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Abstract

Learning pyramidal feature representations is crucial

for recognizing object instances at different scales. Fea-

ture Pyramid Network (FPN) is the classic architecture to

build a feature pyramid with high-level semantics through-

out. However, intrinsic defects in feature extraction and fu-

sion inhibit FPN from further aggregating more discrimi-

native features. In this work, we propose Attention Aggre-

gation based Feature Pyramid Network (A2-FPN), to im-

prove multi-scale feature learning through attention-guided

feature aggregation. In feature extraction, it extracts dis-

criminative features by collecting-distributing multi-level

global context features, and mitigates the semantic infor-

mation loss due to drastically reduced channels. In feature

fusion, it aggregates complementary information from ad-

jacent features to generate location-wise reassembly ker-

nels for content-aware sampling, and employs channel-

wise reweighting to enhance the semantic consistency be-

fore element-wise addition. A2-FPN shows consistent gains

on different instance segmentation frameworks. By replac-

ing FPN with A2-FPN in Mask R-CNN, our model boosts

the performance by 2.1% and 1.6% mask AP when us-

ing ResNet-50 and ResNet-101 as backbone, respectively.

Moreover, A2-FPN achieves an improvement of 2.0% and

1.4% mask AP when integrated into the strong baselines

such as Cascade Mask R-CNN and Hybrid Task Cascade.

1. Introduction

Instance segmentation is one of the most challenging

tasks in computer vision. It aims to categorize and localize

individual objects with pixel-wise instance masks. Accu-

rate instance segmentation has wide applications in real sce-

narios including automatic driving and video surveillance.

Driven by the rapid advances in deep convolutional net-

works (ConvNets), the development of instance segmenta-

tion frameworks, e.g., Mask R-CNN [14], PANet [26], and

*Corresponding author.

Information lossInformation loss Content-agnostic samplingContent-agnostic sampling

Semantic inconsistency between adjacent featuresSemantic inconsistency between adjacent features

2× Up

1×1 Conv

2× Up

1×1 Conv

3×3 Conv, /23×3 Conv, /2

Figure 1. Defects in the construction of feature pyramid: (1)

information loss, (2) content-agnostic sampling, and (3) semantic

inconsistency between adjacent features.

HTC [5], has substantially pushed forward the state-of-the-

art. Learning multi-scale feature representations is of great

significance because high-performance instance segmenta-

tion needs to recognize varying numbers of instances across

a broad range of scales and locations.

To address the issue of multi-scale processing, Feature

Pyramid Network (FPN) [22] is widely adopted in existing

frameworks. FPN leverages the inherent feature hierarchy

and constructs a feature pyramid that has strong semantics

at all scales by fusing adjacent features through lateral con-

nections and a top-down pathway. PAFPN in PANet [26]

shortens the information path from the low level to top ones

by adding an extra bottom-up pathway, further improving

the localization capability of the feature pyramid.

Although FPN and PAFPN are effective in learning

multi-scale feature representations, the simple designs in-

hibit feature pyramids from further aggregating more dis-

criminative features. We decompose the construction of

feature pyramid into feature extraction and fusion, and find

each step has some intrinsic defects, as shown in Figure 1.

In feature extraction, lateral connections using 1×1 con-

volutional layers are employed to generate features of the

same channel dimension. However, the extracted feature

maps, especially the high levels, suffer from serious in-

formation loss because of drastic dimension reduction. In

the first step of feature fusion, feature maps are upsampled

using interpolation in the top-down pathway or downsam-
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pled through strided convolution in the bottom-up pathway.

However, interpolation executes the upsampling process in

a sub-pixel neighborhood according to the relative posi-

tions of pixels, failing to capture rich semantic information.

Strided convolution applies the content-agnostic downsam-

pling kernel across the entire image, neglecting the under-

lying content of features. In the second step of feature

fusion, two adjacent features are merged by element-wise

addition, which ignores the semantic gap between feature

maps caused by different depths.

In this work, we propose Attention Aggregation based

Feature Pyramid Network (A2-FPN), to improve multi-

scale feature learning through attention-guided feature ag-

gregation. Compared to existing frameworks, A2-FPN is

distinctive in three significant aspects: (1) It extracts dis-

criminative features by collecting global context features

from the whole feature hierarchy and distributing them to

each level. (2) It aggregates complementary information

from adjacent features to produce location-wise reassembly

kernels for content-aware upsampling and downsampling.

(3) It applies channel-wise reweighting to enhance the se-

mantic consistency before element-wise addition.

Without bells and whistles, A2-FPN in Mask R-CNN

framework leads to an improvement of 2.1% and 1.6% mask

AP compared with the FPN based counterpart when us-

ing ResNet-50 and ResNet-101 as backbone, respectively.

Moreover, when integrated into the state-of-the-art instance

segmentation methods such as Cascade Mask RCNN and

HTC [5], it achieves 2.0% and 1.4% higher mask AP than

baseline models on the MS COCO dataset [24].

Our main contributions are summarized as follows: (1)

We propose Attention Aggregation based Feature Pyramid

Network (A2-FPN), which effectively aggregates pyramidal

feature representations through attention-guided feature ex-

traction and fusion. (2)We demonstrate that not only cross-

scale connections are important, but the node operations

to aggregate features are also crucial to the construction

of feature pyramid. (3) We evaluate A2-FPN on the chal-

lenging COCO dataset [24] through comprehensive experi-

ments, and it can bring consistent and substantial improve-

ments upon various frameworks and backbone networks.

2. Related Work

Instance Segmentation. Current instance segmenta-

tion methods can be roughly divided into two categories,

detection-based and segmentation-based. Detection-based

methods employ object detectors [32, 23, 33, 3] to gen-

erate region proposals or bounding boxes, and then pro-

duce a pixel-wise mask for each instance. DeepMask [30],

SharpMask [31] and MultiPathNet [41] predict object seg-

ments using discriminative ConvNets and improve progres-

sively. MNC [8] decomposes instance segmentation into

three sub-tasks: instance differentiation, mask estimation,

and object categorization. FCIS [20] is proposed to pre-

dict instance masks fully convolutionally based on Instance-

FCN [8]. Mask R-CNN [14] extends Faster R-CNN [33]

by adding a mask prediction branch in parallel with the

existing branch for classification and bounding box regres-

sion. PANet [26] shortens the information path in FPN [22]

by adding an extra bottom-up pathway and aggregates fea-

tures from all levels through adaptive feature pooling. Mask

Scoring R-CNN [17] calibrates the misalignment between

mask quality and mask score by learning a maskIoU for

each mask instead of using its classification score. HTC

[5] integrates cascade into instance segmentation by inter-

weaving bounding box regression and mask prediction in

a multi-stage cascade manner, and incorporates contextual

information by adding a semantic segmentation branch.

Segmentation-based methods first exploit a pixel-wise

segmentation map over the entire image and then group the

pixels of different instances. InstanceCut [18] combines se-

mantic segmentation and boundary detection for instance

partition. SGN [25] employs a sequence of neural networks

to handle progressive sub-grouping problems. Deep learn-

ing and watershed transform are integrated in [2] to produce

pixel-level energy values for instance derivation. Recent

methods [9, 29, 10] use metric learning to learn per-pixel

embedding and group pixels to form the instance masks.

Feature Pyramid. Pyramidal feature representations

form the basis of solutions to multi-scale problems. SSD

[27] firstly attempts to perform object detection on the pyra-

midal features. FPN [22] builds a feature pyramid of strong

semantics through lateral connections and a top-down path-

way. Based on FPN, PAFPN in PANet [26] introduces

bottom-up augmentation to facilitate the information flow.

EfficientDet [35] repeats bidirectional path multiple times

for more high-level feature fusion. NAS-FPN [12] takes

advantage of neural architecture search to seek a more pow-

erful feature pyramid structure. Unlike the previous works

that focus on the topological structure constructed by dif-

ferent cross-scale connections, node operations to aggregate

features are explored in this work.

Attention Mechanism. Self-attention is first proposed

in [36] for machine translation, where scaled dot-product

attention is adopted. The effectiveness of Non-local op-

eration to computer vision tasks is explored later in [38].

Graph reasoning is employed to model semantic nodes in

[19, 21, 7, 42]. However, multi-level global context model-

ing is rarely explored in detectors. Channel attention is used

to explicitly model interdependencies between channels in

[16]. DANet [11] and GCNet [4] combine self-attention and

channel attention to capture rich contextual dependencies.

3. Methodology

The overall framework of A2-FPN is illustrated in Fig-

ure 2. We take ResNet [15] as backbone like FPN [22] and
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Figure 2. Overall pipeline of A2-FPN. A2-FPN extracts and fuses the pyramidal features progressively through three proposed modules,

the MGC module, the GACARAFE module, and the GACAP module. For brevity, only three feature levels are plotted here.

utilize {Fbb
2 ,Fbb

3 ,Fbb
4 ,Fbb

5 } to denote the feature hierarchy.

In addition, an extra feature Fbb
6 is produced through a 3×3

convolutional layer with stride 2 from the feature Fbb
5 . Note

that the pyramidal features have strides of {4, 8, 16, 32, 64}
pixels w.r.t. the input image. {P lc2 ,P lc3 ,P lc4 ,P lc5 ,P lc6 } are

the context-rich features extracted from the feature hier-

archy in the Multi-level Global Context (MGC) module

(Section 3.1). {Ptd2 ,Ptd3 ,Ptd4 ,Ptd5 ,Ptd6 } are the features

after top-down path augmentation with the Global Atten-

tion CARAFE (GACARAFE) module (Section 3.2), and

{Pbu2 ,Pbu3 ,Pbu4 ,Pbu5 ,Pbu6 } are the features after bottom-

up path augmentation with the Global Attention Content-

Aware Pooling (GACAP) module (Section 3.3).

3.1. Multi­level Global Context

In feature extraction, pyramidal features suffer from in-

formation loss due to channel reduction. ParseNet [28] dis-

tributes the global context feature to all locations for in-

formation supplement. However, a single context feature

collected by global average pooling ignores different needs

across scales and locations. Inspired by this, we propose the

Multi-level Global Context (MGC) module to extract more

discriminative features by aggregating multi-level global

context features and mitigate semantic information loss.

MGC consists of three steps to adaptively aggregate

global context features from the feature hierarchy, as shown

in Figure 3. First, the Context Collector collects global con-

text features from all feature levels through attention pool-

ing. Second, the Graph Convolutional Networks (GCNs)

are employed to reason contextual relations. Third, the

Context Distributor distributes the context features to each

level. Each step will be discussed in detail as follows.

Context Collector. Given the i-th feature Fbb
i ∈

R
ci×h×w from the backbone, where ci denotes channel di-

mension and h,w are spatial size, Context Collector gen-

erates a new feature Gi ∈ R
c×ni comprising ni different

context features of dimension c. Inspired by AN [39], we

assume that the features of different stages differ in seman-

tic richness and intensity, and are composed of diverse se-

mantic entities. Here the feature Fbb
i is supposed to consist

of ni semantic entities, and the feature points are gathered

into different context features according to their cosine sim-

ilarity to the semantic entities.

In Context Collector, one 1 × 1 convolutional layer ψ

with ni filters is adopted as semantic entities, and another

1 × 1 convolutional layer φ is used to embed the input fea-

ture. In particular, we formulate this procedure as Eqn. 1.

Gi =WφFbb
i Softmax(

√
ci ·WψNorm(Fbb

i ))T , (1)

Lo = λo‖WψW
T
ψ − I‖2F , (2)

where Wψ ∈ R
ni×ci , Wφ ∈ R

c×ci , and Norm repre-

sents L2 normalization. To normalize the semantic enti-

ties for computing cosine similarity and learn more diverse

patterns, orthogonal regularization is applied to the weights

Wψ as shown in Eqn. 2. Different from the scaled dot-

product attention in [36] which divides each dot product by√
ci, we multiply the cosine similarity by

√
ci to maintain

the variance at different values of ci. Then we apply a soft-

max function spatially to generate the attention masks, and

collect context features using attention pooling accordingly.

We call our particular attention mechanism “Scaled

Cosine-similarity Attention”, which computes the compat-

ibility function based on scaled cosine similarity. It fo-

cuses on semantic content instead of intensity and can avoid

strongly activated keys surpassing other keys. For brevity,

we reformulate the compatibility function out of Eqn. 1:

CF (WT
ψ ,Fbb

i , ci) = Softmax(
√
ci ·WψNorm(Fbb

i ))T .
(3)

GCN. Once we obtain context features Gi ∈ R
c×ni , we

utilize GCNs to model and reason the contextual relations

between them first in single level. The formula of the GCN

with a residual connection [15] is interpreted as Eqn. 4,

where W
gcn
1 ∈ R

c

4
×c,W

gcn
2 ∈ R

c

4
×c,W

gcn
3 ∈ R

c×c are

weight matrices of 1D convolutional layers. The convolu-

tional weight of the GCN is W
gcn
3 and the adjacent matrix

is dynamically generated through self-attention described

in Eqn. 3. After contextual relations are reasoned in each

level independently, all context features are concatenated

and reasoned together in multi-level by the GCN as Eqn.
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Figure 3. Detailed illustration of the Multi-level Global Context (MGC) module. MGC collects, reasons, and distributes multi-level

global context features through three children modules, the Context Collector, the GCNs, and the Context Distributor, respectively.

5. In this work, we collect {n2, n3, n4, n5} context features

from the feature maps {Fbb
2 ,Fbb

3 ,Fbb
4 ,Fbb

5 }, respectively.

G̃i =W
gcn
3 GiCF (W gcn

1 Gi,W gcn
2 Gi,

c

4
) + Gi, (4)

G̃ = GCN([· · · , G̃i−1, G̃i, G̃i+1, · · · ]). (5)

Context Distributor. Context Distributor distributes the

multi-level global context features G̃ ∈ R
c×n to each level

using the proposed scaled cosine-similarity attention. As

shown in Eqn. 6, Wo ∈ R
c×c, Wθ ∈ R

c×ci and Wξ ∈
R
c×ci are weights of 1×1 convolutional layers. The feature

maps Fbb
i are queries and the global context features G̃ are

shared as keys and values.

P lci =WoG̃CF (WθFbb
i , G̃, c) +WξFbb

i . (6)

3.2. Global Attention CARAFE

In the top-down pathway of feature fusion, interpolation

depends only on the relative positions and direct element-

wise addition ignores the semantic gap between adjacent

features. Recently, CARAFE [37] is proposed to upsam-

ple features through content-aware reassembly. However,

CARAFE only leverages the information of low-resolution

feature and fails to capture complementary semantics from

the high-resolution level. As shown in Figure 4 (left),

we propose the Global Attention CARAFE (GACARAFE)

module for feature fusion, where the complementary infor-

mation is aggregated to guide content-aware upsampling

and channel attention [16] is employed to enhance the se-

mantic consistency before merging adjacent features.

The feature P lci ∈ R
c×h×w is extracted through the

MGC module and the feature Ptdi+1 ∈ R
c×h

s
×

w

s is the up-

per level in the top-down pathway, where s = 2 is the scale

factor. We downsample the feature P lci using max-pooling

and concatenate Ptdi+1 and P̃ lci together. As shown in Fig-

ure 4 (left), the feature Ptdi+1 is upsampled as P̃tdi+1 through

two steps. GACARAFE predicts a location-wise kernel

Kupi+1
(x, y) based on the kupen × kupen neighbor of feature

points Ptdi+1(
x
s
, y
s
) and P̃ lci (xs ,

y
s
), as shown in Eqn. 7. And

then it reassembles the kup × kup neighbor of Ptdi+1(
x
s
, y
s
)

with the kernel Kupi+1
(x, y), as presented in Eqn. 8.

Kupi+1
(x, y) = K(N ([Ptdi+1, P̃ lci ](

x

s
,
y

s
), kupen)), (7)

P̃tdi+1(x, y) = R(N (Ptdi+1(
x

s
,
y

s
), kup),Kupi+1

(x, y)), (8)

where K and R are the kernel prediction module and

content-aware reassembly module altered from CARAFE

[37], respectively. The kernel prediction module contains

three convolutions: the first one of 1×1 kernel for reducing

channel dimension from 2c to cupm , the second one of 3× 3
kernel with ReLU activation for blending features, and the

third one of kupen × kupen kernel for predicting upsampling

kernels. The kernels Kupi+1
are deformed using pixel shuffle

[34] and normalized with a softmax function.

Besides, we apply channel attention to learn two vectors

Ŝupi and Šupi to recalibrate the adjacent features. As shown

in Eqn. 9, we squeeze the global spatial information into

a channel descriptor using attention pooling. Specifically, a

1×1 convolutional layer is employed to predict the attention

mask Mup
i and channel-wise statistics Zup

i is generated by

shrinking the concatenated feature accordingly. And then

a simple gating mechanism with 2 · sigmoid activation is

adopted to model channel-wise interdependencies.

Mup
i = Softmax(Wup

1 [Ptdi+1, P̃ lci ])T ,
Zup
i = [Ptdi+1,P̃ lci ]Mup

i ,

[Ŝupi , Šupi ] = 2σ(Wup
3 ReLU(LN(Wup

2 Zup
i ))).

(9)

Here LN stands for LayerNorm [1], W
up
1 ∈ R

1×2c, W
up
2 ∈

R
c

2
×2c and W

up
3 ∈ R

2c× c

2 . 2σ indicates the activation

function 2 · sigmoid, which can keep the mean of channel-

wise weights being 1 after successive multiplications and

excite or restrain features selectively. Finally, the adja-

cent features P̃tdi+1 and P lci are reweighted and merged by

element-wise addition as shown in Eqn. 10.

Ptdi = Ŝupi ⊙ P̃tdi+1 + Šupi ⊙ P lci . (10)
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Figure 4. The details of the Global Attention CARAFE (GACARAFE) module (left) and the Global Attention Content-Aware

Pooling (GACAP) module (right). Noting that the fused features Ptd

i and Pbu

i after element-wise addition are omitted for simplification.

3.3. Global Attention Content­Aware Pooling

In the bottom-up pathway, strided convolution applies

the same kernel across the entire image and ignores the

underlying content. To aggregate more discriminative fea-

tures, we propose the Global Attention Content-Aware

Pooling (GACAP) module to execute the bottom-up fu-

sion. As shown in Figure 4 (right), the Content-Aware Pool-

ing (CAP) operator extends the idea of CARAFE [37] to

feature pooling and the GACAP module differs from the

GACARAFE module in several aspects.

First, GACAP unsamples the feature Ptdi ∈ R
c×h×w

to get P̃tdi through bilinear interpolation and concatenates

Pbui−1 ∈ R
c×sh×sw with it. Second, GACAP downsamples

the feature Pbui−1 as P̃bui−1, as shown in Eqn. 11 and 12.

Kdni−1(x, y) = K(N ([Pbui−1, P̃tdi ](sx, sy), kdnen )), (11)

P̃bui−1(x, y) = R(N (Pbui−1(sx, sy), kdn),Kdni−1(x, y)),
(12)

where the kernel prediction module K applies a kdnen × kdnen
convolutional layer with stride s to generate downsampling

kernels Kdni−1 directly. The other parts of GACAP is exactly

the same with GACARAFE described in Section 3.2. After

the channel attention vectors Ŝdni and Šdni are obtained, the

adjacent features are fused to generate feature Pbui as Eqn.

13. Notably, we finally append a 3× 3 convolution on each

merged feature map to reduce the aliasing effect, whether in

the top-down pathway or the bottom-up pathway.

Pbui = Ŝdni ⊙ Ptdi + Šdni ⊙ P̃bui−1. (13)

4. Experiments

4.1. Datasets and Evaluation Metrics

Datasets. We conduct experiments on the challenging

MS COCO dataset [24]. It contains 115k images for train-

ing (train2017), 5k images for validation (val2017), and

20k images for testing (test-dev). The labels of test-dev are

not publicly available. We train our models on train2017

subset and report results on val2017 subset for ablation

study. we also report results on test-dev for comparison.

Evaluation Metrics. We report the standard COCO-

style Average Precision (AP) metric including AP (aver-

aged over IoU thresholds), AP50, AP75 (AP at different

IoU thresholds), and APS , APM , APL (AP at different

scales). Since our framework is general to both instance

segmentation and object detection, both mask AP and box

AP (superscripted as “bb”) are evaluated.

4.2. Implementation Details

All experiments are implemented based on MMDetec-

tion [6]. We train detectors with a batchsize of 8 over 4

GPUs (2 images per GPU) for 12 epochs with an initial

learning rate of 0.01, and decrease it by 0.1 after 8 and

11 epochs, respectively. Images are resized to a maximum

scale of 1333 × 800 pixels without changing the aspect

ratio. If not otherwise specified, A2-FPN adopts a fixed

set of hyper-parameters in experiments, where c = 256,

ni = 64(6 − i), and λo = 0.0001 in Eqn. 2 in the

MGC module, Cupm = 64, kupen = 3 and kup = 5 in the

GACARAFE module, Cdnm = 64, kdnen = 3 and kdn = 5
in the GACAP module. All other hyper-parameters in this

work follow the default setting of MMDetection [6].

4.3. Benchmarking Results

We integrate A2-FPN into the state-of-the-art detectors

and evaluate the performance on the COCO test-dev. For

a fair comparison, we re-implement the corresponding FPN

based methods as baselines.

Instance Segmentation Results. A2-FPN, combined
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Figure 5. Comparison of instance segmentation results between FPN (top row) and A
2-FPN (bottom row) on COCO val2017.

Table 1. Instance segmentation mask AP and object detection box AP, vs. the state-of-the-art on COCO test-dev. “ms” in [] indicates

multi-scale training and the symbol ‘*’ denotes our re-implementation results. The letters ’R’ and ’X’ stand for the backbone networks

ResNet [15] and ResNeXt [40], respectively. ‘Sch.’ is short for the training schedule, which follows the setting of MMdetection [6].

Method Backbone Sch. AP AP50 AP75 APS APM APL APbb APbb50 APbb75 APbbS APbbM APbbL

Faster R-CNN [22] R-101-FPN - - - - - - - 36.2 59.1 - 18.2 39.0 48.2

Mask R-CNN [14] R-101-FPN - 35.7 58.0 37.8 15.5 38.1 52.4 38.2 60.3 41.7 20.1 41.1 50.2

Mask R-CNN [14] X-101-FPN - 37.1 60.0 39.4 16.9 39.9 53.5 39.8 62.3 43.4 22.1 43.2 51.2

Mask R-CNN [13] R-101-AugFPN 1x 37.8 60.4 40.4 20.4 41.0 49.8 41.3 63.5 44.9 24.2 44.8 52.0

PANet [26] R-50-PAFPN - 36.6 58.0 39.3 16.3 38.1 53.1 41.2 60.4 44.4 22.7 44.0 54.6

PANet[ms] [26] R-50-PAFPN - 38.2 60.2 41.4 19.1 41.1 52.6 42.5 62.3 46.4 26.3 47.0 52.3

PANet [26] X-101-PAFPN - 40.0 62.8 43.1 18.8 42.3 57.2 45.0 65.0 48.6 25.4 48.6 59.1

PANet[ms] [26] X-101-PAFPN - 42.0 65.1 45.7 22.4 44.7 58.1 47.4 67.2 51.8 30.1 51.7 60.0

Cascade R-CNN [3] R-50-FPN - - - - - - - 40.6 59.9 44.0 22.6 42.7 52.1

Cascade R-CNN [3] R-101-FPN - - - - - - - 42.8 62.1 46.3 23.7 45.5 55.2

HTC [5] R-50-FPN 20e 38.4 60.0 41.5 20.4 40.7 51.2 43.6 - - - - -

HTC [5] R-101-FPN 20e 39.7 61.8 43.1 21.0 42.2 53.5 45.3 - - - - -

HTC [5] X-101-FPN 20e 41.2 63.9 44.7 22.8 43.9 54.6 47.1 - - - - -

Mask R-CNN* R-50-FPN 1x 34.5 56.3 36.7 18.6 37.3 44.7 37.6 59.5 40.6 21.8 40.8 46.4

Mask R-CNN(ours) R-50-A2-FPN-Lite 1x 36.4 58.9 38.7 19.6 39.1 47.8 39.8 62.3 43.4 23.6 42.8 49.9

Mask R-CNN(ours) R-50-A2-FPN 1x 36.6 59.3 39.1 19.8 39.3 48.0 40.2 62.7 43.7 23.7 43.2 50.2

Mask R-CNN[ms](ours) R-50-A2-FPN 2x 38.8 62.0 41.6 22.1 41.7 50.4 42.8 65.2 47.0 26.5 45.9 53.3

Mask R-CNN* R-101-FPN 1x 36.3 58.5 38.9 19.4 39.3 47.8 39.9 61.6 43.6 23.1 43.2 50.0

Mask R-CNN(ours) R-101-A2-FPN 1x 37.9 60.8 40.5 20.6 41.8 50.1 41.7 64.1 45.5 24.6 45.0 52.5

Cascade Mask R-CNN* R-50-FPN 1x 36.1 57.1 38.9 19.1 38.6 47.4 41.5 59.8 45.1 23.4 44.3 52.7

Cascade Mask R-CNN(ours) R-50-A2-FPN 1x 38.1 60.1 41.0 20.6 40.5 50.4 43.9 62.8 47.7 25.4 46.8 56.0

Cascade Mask R-CNN* R-101-FPN 1x 37.4 58.9 40.5 19.5 40.1 49.6 43.3 61.6 47.2 24.1 46.2 55.3

Cascade Mask R-CNN(ours) R-101-A2-FPN 1x 39.1 61.3 42.2 21.0 41.9 51.8 45.1 64.1 48.9 25.7 48.2 57.7

HTC* R-50-FPN 20e 38.4 60.0 41.4 20.3 40.6 51.2 43.5 62.6 47.3 24.5 45.9 55.9

HTC(ours) R-50-A2-FPN 20e 39.8 62.3 43.0 21.6 42.4 52.8 45.4 64.9 49.1 26.3 48.2 57.7

HTC* R-101-FPN 20e 39.6 61.6 42.9 21.1 42.2 53.1 45.1 64.3 49.0 25.7 47.9 58.2

HTC(ours) R-101-A2-FPN 20e 40.8 63.6 44.1 22.3 43.5 54.4 46.6 66.2 50.4 27.1 49.6 59.9

HTC* X-101-FPN 20e 41.3 64.0 44.8 22.7 43.9 54.8 47.2 66.6 51.4 27.7 50.0 60.2

HTC(ours) X-101-A2-FPN 20e 42.1 65.3 45.7 23.6 44.8 56.0 48.3 68.0 52.4 28.9 51.3 61.7

HTC[ms](ours) X-101-A2-FPN 2x 44.0 67.5 47.9 25.7 47.1 57.6 50.4 70.1 54.9 31.6 53.7 63.7

with different instance segmentation frameworks and back-

bone networks, achieves better performance compared with

baseline models. As shown in Table 1, by replacing FPN

with A2-FPN, Mask R-CNN using ResNet-50 (denoted as

R-50-A2-FPN) achieves 36.6% mask AP, which is 2.1%

higher than the counterpart. Moreover, when using ResNet-

101 as the feature extractor, A2-FPN still brings a gain of

1.6%, proving that A2-FPN can consistently improve the

performance even with a more powerful backbone.

A2-FPN-Lite is the lightweight setting of A2-FPN in-

cluding three differences, halving the channel (c = 128)

and number (ni = 32(6− i)) of context features, removing

Fbb
6 and generating Fbu

6 from Fbu
5 using max-pooling like

FPN [22], and removing the 3×3 convolution after Fbu
2 like

PAFPN [26]. As shown in Table 1, A2-FPN-Lite improves

the performance of Mask R-CNN by 1.9% mask AP.

Besides, our proposed method works well with differ-

ent frameworks. A2-FPN combined with Cascade Mask

R-CNN leads to a gain of 2.0% and 1.7% for ResNet-50

and ResNet-101, respectively. It is noteworthy thatA2-FPN
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Table 2. Effect of each module in our design. MC: the MGC

module, GE: the GACARAFE module, GP: the GACAP module.

Results are reported on COCO val2017.

MC GE GP APbb AP AP50 AP75 APS APM APL

FPN [22] 37.1 34.1 55.4 36.2 18.4 37.3 46.0

PAFPN [26] 37.6 34.4 55.9 36.4 18.7 37.5 47.2

X 38.6 35.4 57.4 37.5 19.5 38.6 48.3

X 39.4 35.7 57.9 37.8 19.1 39.0 48.6

X 38.3 35.0 56.6 37.2 18.0 38.4 48.3

X X 39.8 36.1 58.6 38.4 20.2 39.4 49.4

X X 38.9 35.5 57.7 37.6 19.0 39.2 48.8

X X 39.6 35.9 58.2 37.9 19.8 39.0 48.9

X X X 40.0 36.2 58.4 38.1 20.1 39.2 49.6

further boosts the performance of HTC by 1.4% when using

ResNet-50 as backbone, while PAFPN only shows a limited

0.1% gain in the extensive study in HTC [5]. Meanwhile,

HTC achieves 40.8% and 42.1% mask AP when using R-

101-A2-FPN and X-101-A2-FPN as backbone, pushing the

powerful HTC by 1.2% and 0.8%, respectively. Particularly,

A2-FPN equipped with HTC achieves 44.0% mask AP un-

der the setting of a ‘2x’ schedule and multi-scale training.

The improvements demonstrate that A2-FPN further im-

proves the multi-scale feature learning of feature pyramid

through attention-guided aggregation. In Figure 5, we show

some examples of instance segmentation results, where A2-

FPN generates more accurate instance masks compared to

the FPN based baseline.

Object Detection Results. We also evaluate A2-FPN

on object detection task as shown in Table 1. By replac-

ing FPN with A2-FPN in Mask R-CNN, the performance

is boosted by 2.6% and 1.8% for ResNet-50 and ResNet-

101. A2-FPN-Lite also boosts the performance of Mask

R-CNN by 2.2%. Moreover, Cascade Mask R-CNN can be

improved by 2.4% and 1.8% correspondingly when using

ResNet-50 and ResNet-101 as backbone. Meanwhile, A2-

FPN equipped with HTC contributes a gain of 1.9%, 1.5%,

and 1.1% for ResNet-50, ResNet-101, and ResNeXt-101,

respectively. When adopting the setting of a ‘2x’ sched-

ule and multi-scale training, A2-FPN achieves 50.4% box

AP. In brief, A2-FPN effectively improves the performance

of state-of-the-art detectors not only on instance segmen-

tation but also on object detection. As shown in Table 1,

A2-FPN brings consistent gains on various backbone net-

works, frameworks, and even different tasks, which verifies

the effectiveness and generalization ability of A2-FPN.

4.4. Ablation Study

In this section, we conduct extensive ablation experi-

ments to analyze the effects of main components in A2-

FPN. Note that the baseline method for all ablation studies

is Mask R-CNN with R-50-PAFPN.

Component-wise Analysis. Firstly, we investigate the

importance of each component in A2-FPN. The base-

Table 3. Ablation study of each module on COCO val2017. “w/

·” indicates A2-FPN only equipped with the module ·.

Method setting APbb AP AP50 AP75 APS APM APL

A2-FPN - 40.0 36.2 58.4 38.1 20.1 39.2 49.6

A2-FPN w/o GCN 39.6 35.9 58.4 38.0 19.2 39.4 49.0

w/ MGC - 38.6 35.4 57.4 37.5 19.5 38.6 48.3

w/ MGC w/o GCN 38.5 35.2 56.9 37.5 19.1 38.7 47.8

w/ GACARAFE - 39.4 35.7 57.9 37.8 19.1 39.0 48.6

w/ CARAFE [37] - 38.9 35.4 57.1 37.6 19.0 38.4 48.7

w/ GACAP - 38.3 35.0 56.6 37.2 18.0 38.4 48.3

w/ CAP - 38.0 34.8 56.2 37.0 17.7 38.0 48.5

line PAFPN is extended from FPN, where the difference

from the original implementation in PANet [26] is that we

do not use Synchronized BatchNorm. And then MGC,

GACARAFE, and GACAP are gradually applied to PAFPN

by substituting the corresponding operations with them.

As shown in Table 2, each module effectively improves

the performance of baseline. Specifically, the MGC mod-

ule boosts both mask AP and box AP by 1.0%. This

benefits from that MGC sufficiently extracts discriminative

features through cross-scale self-attention based on scaled

cosine-similarity attention, and alleviates semantic infor-

mation loss. The GACARAFE module contributes an im-

provement of 1.8% and 1.3% in terms of box AP and mask

AP. Similarly, 0.7% and 0.6% for the GACAP module.

These results indicate that content-aware sampling aggre-

gates more semantic information and attention-guided fu-

sion mitigates the inconsistency between adjacent levels.

Besides, the GACARAFE module plays a key role in the

construction of feature pyramid since there is only one top-

down pathway but two bottom-up pathways.

When combining any two modules, the performance

of baseline is further improved. For example, MGC and

GACARAFE lead to a gain of 2.2% box AP and 1.7% mask

AP. When integrating all three modules together, it achieves

40.0% box AP and 36.2% mask AP, with a gain of 2.4%

and 1.8%. The improvements of APS , APM and APL are

1.4%, 1.7% and 2.4% respectively, suggesting that A2-FPN

is beneficial to various scales, especially the large scale.

Ablation study of each module. As shown in Table 3,

the performance of MGC and A2-FPN degrades by 0.2%

and 0.3% respectively when removing the GCNs. These re-

sults indicate that GCN can model the contextual relations

between context features and benefit the subsequent feature

fusion. Compared with CARAFE [37], GACARAFE fur-

ther leads to a gain of 0.5% box AP and 0.3% mask AP.

Similarly, 0.3% box AP and 0.2% mask AP for GACAP.

These improvements benefit from that GACARAFE and

GACAP aggregate complementary information from adja-

cent features for content-aware sampling and employ chan-

nel attention to enhance the semantic consistency.

Impact of the number of context features. To investi-

gate the impact of ni, the number of context features col-

lected from each level, we conduct contrast experiments

15349



Figure 6. Instance segmentation results of A2-FPN equipped with HTC on COCO val2017.

Table 4. Impact of the number of context features on COCO

val2017. ni means the number of context features collected from

the i-th feature level Fbb

i .

Method ni APbb AP AP50 AP75 APS APM APL

FPN [22] - 37.1 34.1 55.4 36.2 18.4 37.3 46.0

PAFPN [26] - 37.6 34.4 55.9 36.4 18.7 37.5 47.2

w/ MGC 64(i− 1) 38.7 35.4 57.8 37.4 19.2 38.8 48.1

w/ MGC 160 38.8 35.3 57.4 37.6 19.2 38.7 48.2

w/ MGC 64(6− i) 38.6 35.4 57.4 37.5 19.5 38.6 48.3

Table 5. Effectiveness of activation function 2 · sigmoid on

COCO val2017. “Act.” is short for activation function, and σ

means the sigmoid function.

Method Act. APbb AP AP50 AP75 APS APM APL

FPN [22] - 37.1 34.1 55.4 36.2 18.4 37.3 46.0

PAFPN [26] - 37.6 34.4 55.9 36.4 18.7 37.5 47.2

w/ GACARAFE σ 38.9 35.5 57.5 37.7 19.2 38.8 48.3

w/ GACARAFE 2σ 39.4 35.7 57.9 37.8 19.1 39.0 48.6

w/ GACAP σ 38.2 34.8 56.3 37.0 18.3 38.3 47.7

w/ GACAP 2σ 38.3 35.0 56.6 37.2 18.0 38.4 48.3

with different settings. As shown in Table 4, the MGC mod-

ule is robust to the setting of number ni and achieves simi-

lar performance where the difference is only 0.1% at most.

Considering that the more context features from the high

levels, the more parameters are introduced because of high

dimension, we set the hyper-parameters as ni = 64(6− i),
i.e., ni = {256, 192, 128, 64} and n = 640.

Effectiveness of activation function 2 · sigmoid. To

verify the effectiveness of activation function 2 · sigmoid,

we compare it with the conventional function sigmoid in

both GACARAFE and GACAP. As shown in Table 5, the

GACARAFE module with function 2 · sigmoid achieves

39.4% box AP and 35.7% mask AP respectively, which is

0.5% and 0.2% higher than the counterpart with function

sigmoid. Meanwhile, function 2·sigmoid contributes a gain

of 0.1% box AP and 0.2% mask AP in the GACAP module.

The pyramidal features are iteratively reweighted in the fea-

ture fusion, and the final calibration weights are the product

of several activated weights. When using sigmoid as the ac-

tivation function, the mean of channel-wise weights would

be always less than 1 and decay exponentially after succes-

sively reweighting, so that pyramidal features would be sup-

Table 6. Complexity analysis of A2-FPN on COCO val2017.

Method Image Size #FLOPs #Params FPS APbb AP

FPN [22] 1280× 832 283.28G 44.18M 13.1 37.1 34.1

PAFPN [26] 1280× 832 309.05G 47.72M 12.8 37.6 34.4

A2-FPN 1280× 832 375.39G 57.49M 9.5 40.0 36.2

A2-FPN-Lite 1280× 832 319.91G 48.83M 11.1 39.6 36.0

pressed in the iterative fusion. On the contrary, the activa-

tion function 2 ·sigmoid can keep the mean of channel-wise

weights being 1 and excite or restrain features selectively.

4.5. Complexity Analysis

As shown in Table 6, we analyze the complexity of A2-

FPN. A2-FPN adds some computation cost, but A2-FPN-

Lite can reduce it greatly at a small performance sacrifice.

Compared to PAFPN, A2-FPN-Lite improves the perfor-

mance significantly while increases the computation com-

plexity acceptably, proving that the improvement mostly

comes from our attention-guided feature aggregation.

5. Conclusion

We propose Attention Aggregation based Feature Pyra-

mid Network (A2-FPN), which improves multi-scale fea-

ture learning through attention-guided feature aggrega-

tion. A2-FPN extracts discriminative features by collecting-

distributing multi-level global context features, and fuses

adjacent levels using content-aware sampling and channel-

wise reweighting before element-wise addition. Upon var-

ious backbone networks and instance segmentation frame-

works, A2-FPN consistently and substantially improves the

performance of baseline methods.
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