entropy function. We com-

bine these two loss terms in Eq. 10 and Eq. 11 to give an

overall fine-tuning loss LFT = Ldiv + Lpseudo.
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(a) (b) (c) (d)

Figure 8: Visualization results on VisDA dataset with dif-

ferent distribution alignment methods. (a) Target images;

(b) BN stats alignment [12]; (c) traditional style loss [7];

(d) relationship preserving loss.

As an additional cue, supervision from generated-image-

source-model further boosts target model SFDA perfor-

mance. On Office-31, fine-tuning brings a performance

improvement of 0.4% according to Table 2. On VisDA,

fine-tuning improves the target model accuracy by 0.7% as

shown in Table 3. These improvements are statistically very

significant (i.e., p-value < 0.001 over 5 runs), and introduce

a real-world application for images generated by SFIT.

5.5. Comparison and Variant Study

Comparison with the BatchNorm statistics alignment

method [12]. Hou et al. propose to match the batch-wise

feature map statistics so as to directly generate images that

mimic the source style. Specifically, they explore the Batch-

Norm (BN) statistics stored in the BN layers in the source

model for style indication, and match them against that of

the generated images. Using their approach, we can mildly

change the image to the unseen source style (see Fig. 8) and

slightly reduce the performance difference between the two

branches (see Table 4). With that said, their lack of output

alignments between the two branches (only supervisions

from the source branch) results in much lower quantita-

tive performance and under-performing style transfer qual-

ity when compared to the proposed method.

Effect of the knowledge distillation loss. The knowl-

edge distillation loss transfers the adapted knowledge to the

generated images, and the removal of it results in a 1.1%

performance drop.

Effect of the relationship preserving loss. As shown in

Fig. 8, the traditional style loss can successfully transfer the

target image to the source style on its own. However, using

Variant LKD LRP accuracy (%)

Target image - - 46.8

Initialized g (·) 44.9

BN stats alignment [12] 51.7

w/o LKD ✓ 72.7

w/o LRP ✓ 71.2

LRP → Lstyle ✓ Lstyle [7] 66.4

LRP → Lbatch ✓ Lbatch [45] 71.2

LRP → Lpixel ✓ Lpixel [23] 70.9

SFIT ✓ ✓ 73.8

Table 4: Variant study on VisDA dataset. “Initialized g (·)”
refers to our transparent filter initialization in Section 5.2.

it causes a 4.8% performance drop compared to the “w/o

LRP” variant (see Table 4), suggesting it being unsuitable

for SFIT. On the other hand, the batch-wise or pixel-wise

relationship preserving variants [45, 23] are found not use-

ful, as they fail to improve over the “w/o LRP” variant.

In contrast, the proposed channel-wise relationship pre-

serving loss LRP can effectively improve the recognition ac-

curacy on the generated images, as the inclusion of it leads

to a 2.6% performance increase. Moreover, as shown in

Fig. 8, similar to the traditional style loss, using only the re-

lationship preserving loss can also effectively transfer the

target image to the unseen source style. Besides, focus-

ing on the relative channel-wise relationship instead of the

absolute correlation values, the proposed relationship pre-

serving loss can better maintain the foreground object (less

blurry and more prominent) while transferring the overall

image style, leading to higher recognition accuracy.

6. Conclusion

In this paper, we study the scientific problem of visu-

alizing the adapted knowledge in UDA. Specifically, we

propose a source-free image translation (SFIT) approach,

which generates source-style images from original target

images under the guidance of source and target models.

Translated images on the source model achieve similar re-

sults as target images on the target model, indicating a suc-

cessful depiction of the adapted knowledge. Such images

also exhibit the source style, and the extent of style trans-

fer follows the performance of UDA methods, which fur-

ther verifies that stronger UDA methods can better address

the distribution difference between domains. We show that

the generated images can be applied to fine-tune the target

model, and might help other tasks like incremental learning.
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