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Abstract

Training deep networks for semantic segmentation re-

quires large amounts of labeled training data, which

presents a major challenge in practice, as labeling seg-

mentation masks is a highly labor-intensive process. To

address this issue, we present a framework for semi-

supervised semantic segmentation, which is enhanced by

self-supervised monocular depth estimation from unlabeled

image sequences. In particular, we propose three key con-

tributions: (1) We transfer knowledge from features learned

during self-supervised depth estimation to semantic seg-

mentation, (2) we implement a strong data augmentation

by blending images and labels using the geometry of the

scene, and (3) we utilize the depth feature diversity as well

as the level of difficulty of learning depth in a student-

teacher framework to select the most useful samples to be

annotated for semantic segmentation. We validate the pro-

posed model on the Cityscapes dataset, where all three

modules demonstrate significant performance gains, and

we achieve state-of-the-art results for semi-supervised se-

mantic segmentation. The implementation is available at

https://github.com/lhoyer/improving_segmentation_

with_selfsupervised_depth.

1. Introduction

Convolutional Neural Networks (CNNs) [31] have

achieved state-of-the-art results for various computer vi-

sion tasks including semantic segmentation [36, 4]. How-

ever, training CNNs typically requires large-scale annotated

datasets, due to millions of learnable parameters involved.

Collecting such training data relies primarily on manual an-

notation. For semantic segmentation, the process can be

particularly costly, due to the required dense annotations.

For example, annotating a single image in the Cityscapes

dataset took on average 1.5 hours [8].

Recently, self-supervised learning has shown to be a

promising replacement for manually labeled data. It aims

to learn representations from the structure of unlabeled

data, instead of relying on a supervised loss, which in-

volves manual labels. The principle has been successfully

applied in depth estimation for stereo pairs [14] or im-

age sequences [69]. Additionally, semantic segmentation

is known to be tightly coupled with depth. Several works

have reported that jointly learning segmentation and super-

vised depth estimation can benefit the performance of both

tasks [57]. Motivated by these observations, we investigate

the question: How can we leverage self-supervised depth

estimation to improve semantic segmentation?

In this work, we propose a threefold approach to utilize

self-supervised monocular depth estimation (SDE) [14, 69,

15] to improve the performance of semantic segmentation

and to reduce the amount of annotation needed. Our contri-

butions span across the holistic learning process from data

selection, over data augmentation, up to cross-task repre-

sentation learning, while being unified by the use of SDE.

First, we employ SDE as an auxiliary task for seman-

tic image segmentation under a transfer learning and multi-

task learning framework and show that it noticeably im-

proves the performance of semantic segmentation, espe-

cially when supervision is limited. Previous works only

cover full supervision [29], pretraining [23], or improving

SDE instead of segmentation [18]. Second, we propose a

strong data augmentation strategy, DepthMix, which blends

images as well as their labels according to the geometry of

the scenes obtained from SDE. In comparison to previous

methods [65, 43], DepthMix explicitly respects the geomet-

ric structure of the scenes and generates fewer artifacts (see

Fig. 1). And third, we propose an Automatic Data Selection

for Annotation, which selects the most useful samples to be
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annotated in order to maximize the gain. The selection is

iteratively driven by two criteria: diversity and uncertainty.

Both of them are conducted by a novel use of SDE as proxy

task in this context. While our method follows the active

learning cycle (model training → query selection → an-

notation → model training) [49, 62], it does not require a

human in the loop to provide semantic segmentation labels

as the human is replaced by a proxy-task SDE oracle. This

greatly improves flexibility, scalability, and efficiency, espe-

cially considering crowdsourcing platforms for annotation.

The main advantage of our method is that we can learn

from a large base of easily accessible unlabeled image se-

quences and utilize the learned knowledge to improve se-

mantic segmentation performance in various ways. In our

experimental evaluation on Cityscapes [8], we demonstrate

significant performance gains of all three components and

improve the previous state-of-the-art for semi-supervised

segmentation by a considerable margin. Specifically, our

method achieves 92% of the full annotation baseline per-

formance with only 1/30 available labels and even slightly

outperforms it with only 1/8 labels. Our contributions sum-

marize as follows:

(1) To the best of our knowledge, we are the first to utilize

SDE as an auxiliary task to exploit unlabeled image

sequences and significantly improve the performance

of semi-supervised semantic segmentation.

(2) We propose DepthMix, a strong data augmentation

strategy, which respects the geometry of the scene and

achieves, in combination with (1), state-of-the-art re-

sults for semi-supervised semantic segmentation.

(3) We propose a novel Automatic Data Selection for An-

notation based on SDE to improve the flexibility of ac-

tive learning. It replaces the human annotator with an

SDE oracle and lifts the requirement of having a hu-

man in the loop of data selection.

2. Related Work

2.1. (Semi­Supervised) Semantic Segmentation

Since Convolutional Neural Networks (CNNs) [31] were

first used by Long et al. [36] for semantic segmentation,

they have become the state-of-the-art method for this prob-

lem. Most architectures are based on an encoder decoder

design such as [36, 47, 5]. Skip connections [47] and di-

lated convolutions [3, 63] preserve details in the segmen-

tation and spatial pyramid pooling [13, 67, 4] aggregates

different scales to exploit spatial context information.

Semi-supervised semantic segmentation makes use of

additional unlabeled data during training. For that purpose,

Souly et al. [55] and Hung et al. [21] utilize generative ad-

versarial networks [16]. Souly et al. [55] use that concept to

generate additional training samples, while Hung et al. [21]

train the discriminator based on the semantic segmentation

probability maps. s4GAN [39] extends this idea by adding

a multi-label classification mean teacher [56]. Another line

of work [44, 10, 43] is based on consistency training, where

perturbations are applied to unlabeled images or their inter-

mediate features and a loss term enforces consistency of the

segmentation. While Ouali et al. [44] study perturbation of

encoder features, CutMix [10] mixes crops from the input

images and their pseudo-labels to generate additional train-

ing data, and ClassMix [43] uses pseudo-label [32] class

segments to build the mix mask. Our proposed DepthMix

module is inspired by these methods but, in contrast, it also

respects the structure of the scene when mixing samples.

Commonly, several approaches [39, 10, 43, 9] include self-

training with pseudo-labels [32] and a mean teacher frame-

work [56], which is extended by Feng et al. [9] with a class-

balanced curriculum. Another related line of work is learn-

ing useful representations for semantic segmentation from

self-supervised tasks such as tracking [59], context inpaint-

ing [45], colorization [30], depth estimation [23] (see Sec-

tion 2.3), or optical flow prediction [33]. However, all of

these approaches are outperformed by ImageNet pretrain-

ing and are, therefore, not relevant for semi-supervised se-

mantic segmentation in practice.

2.2. Active Learning

Another approach to reduce the number of required an-

notations is active learning. It iteratively requests the most

informative samples to be labeled by a human. On the one

side, uncertainty-based approaches select samples with a

high uncertainty estimated based on, e.g., entropy [22, 50]

or ensemble disagreement [51, 38]. On the other side,

diversity-based approaches select samples, which most in-

crease the diversity of the labeled set [40, 48, 54]. For seg-

mentation, active learning is typically based on uncertainty

measures such as MC dropout [11, 62, 37], entropy [26, 60],

or multi-view consistency [53]. In addition to methods se-

lecting whole images [17, 62, 60], several approaches apply

a more fine-grained label request at region level [37, 26, 53]

and also include a label cost estimate [37, 26].

In contrast to these works, we perform automatic data

selection for annotation by replacing the human with SDE

as oracle. Therefore, we do not require human-in-the-

loop annotation during the active learning cycle. Previous

works performing unsupervised data selection are restricted

to shallow models [64, 66, 41, 20, 52, 35], classification

with low-dimensional inputs [34], or do not perform an it-

erative data selection [68] to dynamically adapt to the un-

certainty of the model trained on the currently labeled set.

2.3. Improving Segmentation with SDE

Self-supervised depth estimation (SDE) aims to learn

depth estimation from the geometric relations of stereo im-
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age pairs [12, 14] or monocular videos [69]. Due to the bet-

ter availability of videos, we use the latter approach, where

a neural network estimates depth and camera motion of two

subsequent images and a photometric loss is computed after

a differentiable warping. The approach has been improved

by several follow-up works [15, 7, 70].

The combination of semantic segmentation and SDE was

studied in previous works with the goal of improving depth

estimation. While [46, 25, 6, 29] learn both tasks jointly,

[2, 18, 24] distill knowledge from a teacher semantic seg-

mentation network to guide SDE. To further utilize coher-

ence between semantic segmentation and SDE, [46, 6] pro-

posed additional loss terms that encourage spatial proximity

between depth discontinuities and segmentation contours.

In contrast to these works, we do not aim to improve

SDE but rather semi-supervised semantic segmentation.

The closest to our approach are [23], [42], and [29]. Jiang et

al. [23] utilizes relative depth computed from optical flow

to replace ImageNet pretraining for semantic segmentation.

In contrast, we additionally study multi-task learning of

SDE and semantic segmentation and show that combining

SDE with ImageNet features can even further boost perfor-

mance. Novosel et al. [42] and Klingner et al. [29] improve

the semantic segmentation performance by jointly learning

SDE. However, they focus on the fully-supervised setting,

while our work explicitly addresses the challenges of semi-

supervised semantic segmentation by using the depth es-

timates to generate additional training data and an auto-

matic data selection mechanism based on SDE. Another

work supporting the usefulness of SDE for semantic seg-

mentation from another viewpoint is [28] demonstrating an

improved noise and attack robustness.

3. Methods

In this section, we present our three ways to improve the

performance of semantic segmentation with self-supervised

depth estimation (SDE). They focus on three different as-

pects of semantic segmentation, covering data selection

for annotation, data augmentation, and multi-task learning.

Given N images and K image sequences from the same

domain, our first method, Automatic Data Selection for An-

notation, uses SDE learned on the K (unlabeled) sequences

to select NA images out of the N images for human annota-

tion (see Alg. 1). Our second approach, termed DepthMix,

leverages the learned SDE to create geometrically-sound

‘virtual’ training samples from pairs of labeled images and

their annotations (see Fig. 1). Our third method learns se-

mantic segmentation with SDE as an auxiliary task under a

multi-tasking framework (see Fig. 2). The learning is rein-

forced by a multi-task pretraining process combining SDE

with image classification.

For SDE, we follow the method of Godard et al. [15],

which we briefly introduce in the following. We first train

a depth estimation network fD to predict the depth of a tar-

get image and a pose estimation network fT to estimate the

camera motion from the target image and the source im-

age. Depth and pose are used to produce a differentiable

warping to transform the source image into the target im-

age. The photometric error between the target image and

multiple warped source frames is combined by a pixel-wise

minimum. Besides, stationary pixels are masked out and an

edge-aware depth smoothness term is applied resulting in

the final self-supervised depth loss LD. We refer the reader

to the original paper [15] for more details.

3.1. Automatic Data Selection for Annotation

We use SDE as proxy task for selecting NA samples out

of a set of N unlabeled samples for a human to create se-

mantic segmentation labels. The selection is conducted pro-

gressively in multiple steps, similar to the standard active

learning cycle (model training→ query selection→ anno-

tation → model training). However, our data selection is

fully automatic and does not require a human in the loop as

the annotation is done by a proxy-task SDE oracle.

Let’s denote by G, GA, and GU , the whole image set, the

selected sub-set for annotation, and the un-selected sub-set.

Initially, we have GA = ∅ and GU = G. The selection is

driven by two criteria: diversity and uncertainty. Diversity

sampling encourages that selected images are diverse and

cover different scenes. Uncertainty sampling favors adding

unlabeled images that are near a decision boundary (with

high uncertainties) of the model trained on the current GA.

For uncertainty sampling, we need to train and update the

model with GA. It is inefficient to repeat this every time a

new image is added. For the sake of efficiency, we divide

the selection into T steps and only train the model T times.

In each step t, nt images are selected and moved from GU
to GA, so we have

∑T

t=1
nt = NA. After each step t, a

model is trained on GA and evaluated on GU to get updated

uncertainties for step t+ 1.

Diversity Sampling: To ensure that the chosen annotated

samples are diverse enough to represent the entire dataset

well, we use an iterative farthest point sampling based on

the L2 distance over features ΦSDE computed by an inter-

mediate layer of the SDE network. At step t, for each of the

nt samples, we choose the one in GU with the largest dis-

tance to the current annotation set GA. The set of selected

samples GA is iteratively extended by moving one image at

a time from GU to GA until the nt images are collected:

GU = GU \ {Ii} and GA = GA ∪ {Ii}, (1)

i = argmax
Ii∈GU

min
Ij∈GA

||ΦSDE
i − ΦSDE

j ||2. (2)

Uncertainty Sampling: While Diversity Sampling is able

to select diverse new samples, it is unaware of the uncer-

tainties of a semantic segmentation model over these sam-

ples. Uncertainty Sampling aims to select difficult samples,

11132



Algorithm 1: Automatic Data Selection

1: t = 1
2: i← uniform(1, N)
3: GA = {Ii} and GU = GU \ {Ii}
4: for k = 2 to NA do

5: if k ==
∑t

t′=1
nt′ then

6: Train depth student ΦSIDE on the current GA
7: Calculate E(i) ∀Ii ∈ GU
8: t = t+ 1
9: end if

10: if t == 1 then

11: Obtain index i according to Eq. 2

12: else

13: Obtain index i according to Eq. 4

14: end if

15: GA = GA ∪ {Ii} and GU = GU \ {Ii}
16: end for

i.e., samples in GU that the model trained on the current

GA cannot handle well. In order to train this model, ac-

tive learning typically uses a human-in-the-loop strategy to

add annotations for selected samples. In this work, we use

a proxy task based on self-supervised annotations, which

can run automatically, to make the method more flexible

and efficient. Since our target task is single-image semantic

segmentation, we choose to use single-image depth estima-

tion (SIDE) as the proxy task. Importantly, due to our SDE

framework, depth pseudo-labels are available for G. Us-

ing these pseudo-labels, we train a SIDE method on GA and

measure the uncertainty of its depth predictions on GU . Due

to the high correlation of single-image semantic segmenta-

tion and SIDE, the generated uncertainties are informative

and can be used to guide our sampling procedure. As the

depth student model is trained only on GA, it can specifi-

cally approximate the difficulty of candidate samples with

respect to the already selected samples in GA. The student

is trained from scratch in each step t, instead of being fine-

tuned from t−1, to avoid getting stuck in the previous local

minimum. Note that the SDE method is trained on a much

larger unlabeled dataset, i.e., the K image sequences, and

can provide good guidance for the SIDE method.

In particular, the uncertainty is signaled by the dispar-

ity error between the student network fSIDE and the teacher

network fSDE in the log-scale space under L1 distance:

E(i) = || log(1 + fSDE(Ii))− log(1 + fSIDE(Ii))||1. (3)

As the disparity difference of far-away objects is small, the

log-scale is used to avoid the loss being dominated by close-

range objects. This criterion can be added into Eq. 2 to

also select samples with higher uncertainties for the dataset
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Figure 1. Concept of the proposed DepthMix augmentation (refer

to Sec. 3.2) and its baseline ClassMix [43]. By utilizing SDE,

DepthMix mitigates geometric artifacts.

update in Eq. 1:

i = argmax
Ii∈GU

min
Ij∈GA

||ΦSDE
i − ΦSDE

j ||2 + λEE(i), (4)

where λE is a parameter to balance the contribution of the

two terms. For diversity sampling, we still use SDE features

instead of SIDE student features as SDE is trained on the

entire dataset, which provides better features for diversity

estimation. When nt images have been selected according

to Eq. 1 and Eq. 4 at step t, a new SIDE model will be

trained on the current GA in order to continue further. As

presented previously, our selection proceeds progressively

in T steps until we collect all NA images. The algorithm

of this selection is summarized in Alg. 1, where
∑t

t′=1
nt′

describes the desired size of GA at the end of step t.

3.2. DepthMix Data Augmentation

Inspired by the recent success of data augmentation ap-

proaches that mixup pairs of images and their (pseudo) la-

bels to generate more training samples for semantic seg-

mentation [65, 10, 43], we propose an algorithm, termed

DepthMix, to utilize self-supervised depth estimates to

maintain the integrity of the scene structure during mixing.

Given two images Ii and Ij of the same size, we would

like to copy some regions from Ii and paste them directly

into Ij to get a virtual sample I ′. The copied regions are

indicated by a mask M , which is a binary image of the same

size as the two images. The image creation is done as

I ′ = M ⊙ Ii + (1−M)⊙ Ij , (5)

where ⊙ denotes the element-wise product. The label maps

of the two images Si and Sj are mixed up with the same

mask M to generate S′. The mixing can be applied to la-

beled data and unlabeled data using human ground truths

or pseudo-labels, respectively. Existing methods generate
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Figure 2. Architecture for learning semantic segmentation with

SDE as auxiliary task according to Sec. 3.3. The dashed paths

are only used during training and only if image sequences and/or

segmentation ground truth are available for a training sample.

this mask M in different ways, e.g., randomly sampled rect-

angular regions [65, 10] or randomly selected object seg-

ments [43]. In those methods, the structure of the scene is

not considered and foreground and background are not dis-

tinguished. We find images synthesized by these methods

often violate the geometric relationships between objects.

For instance, a distant object can be copied onto a close-

range object or only unoccluded parts of mid-range objects

are copied onto the other image. Imagine how strange it is

to see a pedestrian standing on top of a car or to see sky

through a hole in a building (just as shown in Fig. 1 left).

Our DepthMix is designed to mitigate this issue. It uses

the estimated depth D̂i and D̂j of the two images to gen-

erate the mix mask M that respects the notion of geometry.

It is implemented by selecting only pixels from Ii whose

depth values are smaller than the depth values of the pixels

at the same locations in Ij :

M(a, b) =

{

1 if D̂i(a, b) < D̂j(a, b) + ǫ

0 otherwise
(6)

where a and b are pixel indices, and ǫ is a small value to

avoid conflicts of objects that are naturally at the same depth

plane such as road or sky. By using this M , DepthMix re-

spects the depth of objects in both images, such that only

closer objects can occlude further-away objects. We illus-

trate this advantage of DepthMix with an example in Fig. 1.

3.3. Semi­Supervised Semantic Segmentation

In this section, we train a semantic segmentation model

utilizing the labeled image dataset GA, the unlabeled image

dataset GU , and K unlabeled image sequences. We first dis-

cuss how to exploit SDE on the image sequences to improve

our semantic segmentation. We then show how to use GU
to further improve the performance.

Learning with Auxiliary Tasks: For learning semantic

segmentation and SDE jointly, we use a network with

shared encoder fE
θ and a separate depth fD

θ and segmen-

tation decoder fS
θ (see Fig. 2). The depth branch is trained

using the SDE loss LD and the segmentation branch gSθ =
fS
θ ◦ f

E
θ is trained using the pixel-wise cross-entropy Lce.

In order to initialize the pose estimation network and the

depth decoder properly, the architecture is first trained on

K unlabeled image sequences for SDE. As a common prac-

tice, we initialize the encoder with ImageNet weights as

they provide useful semantic features learned during image

classification. To avoid forgetting semantic features during

the SDE pretraining, we utilize a feature distance loss be-

tween the current bottleneck features fE
θ and the bottleneck

features of the encoder with ImageNet weights fE
I :

LF = ||fE
θ − fE

I ||2. (7)

The loss for the depth pretraining is the weighted sum of the

SDE loss and the ImageNet feature distance loss:

LP = LD + λFLF . (8)

To additionally incorporate transfer learning from depth

estimation to semantic segmentation, the weights of fD
θ are

used to initialize fS
θ . For effective multi-task learning, we

use an attention-guided distillation module [61] to exchange

useful intermediate features between both decoders.

Learning with Unlabeled Images: In order to further uti-

lize the unlabeled dataset GU , we generate pseudo-labels

using the mean teacher algorithm [56], which is commonly

used in semi-supervised learning [1, 58, 10, 43]. For that

purpose, an exponential moving average is applied to the

weights of the semantic segmentation model gSθ to obtain

the weights of the mean teacher θT :

θ′T = αθT + (1− α)θ. (9)

To generate the pseudo-labels, an argmax over the classes

C is applied to the prediction of the mean teacher.

SU = argmax
c∈C

(gSθT (IU )). (10)

The mean teacher can be considered as a temporal ensem-

ble, resulting in stable predictions for the pseudo-labels,

while the argmax ensures confident predictions [43].

For the semi-supervised setting, the segmentation net-

work is trained with labeled samples (IA, SA) and pseudo-

labeled samples (IU , SU ):

LSSL = Lce(g
S
θ (IA), SA) + λP (SU )Lce(g

S
θ (IU ), SU ))

(11)

λP (SU ) is chosen to reflect the quality of the pseudo-label

represented by the fraction of pixels exceeding a thresh-

old τ for the predicted probability of the most confident
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class maxc∈C(g
S
θT
(IU )), as suggested in [43]. We in-

corporate DepthMix samples (I ′, S′), which are obtained

from the combined labeled and pseudo-labeled data pool

Ii, Ij ∈ GA ∪ GU (see Eq. 5), into Eq. 11 to replace the

unlabeled samples (SU , LU ). Our semi-supervised learning

is now changed to:

LSSL = Lce(g
S
θ (IA), SA) + λP (S

′)Lce(g
S
θ (I

′), S′)).

(12)

4. Experiments

4.1. Implementation Details

Dataset: We evaluate our method on the Cityscapes

dataset [8], which consists of 2975 training and 500 vali-

dation images with semantic segmentation labels from Eu-

ropean street scenes. We downsample the images to 1024×
512 pixels. Besides, random cropping to a size of 512×512
and random horizontal flipping are used in the training. Im-

portantly, Cityscapes provides 20 unlabeled frames before

and 10 after the labeled image, which are used for SDE

training. During the semi-supervised segmentation, only

the originally 2975 labeled training images are used. They

are randomly split into a labeled and an unlabeled subset.

Network Architecture: Our network consists of a shared

ResNet101 [19] encoder with output stride 16 and a sepa-

rate decoder for segmentation and SDE. The decoder con-

sists of an ASPP [4] block to aggregate features from mul-

tiple scales and another four upsampling blocks with skip

connections [47]. For SDE, the upsampling blocks have a

disparity side output at the respective scale. For effective

multi-task learning, we additionally follow PAD-Net [61]

and deploy an attention-guided distillation module after the

third decoder block. It serves the purpose of exchanging

useful features between segmentation and depth estimation.

Training: For the SDE pretraining, the depth and pose net-

work are trained using Adam [27], a batch size of 4, and

an initial learning rate of 1 × 10−4, which is divided by 10

after 160k iterations. The SDE loss is calculated on four

scales with three subsequent images. During the first 300k

iterations, only the depth decoder and the pose network are

trained. Afterwards, the depth encoder is fine-tuned with

an ImageNet feature distance λF = 1 × 10−2 for another

50k iterations. The encoder is initialized with ImageNet

weights, either before depth pretraining or before semantic

segmentation if depth pretraining is ablated.

For the multi-task setting, we train the network using

SGD with a learning rate of 1 × 10−3 for the encoder and

depth decoder, 1× 10−2 for the segmentation decoder, and

1× 10−6 for the pose network. The learning rate is reduced

by 10 after 30k iterations and trained for another 10k itera-

tions. A momentum of 0.9, a weight decay of 5×10−4, and

a gradient norm clipping to 10 are used. The loss for seg-

mentation and SDE are weighted equally. The mean teacher

Figure 3. Example semantic segmentations of our method for 100

labeled samples in comparison with ClassMix [43].

has α = 0.99 and within an iteration, the network is trained

on a clean labeled and an augmented mixed batch with size

2, respectively. The latter uses DepthMix with ǫ = 0.03,

color jitter, and Gaussian blur.

Data Selection for Annotation: In the data selection ex-

periment, we use a slimmed network architecture with a

ResNet50 encoder and fewer decoder channels for fSIDE .

It is trained using Adam with 1 × 10−4 learning rate and

polynomial decay with exponent 0.9 for faster convergence.

For calculating the depth feature diversity, we use the output

of the second depth decoder block after SDE pretraining. It

is downsampled by average pooling to a size of 8x4 pix-

els and the feature channels are normalized to zero-mean

unit-variance over the dataset. The student depth error is

weighted by λE = 1000. The number of the selected sam-

ples (
∑t

t′=1
nt′ ) is iteratively increased to 25, 50, 100, 200,

372, and 744. For each subset, a student depth network is

trained from scratch for 4k, 8k, 12k, 16k, and 20k iterations,

respectively, to calculate the student depth error.

4.2. Semi­Supervised Semantic Segmentation

First, we compare our approach with several state-of-the-

art semi-supervised learning approaches. We summarize

the results in Tab. 1. The performance (mIoU in %) of the

semi-supervised methods and their baselines (only trained

on the labeled dataset) are shown for a different number of

labeled samples. As the performance of the baselines dif-

fers, there are columns showing the absolute improvement

for better comparability. As our baseline utilizes a more ca-

pable network architecture due to the U-Net decoder with

ASPP as opposed to a DeepLabv2 decoder used by most

previous works, we also reimplemented the state-of-the-art

method, ClassMix [43] with our network architecture and

training parameters to ensure a direct comparison.

As shown in Tab. 1, our method (without data selection)
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Table 1. Performance on the Cityscapes validation set (mIoU in %, standard deviation over 3 random seeds).

Labeled Samples 1/30 (100) 1/8 (372) 1/4 (744) Full (2975)

Baseline [21] – 55.50

�

59.90

�

66.40

�
Adversarial [21] – 58.80 +3.30 62.30 +2.40 –

Baseline [39] – 56.20

�

60.20

�

66.00

s4GAN [39] – 59.30 +3.10 61.90 +1.70 65.80 –0.20

Baseline [10] 44.41 ±1.11

�

55.25 ±0.66

�

60.57 ±1.13

�

67.53 ±0.35

�

CutMix [10] 51.20 ±2.29 +6.79 60.34 ±1.24 +5.09 63.87 ±0.71 +3.30 67.68 ±0.37 +0.15

Baseline [9] 45.50

�

56.70

�

61.10

�

66.90

DST–CBC [9] 48.70 +3.20 60.50 +3.80 64.40 +3.30 –

Baseline [43] 43.84 ±0.71

�

54.84 ±1.14

�

60.08 ±0.62

�
66.19 ±0.11

ClassMix [43] 54.07 ±1.61 +10.23 61.35 ±0.62 +6.51 63.63 ±0.33 +3.55 –

Baseline 48.75 ±1.61

�

59.14 ±1.02

�

63.46 ±0.38

�

67.77 ±0.13

�

ClassMix [43]1 56.82 ±1.65 +8.07 63.86 ±0.41 +4.72 65.57 ±0.71 +2.11 –

ClassMix [43] (+Video) 56.79 ±1.98 +8.04 63.22 ±0.84 +4.08 65.72 ±0.18 +2.26 68.23 ±0.70 +0.46

Ours 58.40 ±1.36 +9.65 66.66 ±1.05 +7.52 68.43 ±0.06 +4.98 71.16 ±0.16 +3.40

Ours (+Data Selection) 62.09 ±0.39 +13.34 68.01 ±0.83 +8.87 69.38 ±0.33 +5.92 –

outperforms all other approaches on each labeled subset

size for both the absolute performance as well as the im-

provement to the baseline. The only exception is the abso-

lute improvement of the original results of ClassMix for 100

labeled samples. However, if we consider ClassMix trained

in our setting, our method outperforms it also in this case.

This can be explained by the considerably higher baseline

performance in our setting, which increases the difficulty to

achieve an high improvement. Adding data selection even

further increases the performance by a significant margin,

so that our method, trained with only 1/8 of the labels, even

slightly outperforms the fully-supervised baseline.

To identify whether the improvement originates from ac-

cess to more unlabeled data or from the effectiveness of

our approach, we compare to another baseline “ClassMix

(+Video)”. More specifically, we also provide all unla-

beled image sequences to ClassMix and see how much it

can benefit from this additional amount of unlabeled data.

Experimental results show no significant difference. This is

probably due to the high correlation of the Cityscapes im-

age dataset and the video dataset (the images are the 20th

frames of the video clips).

The adequacy of our approach is also reflected in the ex-

ample predictions in Fig. 3. We can observe that the con-

tours of classes are more precise. Moreover, difficult ob-

jects such as bus, train, rider, or truck can be better distin-

guished. This observation is also quantitatively confirmed

by the class-wise IoU improvement shown in Fig. 4.

4.3. Ablation Study

Next, we analyze the individual contribution of each

component of the proposed method. For this purpose, we

1 Results of the reimplementation in our experiment setting.

Table 2. Ablation of the architecture components (D-T: SDE

Transfer Learning, D-M SDE Transfer and Multi-Task Learning,

F: ImageNet Feature Distance Loss, P: Pseudo-Labeling, X-C:

Mix Class, X-D: Mix Depth, S - Data Selection). mIoU in %,

standard deviation over 3 seeds.

D F P X S 372 Samples 2975 Samples

59.14 ±1.02

�

67.77 ±0.13

�

T 60.46 ±0.64 +1.31 69.00 ±0.70 +1.23

T X 60.80 ±0.69 +1.66 69.47 ±0.38 +1.71

M X 61.25 ±0.55 +2.10 69.76 ±0.39 +1.99

X 62.39 ±0.86 +3.24 –

X C 63.16 ±0.89 +4.02 69.60 ±0.32 +1.83

X D 64.14 ±1.34 +5.00 69.83 ±0.36 +2.06

M X X D 66.66 ±1.05 +7.52 71.16 ±0.16 +3.40

X 64.25 ± 0.18 +5.11 –

M X X D X 68.01 ±0.83 +8.87 –
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Figure 4. Improvement of the class-wise IoU over the baseline per-

formance for 372 labeled samples (DM: SDE Multi-Task Learn-

ing, XD: DepthMix with Pseudo-Labels, S: Data Selection).

test several ablated versions of our model for both the cases

of 372 and 2975 labeled samples. We summarize the re-

sults in Tab. 2. It can be seen that each contribution adds

a significant performance improvement over the baseline.

For 372 (2975) annotated samples, transfer and multi-task
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Figure 5. DepthMix applied to Cityscapes crops.

learning improve the performance by +2.10 (+1.99), Depth-

Mix with pseudo-labels by +5.00 (+2.06), and automatic

data selection by +5.11 (–) mIoU percentage points. As our

components are orthogonal, combining them even further

increases performance. SDE Multi-Tasking and DepthMix

achieve +7.52 (+3.40) and all three components +8.87 (–)

mIoU percentage points improvement. Note that the high

variance for few labeled samples is mostly due to the high

influence of the randomly selected labeled subset. The cho-

sen subset affects all configurations equally and the reported

improvements are consistent for each subset.

Furthermore, we compare DepthMix with ClassMix as a

standalone. For a fair comparison, we additionally include

mixing labeled samples with their ground truth to ClassMix.

It can be seen that DepthMix outperforms the ClassMix by

0.98 (0.23) percentage points for 372 (2975) annotated sam-

ples, which shows the effect of the geometry aware augmen-

tation. Fig. 5 shows DepthMix examples demonstrating that

SDE allows to correctly model occlusions and to produce

synthetic samples with a realistic appearance.

For more insights into possible reasons for these im-

provements, we visualize the improvement of the architec-

ture components over the baseline for each class separately

in Fig. 4. It can be seen that depth multi-task learning (DM)

improves mostly the classes fence, traffic light, traffic sign,

rider, truck, and motorcycle, which is possibly due to their

characteristic depth profile learned during SDE. For exam-

ple, a good depth estimation performance requires correctly

segmenting poles or traffic signs as missing them can cause

large depth errors. This can also be seen in Fig. 3. Depth-

Mix (XD) further improves the performance of wall, truck,

bus, and train. This might be caused by the fact the Depth-

Mix presents those rather difficult objects in another con-

text, which might help the network to generalize better.

In the suppl. materials, we further show that our method

is still applicable if SDE is trained on a different dataset

than semantic segmentation within a similar visual domain.

4.4. Automatic Data Selection for Annotation

Finally, we evaluate the proposed automatic data selec-

tion. Tab. 3 shows a comparison of our method with a base-

line and a competing method. The baseline selects the la-

Table 3. Comparison of data selection methods (DS: Diversity

Sampling based on depth features, US: Uncertainty Sampling

based on depth student error). mIoU in %, std. dev. over 3 seeds.

# Labeled 1/30 (100) 1/8 (372) 1/4 (744)

Random 48.75 ±1.61 59.14 ±1.02 63.46 ±0.38

Entropy 53.63 ±0.77 63.51 ±0.68 66.18 ±0.50

Ours (US) 51.75 ±1.12 62.77 ±0.46 66.76 ±0.45

Ours (DS) 53.00 ±0.51 63.23 ±0.69 66.37 ±0.20

Ours (DS+US) 54.37 ±0.36 64.25 ±0.18 66.94 ±0.59

beled samples randomly, while the second, strong competi-

tor uses active learning and iteratively chooses the samples

with the highest segmentation entropy. In contrast to our

method, this requires a human in the loop to create the se-

mantic labels for iteratively selected images. It can be seen

that our method with the combined Diversity Sampling and

Uncertainty Sampling (DS+US) outperforms both compar-

ison methods, demonstrating the effectiveness of ensuring

diversity and exploiting difficult samples based on depth. It

also supports the assumption that depth estimation and se-

mantic segmentation are correlated in terms of sample dif-

ficulty. The class-wise analysis (see the last row of Fig. 4)

shows that data selection significantly improves the perfor-

mance of truck, bus, and train, which are usually difficult

to distinguish in a semi-supervised setting. We would like

to note that our automatic data selection method can be ap-

plied to any semantic segmentation method.

5. Conclusion

In this work, we have studied how self-supervised depth

estimation (SDE) can be utilized to improve semantic

segmentation in both the semi-supervised and the fully-

supervised setting. We introduced three effective strategies

capable of leveraging the knowledge learned from SDE.

First, we show that the SDE feature representation can be

transferred to semantic segmentation, by means of SDE pre-

training and joint learning of segmentation and depth. Sec-

ond, we demonstrate that the proposed DepthMix strategy

outperforms related mixing strategies by avoiding inconsis-

tent geometry of the generated images. Third, we present

an automatic data selection for annotation algorithm based

on SDE, which does not require human-in-the-loop anno-

tations. We validate the benefits of the three components

by extensive experiments on Cityscapes, where we demon-

strate significant gains over the baselines and competing

methods. By using SDE, our approach achieves state-of-

the-art performance, suggesting that SDE can be a valuable

self-supervision for semantic segmentation.
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