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Abstract

In the biomedical domain, there is an abundance of

dense, complex data where objects of interest may be chal-

lenging to detect or constrained by limits of human knowl-

edge. Labelled domain specific datasets for supervised

tasks are often expensive to obtain, and furthermore dis-

covery of novel distinct objects may be desirable for un-

biased scientific discovery. Therefore, we propose leverag-

ing the wealth of annotations in benchmark computer vision

datasets to conduct unsupervised instance segmentation for

diverse biomedical datasets. The key obstacle is thus over-

coming the large domain shift from common to biomedical

images. We propose a Domain Adaptive Region-based Con-

volutional Neural Network (DARCNN), that adapts knowl-

edge of object definition from COCO, a large labelled vision

dataset, to multiple biomedical datasets. We introduce a do-

main separation module, a self-supervised representation

consistency loss, and an augmented pseudo-labelling stage

within DARCNN to effectively perform domain adaptation

across such large domain shifts. We showcase DARCNN’s

performance for unsupervised instance segmentation on nu-

merous biomedical datasets.

1. Introduction

State-of-the-art machine learning methods have accom-

plished a wide variety of impressive tasks including in-

stance segmentation, yet much of their progress in the real

world is limited to supervised methods with large, labelled

datasets. In areas such as the biomedical domain, this is

particularly problematic, as the prerequisite labels that ac-

company the complex data are often time consuming to ob-

tain. In addition, we may also be constrained by human

knowledge — biomedical data often contains unknown ob-

jects that scientists have yet to uncover, and therefore cannot

accurately annotate.

Thus, there exists a need for methods that can pro-

duce instance segmentation for unlabelled datasets. We

tackle this problem through solving the unsupervised do-

Figure 1. a) Prior domain adaptation methods for biomedical im-

ages tackle small domain shifts by using similar labelled biomedi-

cal datasets as sources to adapt to specific target datasets. b) DAR-

CNN uses a common benchmark dataset as source and can adapt

to a wide range of biomedical images.

main adaptation task, in which we use a source dataset

with instance segmentation annotations to transfer knowl-

edge and perform instance segmentation on target datasets.

Our choice of source dataset is motivated by the abun-

dance of benchmark datasets in the vision field depicting

common objects. We explore leveraging the large amount

of labelled vision data in Common Objects in Context

(COCO) [20] to achieve instance segmentation in diverse,

natural biomedical images where annotations are difficult

to obtain. Our main contributions include overcoming the

large domain shift between natural images and biomedical

images, and introducing a method for unsupervised instance

segmentation on a wide range of biomedical datasets.

Past work tackling this problem in the biomedical

field have depended on the availability of similar labelled

biomedical datasets for the unsupervised instance segmen-

tation task (see Figure 1), but it is not always feasible to find

and annotate similar images. For these prior domain adapta-

tion methods that focus on small domain shifts, joint image-

level and feature-level adaptation approaches and object-
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specific models have seen success [6, 7, 13, 17]. How-

ever, few works study unsupervised domain adaptation on

large domain shifts such as from COCO to biomedical im-

ages, where such image-level adaptation fails. In addition,

other past methods also design models specific to segment-

ing particular structures, which limits both application to

other biomedical datasets as well as discovery [14, 21].

Hence we propose Domain Adaptive Region-based Con-

volutional Neural Network (DARCNN), a two stage class

agnostic unsupervised domain adaptation model for in-

stance segmentation of all distinct objects, capturing the

notion of objectness. DARCNN first tackles feature-level

adaptation, then refines segmentation masks through image-

level pseudo-labelling. Our method can be applied to

datasets with consistent background (e.g. of homoge-

neous cell background in microscopy) instead of split back-

grounds (e.g. of the sky and grass as commonly seen in

COCO). DARCNN leverages the success of the two step

Mask R-CNN framework [12] and learns domain invari-

ant and specific features for region proposal and segmen-

tation mask prediction. The features are learned through a

self-supervised background representation consistency loss

based on predicted regions within an image.

In the second stage of DARCNN, pseudo-labelling on

augmented input is introduced as a strong supervisory

image-level signal. Through pseudo-labelling we are able

to attain stable image-level segmentation after feature-level

adaptation. We discover that our sequential two stage pro-

cess is able to solve the domain adaptation task with large

concept shift, shown on several biomedical datasets. In ad-

dition, we demonstrate that our method achieves strong per-

formance on tasks of smaller domain shift as well.

Our key contributions are the following:

• We introduce a domain separation module to learn do-

main invariant and domain specific features for the two

step instance segmentation framework.

• We propose a self-supervised representation consis-

tency loss based on predicted regions within an image

for feature adaptation.

• We utilize pseudo-labelling with data augmentation

within DARCNN for strong image-level supervision.

• We demonstrate the effectiveness of our approach

through quantitative experiments on adapting from

COCO to five diverse biomedical datasets and a qual-

itative experiment for object discovery on a cryogenic

electron tomography dataset.

2. Related Work

2.1. Unsupervised Domain Adaptation

Prior unsupervised domain adaptation approaches can be

categorized into feature-level adaptation, image-level adap-

tation, or a combination of both. Feature-level adaptation

includes minimizing distances between source and target

features through extracting shared domain features [10, 31],

minimizing maximum mean discrepancy [23], or adversar-

ial approaches such as [30, 33].

Image-level adaptation, such as those that tackle pixel-

to-pixel translation between source and target domains, are

often evaluated on adaptations between similar domains

with no concept shift, such as from Cityspaces [9] to GTA

[27]. Common works include [16, 36], which conducts

image-to-image translation through generative adversarial

networks. However, approaches such as as pixel-to-pixel

translation are extremely limited by size of domain shift.

Several key domain adaptive methods formulates adap-

tation across both image-level and feature-level, includ-

ing [13, 17], while others approach domain shift on the

instance-level and image-level as well [7]. These meth-

ods conduct feature-level and image-level adaptation jointly

or rely heavily on image-level adaptation, which has seen

impressive results in adaptation with small domain shifts,

but struggle with larger concept shifts. DARCNN conducts

first feature-level adaptation then image-level refinement

sequentially in a two stage process, overcoming limitations

of prior works.

In addition, a line of prior work that tackles small do-

main shift across biomedical images has shown strong per-

formance on specific datasets. [6] transforms appearance

of MR and CT images through synergistic fusion of adap-

tations from both feature-level and image-level, and [14]

generates synthesized nucleus segmentation masks with im-

portance weighting. [21] similarly introduces a nuclei in-

painting mechanism for unsupervised nucleus segmenta-

tion through domain adaptation with re-weighting. How-

ever, these works tackle specific biomedical datasets, where

methods can be crafted for detection of specific objects, and

are also limited to smaller domain shifts, where an addi-

tional labelled biomedical dataset is needed for adaptation.

Our work overcomes the limitations of small domain

shift and object-specific techniques for biomedical datasets

through a two stage feature-level adaptation and image-

level pseudo-labelling that segments all objects of interests.

Previous works such as [5] has shown success in domain

separation networks in simpler classification settings; sim-

ilarly, we introduce a domain adaptation module and inte-

grate this with a self-supervised loss that learns feature dis-

criminability for instance segmentation.

2.2. Unsupervised Background­Foreground Seg­
mentation

Prior works on unsupervised background-foreground

segmentation primarily use a combination of consistency

constraints and domain-specific assumptions. For example,

[34] focuses on consistency between generated image and

outputs of edge detectors, [28] leverages salient pixels in
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the foreground and matching foregrounds between different

images, and [3] utilizes a multi-task formulation with need

for clean background images.

DARCNN similarly takes a self-supervised approach by

maintaining a background representation consistency con-

straint, leveraging proposed regions within each image.

Through this objective, our approach is able to learn domain

invariant and domain specific representation for segmenta-

tion.

2.3. Pseudo­labels

Pseudo-labelling has often been used as a technique for

utilizing unlabelled data in semi-supervised training. Prior

work have chosen maximum predicted probability labels

[19], uncertainty weighted class predictions [29], and used

group-based label propagation [15]. Similarly, co-training

methods use an ensemble of models to find labels through

consistency regularization [26]. Fewer methods have used

this method in the unsupervised setting, though works such

as [8] have used high density clusters as pseudo-labels, in-

ferring high confidence without supervision.

After first stage feature-level adaptation, our unsuper-

vised method uses pseudo-labels to gain stronger image-

level supervision, where high confidence pseudo-labels

comes from first stage DARCNN. In addition, to learn

across invariances, we add data augmentation to the unla-

belled target images such as in [4], allowing DARCNN to

learn across different imaging conditions.

3. Methods

We propose methods for unsupervised instance segmen-

tation through the task of domain adaptation with large

concept shift. In this section, we describe our two stage

DARCNN model. The initial stage of feature-level adap-

tation consists of a domain separation module and a self-

supervised representation consistency loss, which can be

found in Section 3.1 and Section 3.2. The second stage of

image-level pseudo-labelling can be found in Section 3.3.

We train each stage separately to tackle our problem of

large domain shift. Image-level adaptation such as pixel-

to-pixel translation does not work on such extreme concept

shift, thus sequentially using image-level pseudo-labelling

as a second stage allows for features to first learn to adapt

between domains, before augmenting training with stronger

pixel-level supervisory signal. DARCNN is pre-trained

with source dataset weights, and jointly trains with a batch

of source and target inputs. See Figure 2 for an overview of

our model.

3.1. Domain Separation Module

The Mask R-CNN framework [12] is a powerful instance

segmentation model, and we leverage its two step frame-

work for DARCNN as well as propose a domain separation

module designed for our task. The region proposal network

from the first step finds potential bounding boxes of interest

given features learned through convolutional layers, while

the mask prediction head from the second step refines these

boxes and produces a mask for each instance.

To tackle the problem of domain shift, we propose a do-

main separation module that learns domain invariant and

domain specific features as input into the region proposal

network and mask segmentation network. The domain in-

variant features encode objectness of the source and target

domain in a joint representational subspace, while the do-

main specific features capture discriminability of each do-

main as well as contain additional unconstrained embed-

ding space.

The losses of the DARCNN are: Lsim to encourage do-

main invariant features, Ldiff to learn domain specific fea-

tures, Lsource which includes the original Mask R-CNN

losses for supervised training of the source dataset, and our

proposed Ltarget for segmentation through a self-supervised

consistency loss. Weighting factors α, β, and γ are used to

balance the loss. See Equation 1 below.

LDARCNN = αLsim + βLdiff + γLtarget + Lsource (1)

3.1.1 Domain Invariant Features

Intuitively, region proposals should be based on high level

definition of objectness in the input image shared between

both domains. Hence we encourage source and target do-

main invariant features to move into a joint representational

subspace. The similarity loss helps the unlabelled target

features better encode the objectness learned from the la-

belled source features. We utilize the maximum mean dis-

crepancy loss Lsim from Equation 2 below. The maximum

mean discrepancy loss [23, 5] is a kernel-based distance

function between pairs of samples; we can think of the loss

as computing the difference in distribution s and t where

source inputs are drawn from s and target inputs are drawn

from t. We let κ be our kernel function, and hs
c and ht

c be

our shared source and shared target features respectively.

Lsim =
1

(N s)2

N s∑

i,j=0

κ(hs,i
c , hs,j

c ) (2)

−
2

N sN t

N sN t∑

i,j=0

κ(hs,i
c , ht,j

c ) +
1

(N t)2

N t∑

i,j=0

κ(ht,i
c , ht,j

c )

In our implementation of maximum mean discrepancy,

we use a Gaussian kernel κ. We downsample hs
c and ht

c with

a dimension reduction convolutional layer with 1 filter of

1x1 kernel as an additional projection head to learn source

and target domain invariant features.
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Figure 2. a) First stage DARCNN model with a domain separation module and self-supervised representation consistency loss. Let s and t

represent source and target, and hc and hp represent common domain invariant features and private domain specific features respectively.

Ec is the shared encoder, Es
p and E

t
p are domain specific encoders, R is the shared region proposal network, and M

s and M
t are domain

specific mask prediction heads. We let b(r) be extracted background features for each region r. Top right corner showcases our soft

orthogonality constraint on half of the domain specific features. b) Second stage DARCNN model with pseudo-labels of augmented input

from first stage DARCNN, with annotations chosen over a confidence threshold, continuing training of DARCNN’s target branch.

However, as we focus on scenarios where domain shift

between our source and target domains is large, the ini-

tial distance between s and t as calculated by the maxi-

mum mean discrepancy loss is also large. [32] shows that

minimizing the maximum mean discrepancy loss equates to

maximizing the source and target intra-class distances re-

spectively, but doing so also jointly minimizes their vari-

ance with some implicit weights, such that feature discrim-

inability degrades. Therefore, if Lsim too quickly over-

whelms other losses in DARCNN that retain semantic fea-

tures, the discriminability needed for instance segmentation

is lost.

Hence we propose a maximum mean discrepancy loss

that uses a warmup weighting scheduler. Our approach in-

creases the weight α of Lsim from α0 to α over n epochs,

where α0 is smaller when the domain shift is larger.

3.1.2 Domain Specific Features

We next consider input needed for mask predictions. Do-

main specific features captures feature discriminability for

the target and source domains as well as granularity of

the background representation for our self-supervised loss.

Hence we use Ldiff to separate information that is unique to

each domain as well as learn specificity, and define the loss

through the soft subspace orthogonality constraint from [5]

between the domain invariant and domain specific features

of both domains.

However, in order to let part of the mask feature repre-

sentations learn semantically relevant embeddings that may

potentially be domain invariant, we utilize the orthogonality

difference loss only between parts of the domain invariant

and domain specific features. We give DARCNN the free-

dom to learn features necessary for segmentation in an un-

constrained embedding space, whether it be domain invari-

ant or specific. In our implementation, we use half of the

feature depth. See top right corner of Figure 2. We let H

be matrices whose rows are half of hidden representations

h in depth, where hs
c and hs

p are the invariant and specific

features of the source, and ht
c and ht

p of the target.

Ldiff = ||Hs⊤
c Hs

p ||
2
F + ||Ht⊤

c Ht
p||

2
F (3)

To additionally give signal to the unlabelled target do-

main specific features, we propose a self-supervised repre-

sentation consistency loss instead of the reconstruction loss

used for classification in [5]. The source domain specific

features are supervised by the original Mask R-CNN bound-

ing box and mask losses.
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3.2. Self­Supervised Representation Consistency

Biomedical images commonly contain homogeneous

backgrounds, therefore we leverage this assumption be-

tween region proposals of the same image to self-supervise

our feature representations. In contrast to approaches that

define a global background consistency across images of

a dataset, we use independent background consistency for

each image, which allows for variation in backgrounds

within the dataset. We leverage the region proposal network

and minimize the differences between background repre-

sentations of each predicted instance. See Figure 2.

We accomplish this through the two step framework

of Mask R-CNN. DARCNN utilizes self-supervision dur-

ing training through first finding the top region proposals

with confidence over threshold k from the region proposal

network. It passes each high confidence region proposal

through the class agnostic mask head and determines which

parts of the predicted instance are background. To do this,

outputs from the mask head are passed through a sigmoid

activation σ and all values less than threshold i are taken as

background.

Then, we retrieve features output from our convolutional

encoder Et
p that corresponds to background predictions. We

minimize the differences between these background repre-

sentations. Letting r be a predicted region from shared re-

gion proposal network R and and M t be our target mask

prediction head, we define the background features b(r) in

Equation 4, where the indicator function extracts parts of

ht
p, domain specific features, that spatially corresponds to

background mask predictions, threshold by value i after sig-

moid function σ. We can then define µb, computed per im-

age, as the mean of background representations across all

regions in an image. These regions are predicted by region

proposal network R after taking domain invariant features

ht
c as inputs. Finally, we define Ltarget to minimize differ-

ences between background features.

b(r) = ✶[σ(M t(r)) < i]ht
p (4)

µb =
1

Np

∑

p∈R(ht

c
)

b(p) (5)

Ltarget =
1

Nr

∑

r∈R(ht

c
)

| b(r)− µb | (6)

In our training process, the combination of the fully su-

pervised and self-supervised losses from the source and tar-

get dataset respectively allows DARCNN to learn semanti-

cally relevant proposals and mask predictions.

3.3. Augmented Pseudo­Labelling

Our first stage DARCNN utilizes feature-level adapta-

tions for unsupervised domain adaptation and leads to ini-

tial coarse mask predictions that overcome large domain

shift. However, it lacks strong image-level supervisory sig-

nal as in [13] or [7]; the lack of a pixel-level signal leads to

more unstable and unrefined segmentations. Therefore we

propose a second stage image-level pseudo-labelling with

our first stage DARCNN’s output as pseudo-labels in order

to gain this image-level supervision. See part b) in Fig-

ure 2. Only the target branch of DARCNN is trained during

the second stage pseudo-labelling process, while the source

branch is frozen and no longer needed.

Canonical use of pseudo-labels depends on some amount

of labelled data, however, as our method is unsupervised,

we instead use high confidence predictions from our first

stage DARCNN. We use confidence threshold z to deter-

mine which labels to retrieve from the predictions.

In addition, to better learn invariances of labels despite

imaging conditions, including quality and noise, we apply

data augmentation procedures to strengthen pseudo-labels

from the first stage DARCNN. The augmentations ensure

that the same instance segmentations will be predicted of a

given input regardless of lighting, contrast, and blur.

The target branch of DARCNN is the final model to be

used for unsupervised instance segmentation.

4. Experiments

In our experiments, we show that we are able to over-

come limitations of past work to adapt between large do-

main shifts, as well generalize across many biomedical

datasets. We quantitatively demonstrate DARCNN’s per-

formance on a large domain shift from COCO [20] to mul-

tiple biomedical datasets, bypassing drawbacks of previous

literature that focuses on small domain shifts and specific

datasets. In addition, in order to directly compare against

existing work, we also show comparable performance to

prior methods on tasks with small domain shifts following

canonical biomedical adaptations of [21].

Our work is not limited to that of biomedical datasets,

and is designed for all datasets with consistent backgrounds.

We use biomedical datasets due to prevalence of homo-

geneous backgrounds in the biomedical field, for evalua-

tion following previous unsupervised instance segmentation

work [21], and to better illustrate our approach on large do-

main shifts from generalized COCO to diverse, biomedical

datasets.

4.1. Implementation details

We evaluate our experiments on Aggregated Jaccard In-

dex (AJI) [18]. AJI is used by prior work to evaluate the per-

formance of instance segmentation; it computes an aggre-

gated intersection cardinality numerator, and an aggregated

union cardinality denominator for all ground truth and seg-

mented predictions under consideration. It is a unified met-

ric that measures both object-level and pixel-level perfor-

mance, and is more stringent than other canonical metrics
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such as IOU. In addition, we also show pixel F1 score and

object F1 score to measure performance in specific aspects.

The annotations for all five target biomedical datasets are

not used during unsupervised training of DARCNN, only

for evaluation. For our experiments, we stop our model

training 0.1 epochs before loss plateaus.

We use Pytorch and build on the Detectron2 [35] frame-

work, using the ResNet backbone. For our loss function

LDARCNN, we set α to increase over the first 0.1 epochs to

1, β = 1 and γ = 0.1. We use k = 0.5 as the confidence

threshold for top predicted regions in our self-supervised

loss, and i = 0.5 as our threshold for background. Confi-

dence threshold z is set to be 0.5 for pseudo-labelling. Aug-

mentation parameters used are Gaussian blur with sigma as

1, and contrast and brightness are changed through scaling

and delta factors 1.5 and −150 respectively. We use learn-

ing rate 0.0001, and vary maximum number of detections

to return per image during inference through initial coarse

inspection of training images. We choose the number to be

100 or 50 accordingly for each dataset.

4.2. Adaptation from Microscopy to Histopathology

To compare against prior unsupervised domain adapta-

tion methods tackling small domain shifts between biomed-

ical images, we first quantitatively evaluate adaptation from

a fluorescence microscopy dataset, BBBC [22], to two

histopathology datasets, Kumar [18] and TNBC [25]. This

comparison follows that of Liu et al. [21], and we follow

the same implementations of prior work and evaluation.

Importantly, we also demonstrate DARCNN’s strong

performance when adapting from a common dataset, COCO

[20], to the same two histopathology datasets. We demon-

strate that even without a similar source biomedical dataset

that may be difficult to obtain, we are still able to conduct

unsupervised instance segmentation adapting from COCO.

We first preprocess our source dataset, BBBC. A total of

100 training images and 50 validation images from BBBC

are used, following the official data split. 10, 000 patches

of BBBC in size 256x256 are randomly cropped from the

100 training images, and pixel values are inverted to bet-

ter synthesize histopathology images following [21]. Both

Kumar [18] and TNBC [25], our target datasets, are trained

with 10, 000 patches of size 256x256 without any labels,

and evaluated on the specified test set. To compare our

method against the nucleus specific methods of [14] and

[21], we utilize the standalone, non-deep learning based un-

supervised synthesis module of [14] as additional input.

We can see in Table 1 that for the TNBC dataset in the

scenario of a small domain shift, our method with fluo-

rescence microscopy as source outperforms all prior work

aside from [21]. [21] utilizes specific nuclei inpainting,

which yields impressive performance, but can only be used

for nuclei segmentation tasks.

Method AJI Pixel-F1 Object-F1

Chen et al. [7] 0.4407 0.6405 0.6289

DDMRL [17] 0.4642 0.7000 0.6872

SIFA [6] 0.4662 0.6994 0.6698

CyCADA [13] 0.4721 0.7048 0.6866

Hou et al. [14] 0.4775 0.7029 0.6779

Liu et al. [21] 0.5672 0.7593 0.7478

Ours from BBBC 0.5120 0.7175 0.6436

Ours from COCO 0.4906 0.6998 0.6396

Table 1. Comparison of unsupervised methods adapting BBBC to

TNBC. We see that DARCNN shows strong performance against

prior work both with BBBC as source and with COCO as source,

even against methods designed for nucleus-specific segmentation

[14, 21] and small domain shifts [7, 17, 6, 13].

Method AJI Pixel-F1 Object-F1

Chen et al. [7] 0.3756 0.6337 0.5737

SIFA [6] 0.3924 0.6880 0.6008

CyCADA [13] 0.4447 0.7220 0.6567

DDMRL [17] 0.4860 0.7109 0.6833

Hou et al. [14] 0.4980 0.7500 0.6890

Liu et al. [21] 0.5610 0.7882 0.7483

Ours from BBBC 0.4461 0.6619 0.5410

Ours from COCO 0.4421 0.6549 0.5104

Table 2. Comparison of unsupervised methods adapting BBBC to

Kumar. DARCNN shows comparable performance to prior works

on the nucleus segmentation task though it is designed to over-

segment and retrieve all instances of interest.

More importantly, we show that DARCNN with COCO

as the source dataset is able to achieve similar performance,

also outperforming other methods aside from [21]. Without

labels from BBBC, we are still able to adapt from COCO to

histopathology datasets, which is essential in cases where

similar labelled biomedical datasets do not exist.

In Table 2, we see that for the Kumar dataset, due to

DARCNN predicting more objects than are classified as nu-

cleus, our scores are comparable but do not beat all of prior

methods. We hypothesis that this is because past work fo-

cuses on image-level adaptation at small domain shifts, and

their models are able to better learn what the object of focus

is for segmentation. DARCNN is designed for instance seg-

mentation of all distinct objects that exist within an image,

hence predicts false positives from the nucleus perspective.

See below Figure 3 for an example of DARCNN adapted

from COCO to Kumar; note that the red objects in the mid-

dle are not considered nucleus from the ground truth, but

are segmented by DARCNN as objects of interest. DAR-

CNN is useful for discovering objects in data when no la-

bels are available, and produces class agnostic instance seg-

mentations that can help scientists uncover new objects in

complex data. Postprocessing methods could allow us to

gain more insight into objects found by DARCNN. Through
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Figure 3. Qualitative results on DARCNN, adaptation from COCO

to TNBC (top) & Kumar (bottom) respectively. Left is input, mid-

dle is ground truth, and right shows instance segmentation result.

rule-based filtering with a coarse prior (filtering for masks

with average pixel value less than a threshold, over a set of

thresholds), our method obtains AJI = 0.5026, Pixel-F1 =

0.7272, Object-F1 = 0.6481, outperforming all prior work

except [21], which is designed for nuclei segmentation.

4.3. Ablation Studies

We conduct ablation studies on DARCNN to showcase

the effectiveness of the domain similarity loss, the back-

ground representation consistency loss, and the augmented

pseudo-labelling stage. The DARCNN here is shown with

COCO [20] as the source dataset, tackling our stated prob-

lem of large domain shift to biomedical datasets.

We perform this ablation study for two separate setups —

first we study DARCNN adapted to TNBC, trained with the

unsupervised, standalone synthesis module of [14], which

allows for its comparable performance to previous nucleus-

specific methods. Then we observe DARCNN’s ablation

performance for the BBBC dataset, showcasing each com-

ponent’s contribution to DARCNN without initial object-

specific synthesis.

In Table 3 and Table 4, we observe that class agnostic

Mask R-CNN trained on COCO images performs extremely

poorly on biomedical datasets. We can also see that for

the first stage of DARCNN, both the domain similarity loss

and representation consistency loss improved model perfor-

mance. Especially in the case of BBBC without the unsu-

pervised synthesis module, our representation consistency

loss dramatically improves the performance of DARCNN

due to ability to gain self-supervised signal for features. The

full first stage DARCNN also shows significantly higher

performance in both datasets than the initial baselines.

In the second stage of DARCNN, pseudo-labelling also

improved our unsupervised instance segmentation perfor-

mance. Similarly, the performance improvement from

pseudo-labelling in the BBBC case without the synthesis

Method AJI Pixel-F1 Object-F1

Mask R-CNN

w/ COCO pre-trained 0.0060 0.2769 0.0181

w/ synthesized images 0.3332 0.5782 0.6061

First stage DARCNN

Domain sim. only 0.3687 0.6023 0.6099

Bg. consistency only 0.3808 0.6120 0.5470

Full 1st stage DARCNN 0.4071 0.6353 0.5986

Second stage DARCNN

Pseudo-label w/o aug 0.4463 0.6781 0.6339

Full 2nd stage DARCNN 0.4906 0.6998 0.6396

Table 3. Ablation study adapting from COCO as source to TNBC.

Method AJI Pixel-F1 Object-F1

Mask R-CNN

w/ COCO pre-trained 0.0315 0.3144 0.0818

First stage DARCNN

Domain sim. only 0.1414 0.4905 0.4295

Bg. consistency only 0.3250 0.7128 0.5720

Full 1st stage DARCNN 0.3371 0.6409 0.5904

Second stage DARCNN

Pseudo-label w/o aug 0.4349 0.6914 0.7151

Full 2nd stage DARCNN 0.4725 0.6586 0.6733

Table 4. Ablation study adapting from COCO as source to BBBC.

module is larger than in TNBC, as for BBBC it is the first

time DARCNN’s target branch receives image-level super-

vision. Pseudo-labelling with augmented data demonstrates

even better performance, helping remove difficulties in seg-

mentation under various imaging conditions of biomedical

datasets. We also show in Figure 3 a qualitative example of

DARCCN adapting from COCO to TNBC, capturing nuclei

as objects of interests in the image.

4.4. Adaptation from COCO to Additional Biomed­
ical Datasets

Most importantly, we demonstrate DARCNN’s ability

to generalize across datasets by comparing performance on

COCO adapted to three diverse biomedical datasets – the

fluorescence microscopy dataset [22], cryogenic electron

tomography dataset [11], and brain MRI dataset [24, 1, 2].

Through this, we demonstrate potential for object discov-

ery without the need for similar labelled datasets to the tar-

get domain, and without need for designing object-specific

models for segmentation of particular biomedical datasets.

We compare our results with the prior methods that can

be used outside of specific biomedical datasets. [6, 14, 21]

depend on specific biomedical images and nuclei synthesis

methods, hence we do not use them as comparison.

DARCNN significantly outperforms all other methods

when adapting with a large domain shift from COCO. As

[13, 17] depend on CycleGAN [36], and [7] depends on

image-level shift, we hypothesize that these methods per-
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Dataset Method AJI Pixel-F1 Object-F1

BBBC Chen et al. [7] 0.1500 0.5251 0.2111

CyCADA [13] 0.1231 0.5173 0.1917

DDMRL [17] 0.0928 0.5188 0.1145

Ours 0.4725 0.6586 0.6733

SHREC Chen et al. [7] 0.0 0.0 0.0

CyCADA [13] 0.0051 0.0064 0.0025

DDMRL [17] 0.0039 0.0182 0.0

Ours 0.1268 0.3007 0.3371

BraTS Chen et al. [7] 0.2868* - -

CyCADA [13] 0.3485* - -

DDMRL [17] 0.3951* - -

Ours 0.5577* - -

Table 5. Comparison of unsupervised methods adapting from

COCO to fluorescence microscopy (BBBC), cryogenic electron

tomography (SHREC), and radiology (BraTS) datasets. *Indicates

metric measuring maximum intersection over union.

form poorly when tasked with a large domain shift from

COCO to natural biomedical images. DARCNN is able to

generalize across diverse biomedical datasets and adapt be-

tween common objects to objects in microscopy, tomogra-

phy, and MRI due to its two stage sequential feature-level

adaptation and image-level pseudo-labelling.

For BBBC, DARCNN is able to significantly outperform

prior work as the background consistency assumption is

strong. In addition, even for a more challenging task like

instance segmentation in SHREC where the signal to noise

ratio is low, DARCNN is still able to capture objects of

interests given noisy background. Prior work, CyCADA

[13], Chen et al. [7], and DDMRL [17], are all unable to

learn meaningful adaptations from COCO to SHREC due

to the difficulties of image-level adaptation when even hu-

man recognition is limited. In the BraTS dataset, due to the

specificity of the detected object, tumor, we measure per-

formance by maximum intersection over union from clos-

est predicted object. Though this does not account for un-

bounded false positives, we provide a qualitative example of

performance to supplement. In Figure 4, we see that DAR-

CNN also picks up on ridges and darker spots in the BraTS

MRI, which could potentially be useful in understanding

additional structures of interest. We show qualitative exam-

ples on our three biomedical datasets in Figure 4.

4.5. Adaptation from COCO to CryoET

Finally, we showcase the promise of our unsupervised

instance segmentation model for adapting from COCO

to an unlabelled cryogenic electron tomography (cryoET)

dataset, collected by Dr. Wah Chiu’s group at SLAC Na-

tional Accelerator Laboratory. This cryoET dataset contains

tomograms of crowded cellular environments in which ob-

jects are too dense and of too underexplored a subject area

to be annotated. We qualitatively evaluate the performance

of DARCNN instance segmentations in this dataset.

Figure 4. Qualitative results on DARCNN, adaptation from COCO

to BBBC (top), SHREC (middle), and BraTS (bottom) datasets.

In Figure 5, our unsupervised algorithm segments known

biological objects such as the autophagosome and granules.

In addition, DARCNN also discovers distinct vesicles and

organelles inside the amphisome, difficult for humans to an-

notate, and representing potential new objects of interest.

Figure 5. Qualitative results on DARCNN, adaptation from COCO

to cryoET, demonstrating discovery of distinct objects of interests.

5. Conclusion

We propose DARCNN, a two stage feature-level adapta-

tion and image-level pseudo-labelling method for unsuper-

vised instance segmentation. We leverage the abundance of

labelled benchmark datasets for domain adaptation to unla-

belled biomedical images. DARCNN tackles large domain

shifts between common and biomedical objects, and can

be used across diverse datasets with consistent background.

Through a domain separation module, a representation con-

sistency loss, and augmented pseudo-labelling, we achieve

strong performance in multiple experiments as well as show

potential for object discovery within biomedical datasets.
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