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Abstract
Contrastive learning relies on constructing a collection

of negative examples that are sufficiently hard to discrim-

inate against positive queries when their representations

are self-trained. Existing contrastive learning methods ei-

ther maintain a queue of negative samples over minibatch-

es while only a small portion of them are updated in an

iteration, or only use the other examples from the curren-

t minibatch as negatives. They could not closely track the

change of the learned representation over iterations by up-

dating the entire queue as a whole, or discard the useful

information from the past minibatches. Alternatively, we

present to directly learn a set of negative adversaries play-

ing against the self-trained representation. Two players, the

representation network and negative adversaries, are alter-

nately updated to obtain the most challenging negative ex-

amples against which the representation of positive queries

will be trained to discriminate. We further show that the

negative adversaries are updated towards a weighted com-

bination of positive queries by maximizing the adversari-

al contrastive loss, thereby allowing them to closely track

the change of representations over time. Experiment results

demonstrate the proposed Adversarial Contrastive (AdCo)

model not only achieves superior performances (a top-1 ac-

curacy of 73.2% over 200 epochs and 75.7% over 800 e-

pochs with linear evaluation on ImageNet), but also can be

pre-trained more efficiently with much shorter GPU time

and fewer epochs. The source code is available at https:

//github.com/maple-research-lab/AdCo.

1. Introduction
Learning visual representations in an unsupervised fash-

ion [1, 31, 10, 23, 24, 39] has attracted many attentions as

it greatly reduces the cost of collecting a large volume of
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labeled data to train deep networks. Significant progresses

have also been made to reduce the performance gap with the

fully supervised models. Among them are a family of con-

trastive learning methods [19, 7, 38, 21, 29, 3, 41, 36, 20]

that self-train deep networks by distinguishing the represen-

tation of positive queries from their negative counterparts.

Depending on how the negative samples are constructed, t-

wo large types of contrastive learning approaches have been

proposed in literature [19, 7]. These negative samples play

a critical role in contrastive learning since the success in

self-training deep networks relies on how positive queries

can be effectively distinguished from negative examples.

Specifically, one type of contrastive learning methods

explicitly maintains a queue of negative examples from the

past minibatches. For example, the Momentum Contrast

(MoCo) [19] iteratively updates an underlying queue with

the representations from the current minibatch in a First-In-

First-Out (FIFO) fashion. However, only a small portion

of oldest negative samples in the queue would be updated,

which could not continuously track the rapid change of the

feature representations over iterations. Even worse, the mo-

mentum update of key encoders, which is necessary to sta-

bilize the negative queue in MoCo, could further slow down

the track of the representations. Consequently, this would

inefficiently train the representation network, since partial-

ly updated negatives may not cover all critically challenging

samples thus far that ought to be distinguished from positive

queries to train the network.

Alternatively, another type of contrastive learning meth-

ods [7] abandons the use of such a separate queue of nega-

tive examples. Instead, all negative examples come from the

current minibatch, and a positive query would be retrieved

by distinguishing it from the other examples in the mini-

batch. However, it discards the negative examples from the

past minibatches, and often requires a much larger size of

minibatch so that a sufficient number of negative samples

are available to train the representation network by discrim-

inating against positive queries. This incurs heavy memory
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and computing burden to train over each minibatch for this

type of contrastive learning.

In this paper, we are motivated to address the aforemen-

tioned drawbacks, and the objective is twofold. First, we

wish to construct a set of negative examples that can contin-

uously track the change of the learned representation rather

than updating only a small portion of them. In particular, it

will update negative samples as a whole by making them

sufficiently challenging to train a representation network

more efficiently with fewer epochs. On the other hand, it

will retain the discriminative information from the past it-

erations without depending on a much larger size of mini-

batch to train the network [7]. We will show that in the pro-

posed model, the negative examples are directly trainable

so that they can be integrated as a part of the underlying

network and trained end-to-end together with the represen-

tation. Thus, the trainable negatives are analogous to the ad-

ditional network component in other self-supervised models

without involving negative examples, such as the prediction

MLP of the BYOL [17] that also needs to be trained end-

to-end. More discussions on whether we still need negative

examples can be found in Appendix C.

Particularly, we will present an Adversarial Contrast

(AdCo) model consisting of two adversarial players. One

is a backbone representation network that encodes the rep-

resentation of input samples. The other is a collection of

negative adversaries that are used to discriminate against

positive queries over a minibatch. Two players are alter-

nately updated. With a fixed set of negative adversaries,

the network backbone is trained by minimizing the con-

trastive loss of mistakenly assigning positive queries to neg-

ative samples as in the conventional contrastive learning.

On the other hand, the negative adversaries are updated by

maximizing the contrastive loss, which pushes the negative

samples to closely track the positive queries over the cur-

rent minibatch. This results in a minimax problem to find

an equilibrium as its saddle point solution. Although there

is no theoretical guarantee of convergence, iterative gradi-

ent updates to the network backbone and the negative ad-

versaries work well in practice, which has been observed in

many other adversarial methods [16, 32, 35, 40]. We will

also show that the derivative of the contrastive loss wrt the

negative adversaries reveals how they are updated towards

a weighted combination of positive queries, and gives us an

insight into how the AdCo focuses on low-density queries

compared with an alternative model.

The experiment results not only demonstrate the AdCo

has the superior performance on downstream tasks, but also

verify that it can train the unsupervised networks with fewer

epochs by updating the negative adversaries more efficient-

ly. For example, with merely 10 epochs of pretraining, the

AdCo has a top-1 accuracy of 44.4%, which is almost 5%
higher than that of the MoCo v2 pretrained over the same

number of epochs with the linear evaluation on the ResNet-

50 backbone on ImageNet. It also greatly outperforms the

MoCHi [22] by 4.1% in top-1 accuracy over 800 epochs that

enhances the MoCo v2 with mixed hard negatives, showing

its effectiveness in constructing more challenging negative

adversaries in a principled fashion to pretrain the represen-

tation network.

Moreover, the AdCo achieves a record top-1 accuracy

of 75.7% over 800 epochs compared with the state-of-the-

art BYOL (74.3%) and SWAV (75.3%) models pretrained

for 800 ∼ 1, 000 epochs. This is obtained with the same

or even smaller amount of GPU time than the two top-

performing models. Indeed, the AdCo is computationally

efficient with a negligible cost of updating negative adver-

saries, making it an attractive paradigm of contrast mod-

el having higher accuracies over fewer epochs with no in-

crease in the computing cost.

The remainder of the paper is organized as follows. We

will review the related works in Section 2, and present the

proposed approach in Section 3. By comparing the pro-

posed AdCo with an alternative form of adversarial con-

trastive loss, we will reveal how AdCo focuses on low-

density queries whose representations have not been well

captured in Section 4. We will conduct experiments in Sec-

tion 5 to demonstrate its superior performance in multiple

tasks. Finally, we will conclude in Section 6.

2. Related Works
In this section, we review the related works on unsuper-

vised representation learning. In particular, we will review

two large families of unsupervised learning methods: the

contrastive learning that is directly related with the pro-

posed Adversarial Contrastive Learning (AdCo), and the

alternative approach that instead aims to learns the trans-

formation equivariant features without labeled data. We

will see that while the former explores the inter-instance

discrimination to self-supervise the training of deep net-

works, the latter leverages intra-instance variation to learn

transformation-equivariant representations.

2.1. Contrastive Learning

Originally, contrastive learning [29, 20] was proposed to

learn unsupervised representations by maximizing the mu-

tual information between the learned representation and a

particular context [3, 41, 36]. It usually uses the context of

the same instance to learn representations by discriminating

between positive queries and a collection of negative exam-

ples in an embedding feature space [38, 18, 7]. Among them

is the instance discrimination that has been used as a pretext

task by distinguishing augmented samples from each other

in a minimatch [7], over a memory bank [38], or a dynam-

ic queue [18] with a momentum update. The retrieval of a

given query is usually performed by matching it against an

augmentation of the same sample from a separate collection
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of negative examples. These negative examples play a crit-

ical role to challenge the self-trained representation so that

it can become gradually more discriminative over iterations

to distinguish the presented queries from those hard nega-

tive examples. Recently, Grill et al. [17] propose to train

deep networks by predicting the representation of an im-

age from that of an different augmented view of the same

image. Kalantidis et al. [22] present a feature-level sample

mixing strategies to generate harder meaningful negatives

to further improve network pretraining. However, this dif-

fers from the proposed AdCo that aims to update negative

examples in a more principle way through an adversarial

self-training mechanism.

2.2. Other Unsupervised Methods

An alternative approach to unsupervised representation

learning is based on transformation prediction [39, 15].

On contrary to contrastive learning that focuses on inter-

instance discrimination, it attempts to learn the represen-

tations equivarying to various transformations on 2D ple-

nary images and 3D cloud points [34, 31, 13]. These

transformations are applied to augment training examples

and learn their representations from which the transfor-

mations can be predicted from the captured visual struc-

tures. It focuses on modeling the intra-instance variations

from which transformation-equivariant representations can

be leveraged on downstream tasks such as image classi-

fication [39, 31, 15], object detection [15, 31], semantic

segmentations [15, 30] and 3D cloud points [13]. This

category of methods can be viewed as orthogonal to con-

trastive learning approaches that are based on inter-instance

discrimination. More comprehensive review of recent ad-

vances on unsupervised methods can be found in [33].

3. The Proposed Approach
In this section, we will first briefly review the prelimi-

nary work on contrastive learning and discuss its drawbacks

that motivate the proposed approach in Section 3.1. Then,

we will present the proposed method in Section 3.2 to joint-

ly train the representation network and negative adversaries.

The insight into the proposed approach can be better re-

vealed from the derivative of the adversarial contrastive loss

leading to the update rule for the negative samples in Sec-

tion 3.3.

3.1. Preliminaries and Motivations

We begin by briefly revisiting contrastive learning and its

variants, and discuss their limitations that motivate the pro-

posed work. In a typical contrastive learning method, we

seek to learn an unsupervised representation by minimizing

a contrastive loss L. Specifically, in a minibatch B of N
samples, consider a given query xi and the embedding qi

of its augmentation through a backbone network with the

parametric weights θ. The contrastive learning aims to train

the network θ such that the query q can be distinguished

from a set N = {nk|k = 1, · · · ,K} of the representation-

s of negative samples. Formally, the following contrastive

loss is presented in InfoNCE [29] in a soft-max form,

L(θ) =
−1

N

N∑

i=1

log
exp(q⊺

i
q
′
i/τ)

exp(q⊺

i
q
′
i
/τ) +

∑
K

k=1
exp(q⊺

i
nk/τ)

(1)

where q′
i is the embedding of another augmentation of the

same instance xi, which is considered as the positive exam-

ple for the query qi; and τ is a positive value of temperature.

Then the network can be updated in each minibatch by min-

imizing this loss over θ. Note that the representations of

both queries and negative samples are ℓ2 normalized such

that the dot product results in a cosine similarity between

them.

There are two main categories of methods about how to

construct the set of negative samples N in contrast to pos-

itive queries. These negative samples play a critical role

in self-training unsupervised representations, and deserve a

careful investigation. The first category of contrastive learn-

ing approaches maintain a queue of negative representation-

s that are iteratively updated in a First-In-First-Out (FIFO)

fashion over minibatches [18], while the alternative type of

approaches only adopt the other samples as negatives from

the current minibatch [7].

However, both types suffer some drawbacks. For the first

type of approaches, in each iteration over a minibatch, on-

ly a small portion of negative representations in the queue

are updated, and this results in an under-represented set that

fails to cover the most critical negative samples to train the

representation network, since not all of them have been up-

dated timely to track the change of unsupervised represen-

tations. On the other hand, the other type completely a-

bandons the negative samples from the past minibatches,

which forces them to adopt a much larger size of minibatch

to construct a sufficient number of negative representation-

s. Moreover, only using the other samples from the current

minibatch as negatives discards rich information from the

past.

To address these drawbacks, we propose to actively train

a set of negative examples as a whole in an adversarial fash-

ion, in contrast to passively queueing the negative samples

over minibatches or simply using the other samples from the

current minibatch as negatives. Its advantages are twofold.

First, the entire set rather than only a small portion of neg-

ative representations will be updated as a whole. This en-

ables the learned negative adversaries to not only closely

track the change of the learned representation but also keep

the accumulative information from the past minibatches.

Moreover, the set of negative samples will act as adver-

saries to the representation network θ by maximizing the

contrastive loss, which will result in a minimax problem

to self-train the network. As known in literature, a self-
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supervisory objective ought to be sufficiently challenging

to prevent the learned representation from overfitting to the

objective or finding a bypassing solution that could be trivial

to downstream tasks. In this sense, the adversarially learned

negative set can improve the generalizability of the learned

representation as an explicit adversary to challenge the up-

dated network by engaging the most challenging negative

samples over epochs.

3.2. Adversarial Training of Representation Net­
works and Negative Samples

In this section, we formally present the proposed Adver-

sarial Contrastive Learning (AdCo) of unsupervised repre-

sentations. It consists of two mutually interacted players: a

deep representation network θ embedding input examples

into feature vectors, and a set N of negative adversaries

closely tracking the change of the learned representation.

While negative adversaries contain the most critical exam-

ples that are supposed to be confused with given queries to

challenge the representation network, the network is self-

trained to continuously improve its discrimination ability to

distinguish positive queries from those challenging nega-

tive adversaries. Eventually, we hope an equilibrium can

be reached where the learned representation can achieve a

maximized performance.

Formally, this results in the following minimax problem

to train both players jointly with the adversarial contrastive

loss L as in (1),

θ⋆,N ⋆ = argmin
θ

max
N
L(θ,N ) (2)

where the embedding qi of each query in the current mini-

batch are a function of network weights θ, and thus we op-

timize over θ through them; the negative adversaries in N
are treated as free variables directly, which are unit-norm

vectors subject to ℓ2-normalization.

As in many existing adversarial training algorithms, it is

hard to find a saddle point (θ⋆,N ⋆) solution to the above

minimax problem. Usually, a pair of gradient descent and

ascent are applied to update them, respectively

θ ←− θ − ηθ
∂L(θ,N )

∂θ
(3)

nk ←− nk + ηN
∂L(θ,N )

∂nk

1 (4)

for k = 1, · · · ,K, where ηθ and ηN are the positive learn-

ing rates for updating the network and negative adversaries.

Although no theory guarantees the convergence to the sad-

dle point, it works well in our experiments by alternately

updating θ and N .

1Strictly speaking, the update of nk ought to be performed by taking

the derivative of L wrt the one prior to ℓ2-normalized. However, to ease

the exposition later, we simply adopt the derivative wrt the normalized

embedding without the loss of generality.

Before we take an insight into the updated nk’s, an in-

tuitive explanation can be given by noticing that the co-

sine similarities between the negative samples nk’s and the

queries qi in the denominator of (1) are maximized when

L(θ,N ) is maximized for the adversarial training of N . In

other words, this tends to push the negative samples closer

towards the queries from the current minibatch, thus result-

ing in challenging negatives closely tracking the change of

the updated network.

3.3. Derivatives of The AdCo Loss

Let us look into the update rule (4) for the negative sam-

ples nk, k = 1, · · · ,K. It is not hard to show that the

derivative of the adversarial loss in updating a negative sam-

ple nk is

∂L

∂nk

=
1

Nτ

N∑

i=1

exp(q⊺

i
nk/τ) · qi

exp(q⊺

i
q
′
i
/τ) +

∑
K

k=1
exp(q⊺

i
nk/τ)

(5)

where the first factor can be viewed as the conditional prob-

ability of assigning the query qi to a negative sample nk,

p(nk|qi) ,
exp(q⊺

i nk/τ)

exp(q⊺

i q
′
i/τ) +

∑K

k=1 exp(q
⊺

i nk/τ)

This is a valid probability because it is always nonnegative

and the sum of all such conditional probabilities is one, i.e.,

p(q′
i|qi) +

K∑

k=1

p(nk|qi) = 1.

Now the derivative (5) can be rewritten as

∂L

∂nk

=
1

Nτ

N∑

i=1

p(nk|qi) qi. (6)

This reveals the physical meaning by updating each neg-

ative sample nk along the direction given by a p(nk|qi)-
weighted combination of all the queries qi over the current

minibatch. The more likely a negative sample is assigned to

a query, the closer the sample is pushed towards the query.

This will force the negative samples to continuously track

the queries that are most difficult to distinguish, and thus

give rise to a challenging set of adversarial negative sam-

ples to more critically train the underlying representation.

Moreover, this adversarial update also tends to cover low-

density queries that have not been well captured by the cur-

rent set of negative samples, which we will discuss in the

next section.

4. Further Discussions
In this section, first we will present an alternative of

the proposed AdCo in Section 4.1. Then, based on it, we

will review the derivative of the AdCo loss in Section 4.2,

and show that it seeks to adapt negative adversaries to low-

density queries, thereby allowing more efficient adversarial

training of the representation network.
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4.1. An Alternative of AdCo

An alternative adversarial loss can be motivated from (6).

One can adopt another form of conditional probability as

the weighting factor by constructing a new adversarial loss

J (θ,N ) to train the negative adversaries. In particular, we

may consider the conditional probability p(qi|nk) in place

of p(nk|qi) used in (6). This turns out to be a more natural

choice since the derivative becomes the conditional expec-

tation of the query qi’s, i.e.,

∂J (θ,N )

∂nk

=

N∑

i=1

p(qi|nk) qi , Ep(qi|nk) [qi|nk] . (7)

In this case, it is not hard to verify that the corresponding

adversarial loss J satisfying the above derivative relation

can be defined as

max
N
J (θ,N ) , −τ ·

K∑

k=1

log
1

∑N

i=1 exp(q
⊺

i nk/τ)

with the following conditional probability of assigning the

negative sample nk to a target query qi

p(qi|nk) =
exp(q⊺

i nk/τ)∑N

i=1 exp(q
⊺

i nk/τ)

Similarly, it is not hard to show that this is a valid condition-

al probability by verifying it is nonnegative and satisfies its

sum being one. Then, the negative samples are updated by

gradient ascent on J (θ,N) over nk’s.

4.2. Adapting to Low­Density Queries

Although the derivative of this adversarial loss J em-

bodies a more explicit meaning as in (7), our preliminary

experiments with this loss to update negative samples per-

form worse than that of the AdCo in (2). This probably

is due to the fact that the loss J does not directly adverse

against the contrastive loss L used to train the embedding

network θ. Thus, the generated negative samples may not

provide sufficiently hard negative samples as direct adver-

saries to the contrastive loss (2) used to train the represen-

tation network.

Indeed, by applying the Bayesian rule to p(nk|qi), the

derivative in (6) can be rewritten as

∂L

∂nk

∝
N∑

i=1

p(qi|nk)p(nk)

p(qi)
qi = p(nk)Ep(qi|nk) [q̃i|nk]

where q̃i ,
qi

p(qi)
is the embedded query qi normalized by

p(qi), and we put p(nk) outside the conditional expectation

by viewing nk as a constant in the condition.

It is not hard to see that for a low-density query qi with

a smaller value of p(qi), it has a larger value of the nor-

malized query q̃i. Thus, the resultant derivatives will push

negative adversaries closer to such low-density queries that

have not been well represented by the negative examples 2.

This will enable more efficient training of the representa-

tion network with the negative adversaries updated to cover

these under-represented queries.

For this reason, we will still use the AdCo loss (2) to

jointly train the negative adversaries and the network in our

experiments. However, the loss (7) derived from the condi-

tional expectation provides an insight into some future di-

rection to alterative forms of adversarial loss to train nega-

tive samples. While this gives us an alternative explanation

of the proposed method, it could have some theoretical val-

ue that deserves further study in future.

5. Experiments

In this section, we conduct experiments on the proposed

AdCo model and compare it with the other existing unsu-

pervised methods.

5.1. Training Details

For the sake of fair and direct comparison with the exist-

ing models [18, 7], we adopt the ResNet-50 as the backbone

for unsupervised pretraining on ImageNet. The output fea-

ture map from the top ResNet-50 block is average-pooled

and projects to a 128-D feature vector through two-layer

MLP (2048-D hidden lyaer with the ReLU) [7]. The re-

sultant vector is ℓ2 normalized to calculate the cosine sim-

ilarity. We apply the same augmentation proposed in the

SimCLR [7] and adopted by the other methods [18, 8] to

augment the images over each minibatch. Although it was

reported in literature that carefully tuning the augmenta-

tion may improve the performance, we do not adopt it for a

fair comparison with the other unsupervised methods while

avoiding over-tuning the image augmentation strategy on

the dataset.

For the unsupervised pretraining on ImageNet, we use

the SGD optimizer ([4]) with an initial learning rate of 0.03
and 3.0 for updating the backbone network and the nega-

tive adversaries, respectively, where a weight decay of 10−4

and a momentum of 0.9 are also applied. Cosine sched-

uler ([27]) is used to gradually decay the learning rate. We

also choose a lower temperate (τ = 0.02) to update the neg-

ative adversaries than that (τ = 0.12) used for updating the

backbone network. This makes the updated negative adver-

saries sharper in distinguishing themselves from the posi-

tive images, and thus they will be nontrivially challenging

examples in training the network.

The batch size is set to 256. When multiple GPU server-

s are used, the batch size will be multiplied by the num-

2From p(qi) =
∑

K

k=1
p(qi|nk)p(nk), a low-density query qi

should have a small value of p(qi|nk) for high-density negative adver-

saries nk’s, which means the query should be far apart from the dense

negative examples in the embedding space.
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Table 1: Top-1 accuracy under the linear evaluation on ImageNet

with the ResNet-50 backbone. The table compares the methods

over 200 epochs of pretraining.

Method Batch size Top-1

InstDisc [38] 256 58.5

LocalAgg [41] 128 58.8

MoCo [19] 256 60.8

SimCLR [7] 256 61.9

CPC v2 [20] 512 63.8

PCL v2 [25] 256 67.6

MoCo v2 [8] 256 67.5

MoCHi [22] 512 68.0

PIC [5] 512 67.6

SWAV* [6] 256 72.7

AdCo 256 68.6

AdCo* 256 73.2

∗ with multi-crop augmentations.

Table 2: Running time (in hours) for different methods. The last

column shows the total GPU time per epoch.

Method Epoch GPU (GPU·Time)/Epoch

MoCo v2 [8] 200 8×V100 2.12

BYOL [17] 1000 512×TPU 4.10

SWAV* [6] 200 64×V100 4.06

AdCo 200 8×V100 2.26

AdCo* 200 8×V100 4.39

∗ with multi-crop augmentations.

ber of servers by convention. The number of negative ad-

versaries is set to 65, 536, which is the same as the queue

length of negative examples in MoCo [18]. All negative ad-

versaries are also ℓ2-normalized in each iteration to have an

unit norm after they are updated by the SGD optimizer. The

backbone network is first initialized, and its output feature

vectors over randomly drawn training images are used to

initialize the set of negative examples. Once the initializa-

tion is done, both the representation network and negative

adversaries will be alternately updated by the AdCo.

5.2. Experiment Results

After the backbone network is pretrained, the resultant

network will be evaluated on several downstream tasks.

5.2.1 Linear Classification on ImageNet

First, we compare the proposed AdCo with the other meth-

ods in terms of top-1 accuracy. A linear fully connected

classifier is fine-tuned on top of the frozen 2048-D feature

vector out of the pretrained ResNet-50 backbone. The lin-

Table 3: Top-1 accuracy under the linear evaluation on ImageNet

with the ResNet-50 backbone. The table compares the methods

with more epochs of network pretraining.

Method Epoch Batch size Top-1

Supervised - - 76.5

BigBiGAN[11] - 2048 56.6

SeLa[2] 400 256 61.5

PIRL[28] 800 1024 63.6

CMC[36] 240 128 66.2

SimCLR[7] 800 4096 69.3

PIC[5] 1600 512 70.8

MoCo v2[8] 800 256 71.1

MoCHi [22] 800 512 68.7

BYOL **[17] 1000 4096 74.3

SWAV*[6] 800 4096 75.3

AdCo 800 256 72.8

AdCo* 800 1024 75.7

∗ with multi-crop augmentations.
∗∗ fine-tuned with a batch size of 1024 over 80 epochs.

ear layer is trained for 100 epochs, with a learning rate of

10 with the cosine learning rate decay and a batch size of

256.

Table 1 reports experiment results with the backbone net-

work pretrained for 200 epochs. We note that the state-of-

the-art SWAV model has applied multi-crop augmentations

to pretrain the model. Thus for the sake of a fair compari-

son, in addition to the single-crop model, we also report the

result by applying five crops (224x224, 192x192, 160x160,

128x128, and 96x96) over minibatch images during the pre-

training. The result shows the proposed AdCo achieves the

best performance among the compared models. It not only

outperforms the SOTA SWAV model in the top-1 accuracy

over 200 epochs, but also has a computing time on par with

the top-performing contrast models in terms of GPU·Time

per epoch as shown in Table 2. It is not surprising since the

computing overhead for updating the negative adversaries

is negligible compared with that for updating the backbone

network.

Note that some methods such as the BYOL [17] and the

SimCLR [7] used symmetric losses by swapping pairs of

augmented images to improve the performance. For a fair

comparison, we also symmetrize the AdCo loss, and show

in Appendix A that it obtains a competitive top-1 accura-

cy of 70.6% over 200 epochs of pre-training based only on

single-crop augmentation with much shorter GPU time and

a smaller batch size. We refer the readers to the appendix

for more details. In Appendix C, we also seek the answer to

an emerging question – do we still need negative samples to

pre-train deep networks while the BYOL does not? .

We also compare the results over more epochs in Table 3.
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While the AdCo* has the running time on par with the other

top-2 best models (SWAV and BYOL) during the pretrain-

ing (see Table 2), it has achieved a record top-1 accuracy

of 75.7% with linear evaluation on the ImageNet after 800
epochs of pretraining. Even without multi-crop augmenta-

tions, the AdCo also outperforms the top-performing MoCo

v2 [8] (72.8% vs. 71.1%) and the variant MoCHi (72.8%

vs. 68.7%) [22] that enhances the MoCo v2 with mixed

hard negative examples. This demonstrates that the AdCo

is much more effective in constructing challenging negative

examples to pre-train the representation network than not

only the typical contrast model like the MoCo v2 but also

its variant explicitly mining hard samples.

5.2.2 Transfer Learning and Object Detection

We also evaluate the ResNet-50 pretrained on ImageNet

for two downstream tasks – cross-dataset transfer learning

and object detection. For the transfer learning on the VOC

dataset [12], we keep the pretrained ResNet-50 backbone

frozen, fine-tune the linear classifier on VOC07trainval, and

test on the VOC07test. We also train a linear classifier with

the pretrained ResNet-50 on the Places dataset by following

the previous evaluation protocol in literature [7, 8, 6].

For object detection, we adopt the same protocol in [19]

to fine-tune the pretrained ResNet-50 backbone based on

detectron2 [37] for a direct comparison with the other meth-

ods. On the VOC dataset [12], the detection network is

fine-tuned with VOC07+12 trainval dataset and tested on

VOC07 test set. On the COCO dataset [26], the detection

network is fine-tuned on the train2017 dataset with 118k

images, and is evaluated on the val2017 dataset.

Table 4 shows the proposed AdCo achieves much com-

petitive results on both tasks, suggesting the AdCo has bet-

ter generalizability to the downstream tasks than many com-

pared methods. For example, it has achieved a much higher

accuracy of 93.1% for the VOC07 classification task than

the SWAV (88.9%) based on the linear evaluation on the

pretrained network, even without multi-crop augmentation-

s. Moreover, the COCO dataset is well known for its chal-

lenging small object detection task measured by APS , and

the result shows that the AdCo can significantly improve the

APS by 3.3%−3.6% no matter if multi-crop augmentations

are applied. This is a striking result as the SWAV with the

multi-crop augmentations is even worse than the MoCo v2.

This implies that the negative adversaries constructed by the

AdCo may correspond to small objects, which in turn push-

es the associated network to learn the representation highly

discriminative in recognizing these challenging objects.

5.3. Analysis and Visualization of Results

First, we perform a comparative study of how the top-1

accuracy of AdCo and MoCo v2 changes over epochs. As

Figure 1: Top-1 accuracy of AdCo and MoCo V2 on ImageNet

fine-tuned with a single fully connected layer upon the backbone

ResNet-50 networks pretrained over up to 200 epochs. For a fair

comparison, the AdCo maintains the same size (K = 65, 536) of

negative samples as in MoCo v2 so that both models are directly

compared under various numbers of epochs. With an extremely

small number of 10 epochs, the AdCo performs much better than

the MoCo v2 by more than 5% in top-1 accuracy. As the epoch

increases, the AdCo usually achieves the performance comparable

to that of the MoCo v2 with about 30 ∼ 50 fewer epochs. This

shows the AdCo is more efficient in constructing a more critical

collection of negative adversaries to improve network pretraining.

the state-of-the-art contrast model, the MoCo v2 also main-

tains a set of negative examples that play a critical role to

train the representation network. As illustrated in Figure 1,

we plot the curve of their top-1 accuracies on ImageNet with

a linear evaluation on the pretrained backbone under vari-

ous numbers of epochs. The same number of K = 65, 536
negative examples are used in both models to ensure a fair

comparison.

With an extreme small number of epochs, the result

shows that the AdCo greatly outperforms the MoCo v2 by

a significant margin. With 10 epochs the top-1 accuracy of

the AdCo is 5% higher than that of the MoCo v2. With

more epochs, the AdCo can reach the same level of accu-

racy with about 30 ∼ 50 fewer epochs than the MoCo v2.

This shows the AdCo can serve as an efficient paradigm of

contrast model with fewer epochs of pretraining that does

not increasing the computing cost as shown in Table 2.

We also compare the obtained negative examples by the

AdCo and MoCo v2 by plotting t-SNE visualization in Fig-

ure 2. We note that the MoCo v2 has more outliers of nega-

tive examples than the AdCo. These negative outliers form

many small clusters that are isolated from most of batch

examples in the learned representation space. Thus, they

have little contributions to the contrastive training of the

representation network as it is much easier to distinguish

these negative outliers from positive batch examples. On the

contrary, with fewer negative outliers, the AdCo can more

71080



Table 4: Transfer learning results on cross-dataset classification and object detection tasks.

Classification Object Detection

VOC07 Places205 VOC07+12 COCO

Method Epoch mAP Top-1 AP50 AP APS

Supervised - 87.5 53.2 81.3 40.8 20.1

NPID++ [38] 200 76.6 46.4 79.1 - -

MoCo [19] 800 79.8 46.9 81.5 - -

PIRL [28] 800 81.1 49.8 80.7 - -

PCLv2 [25] 200 85.4 50.3 78.5 - -

BoWNet [14] 280 79.3 51.1 81.3 - -

SimCLR [7] 800 86.4 53.3 - - -

MoCo v2 [8] 800 87.1 52.9 82.5 42.0 20.8

SWAV* [6] 800 88.9 56.7 82.6 42.1 19.7

AdCo 800 93.1 53.7 83.1 41.8 24.1

AdCo* 800 92.4 56.0 83.0 42.2 24.5

∗ with multi-crop augmentations.

(a) AdCo (b) MoCo v2

Figure 2: t-SNE visualization of negative representations obtained by the AdCo and the MoCo in the 2D representation

plane, alongside positive examples from the most recent six minibatches after 200 epochs of pretraininig on the ImageNet.

The figure shows that the AdCo has fewer outliers of negative examples than the MoCo v2, and thus more closely tracks the

representation of positive samples over epochs.

closely track the representation of batch examples over iter-

ations, and thus efficiently train the representation network

with more challenging negative adversaries.

More experiment results on the impact of various model

designations and hyperparameters are presented in the ap-

pendix of this paper.

6. Conclusions

This paper presents an Adversarial Contrast (AdCo)

model by learning challenging negative adversaries that can

be used to criticize and further improve the representation

of deep networks. Compared with existing methods accu-

mulating negative examples over the past minibatches and

the other queries from the current minibatch, these nega-

tive adversaries in the AdCo are obtained by maximizing

the adversarial contrastive loss of mis-assigning each pos-

itive query to negative samples. This updates the negative

examples as a whole to closely track the changing repre-

sentation, thus making it more challenging to distinguish

them from positive queries. Consequently, the representa-

tion network must be efficiently updated to produce more

discriminate representation. By analyzing the derivative of

the adversarial objective, we show that each negative adver-

sary is pushed towards a weighted combination of positive

queries. Experiment results on multiple downstream tasks

demonstrate its superior performances and the efficiency in

pretraining the representation network.
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