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Abstract

We propose a causal framework to explain the catas-

trophic forgetting in Class-Incremental Learning (CIL) and

then derive a novel distillation method that is orthogonal

to the existing anti-forgetting techniques, such as data re-

play and feature/label distillation. We first 1) place CIL

into the framework, 2) answer why the forgetting happens:

the causal effect of the old data is lost in new training, and

then 3) explain how the existing techniques mitigate it: they

bring the causal effect back. Based on the causal frame-

work, we propose to distill the Colliding Effect between

the old and the new data, which is fundamentally equiva-

lent to the causal effect of data replay, but without any cost

of replay storage. Thanks to the causal effect analysis, we

can further capture the Incremental Momentum Effect of the

data stream, removing which can help to retain the old ef-

fect overwhelmed by the new data effect, and thus alleviate

the forgetting of the old class in testing. Extensive exper-

iments on three CIL benchmarks: CIFAR-100, ImageNet-

Sub&Full, show that the proposed causal effect distillation

can improve various state-of-the-art CIL methods by a large

margin (0.72%–9.06%). 1

1. Introduction

Any learning systems are expected to be adaptive to the

ever-changing environment. In most practical scenarios, the

training data are streamed and thus the systems cannot store

all the learning history: for animate systems, the neurons

are genetically designed to forget old stimuli to save en-

ergy [6, 34]; for machines, old data and parameters are dis-

carded due to limited storage, computational power, and

bandwidth [28, 44, 50]. In particular, a practical learning

task as Class-Incremental Learning1 (CIL) [1, 13, 35, 47]

is studied, where each incremental data batch consists of

new samples and their corresponding new class labels. The

1Code is available at https://github.com/JoyHuYY1412/

DDE_CIL
1There are also other settings like task-incremental [14, 26].
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Figure 1: Forgetting and existing anti-forgetting solutions in

Class-Incremental Learning at step t and t+ 1. (a): Forget-

ting happens when the features are overridden by the t + 1
step training only on the new data. (b): The key to mitigate

forgetting is to impose data, feature, and label effects from

step t on step t+ 1.

key challenge of CIL is that discarding old data is espe-

cially catastrophic for deep-learning models, as they are in

the data-driven and end-to-end representation learning na-

ture. The network parameters tuned by the old data will be

overridden by the SGD optimizer using new data [11, 33],

causing a drastic performance drop — catastrophic forget-

ting [36, 10, 28] — on the old classes.

We illustrate how CIL forgets old classes in Figure 1 (a).

At step t, the model learns to classify “dog” and “zebra”;

at the next step t+1, it updates with new classes “hare” and

“robin”. If we fine-tune the model only on the new data, old

features like “stripe” and “furry” will be inevitably overrid-

den by new features like “long-ear” and “feather”, which

are discriminative enough for the new classes. Therefore,

the new model will lose the discriminative power — forget

— about the old classes (e.g., the red “zebra” at step t+ 1).

To mitigate the forgetting, as illustrated in Figure 1

(b), existing efforts follow the three lines: 1) data re-

play [35, 13, 25], 2) feature distillation [13, 9], and 3) la-
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bel distillation [1, 47]. Their common nature is to impose

the old training effect on the new training (the red arrows in

Figure 1 (b), which are formally addressed in Section 3.3).

To see this, for replay, the imposed effect can be viewed

as including a small amount of old data (denoted as dashed

borders) in the new data; for distillation, the effect is the

features/logits extracted from the new data by using the old

network, which is imposed on the new training by using the

distillation loss, regulating that the new network behavior

should not deviate too much from the old one.

However, the distillation is not always coherent with the

new class learning — it will even play a negative role at

chances [42, 43]. For example, if the new data are out-

of-distribution compared to the old one, the features of the

new data extracted from the old network will be elusive,

and thus the corresponding distillation loss will mislead the

new training [23, 20]. We believe that the underlying rea-

son is that the feature/label distillation merely imposes its

effect at the output (prediction) end, violating the end-to-

end representation learning, which is however preserved by

data replay. In fact, even though that the ever-increasing

extra storage in data replay contradicts with the require-

ment of CIL, it is still the most reliable solution for anti-

forgetting [35, 45, 5]. Therefore, we arrive at a dilemma:

the end-to-end effects of data replay are better than the

output-end effects of distillation, but the former requires ex-

tra storage while the latter does not. We raise a question: is

there a “replay-like” end-to-end effect distillation?

In this paper, we positively answer this question by fram-

ing CIL into a causal inference framework [31, 29], which

models the causalities among data, feature, and label at any

consecutive t and t+1 learning steps (Section 3.1). Thanks

to it, we can explain the reasons 1) why the forgetting hap-

pens: the causal effect from the old training is lost in the

new training (Section 3.2), and 2) why data replay and fea-

ture/label distillation are anti-forgetting: they win the effect

back (Section 3.3). Therefore, the above question can be

easily reduced to a more concrete one: besides replay, is

there another way to introduce the causal effect of the old

data? Fortunately, the answer is yes, and we propose an

effective yet simple method called: Distilling Colliding Ef-

fect (Section 4.1), where the desired end-to-end effect can

be distilled without any replay storage. Beyond, we find

that the imbalance between the new data causal effect (e.g.,

hundreds of samples per new class) and the old one (e.g.,

5–20 samples per old class) causes severe model bias on the

new classes. To this end, we propose an Incremental Mo-

mentum Effect Removal method to remove the biased data

causal effect that causes forgetting (Section 4.2).

Through extensive experiments on CIFAR-100 [18] and

ImageNet [7], we observe consistent performance boost

by using our causal effect distillation, which is agnostic

to methods, datasets, and backbones. For example, we

improve the two previously state-of-the-art methods: LU-

CIR [13] and PODNet [9], by a large margin (0.72%–

9.06%) on both benchmarks. In particular, we find that the

improvement is especially larger when the replay of the old

data is fewer. For example, the average performance gain is

16.81% without replay, 7.05% with only 5 samples per old

class, and 1.31% with 20 samples per old class on CIFAR-

100. The results demonstrate that our distillation indeed

preserves the causal effect of data.

2. Related Work

Class Incremental Learning (CIL). Incremental learning

aims to continuously learn by accumulating past knowl-

edge [2, 19, 24]. Our work is conducted on CIL bench-

marks, which need to learn a unified classifier that can

recognize all the old and new classes combined. Exist-

ing works on tackling the forgetting challenge in CIL can

be broadly divided into two branches: replay-based and

distillation-based, considering the data and representation,

respectively. Replay-based methods include a small per-

centage of old data in the new data. Some works [35, 1,

13, 47, 21] tried to select a representative set of samples

from the old data, and others [25, 38, 15, 16] used syn-

thesized exemplars to represent the distribution of the old

data. Distillation-based methods combine the regulariza-

tion loss with the standard classification loss to update the

network. The regularization term is calculated between the

old and new networks to preserve previous knowledge when

learning new data [12, 22]. In practice, they enforce fea-

tures [13, 9] or predicted label logits [1, 47, 25] of the new

model to be close to those of the old model. Our work aims

to find a “data-free” solution to distill the effect of old data

without storing them. Our work is orthogonal to previous

methods and brings consistent improvement to them.

Causal Inference [31, 37]. It has been recently introduced

to various computer vision fields, including feature learn-

ing [3, 46], few-shot classification [49], long-tailed recog-

nition [40], semantic segmentation [8] and other high-level

vision tasks[41, 32, 48, 27]. Using causal inference in CIL

can help formulate the causal effect of all the ingredients,

point out the forgetting is all about the vanishing old data

effect, and thus anti-forgetting is to retrieve it back.

3. (Anti-) Forgetting in Causal Views

3.1. Causal Graphs

To systematically explain the (anti-)forgetting in CIL in

terms of the causal effect of the old knowledge, we frame

the data, feature, and label in each incremental learning

step into causal graphs [29] (Figure 2). The causal graph

is a directed acyclic Bayesian graphical model, where the

nodes denote the variables, and the directed edges denote

the causality between two nodes.

3958



Specifically, we denote the old data as D; the training

samples in the new data as I; the extracted features from

the current and old model as X and Xo, respectively; the

predicted labels from the current and old model as Y and

Yo, respectively. The links in Figure 2 are as follows:

I → X → Y. I → X denotes that the feature X is ex-

tracted from the input image I using the model backbone,

X → Y indicates that the label Y is predicted by using the

feature X with the classifier.

(D,I) → Xo & (D,Xo) → Yo. Given the new input

image I , using the old model trained on old data D, we can

get the feature representation Xo in the old feature space.

Similarly, the predicted logits Yo in the old class vocabulary

can be obtained by using the feature representation Xo and

old classifier trained on D. These two causal sub-graphs

denote the process of interpreting each new image I using

the previous model trained on old data D.

D → I. As the data replay strategy stores the old data and

mixes them with the new, this link represents the process of

borrowing a subset of the old data from D, and thus affect-

ing the new input images I .

Xo → X & Yo → Y. The old feature representation Xo

(old logits Yo) regularizes the new feature X (new logits Y )

by the feature (logits) distillation loss.

Xo 6→ X. Though the new model is initialized from the

old model, the effect of initial parameters adopted from the

old model will be exponentially decayed towards 0 during

learning [17], and thus is neglected in this case.

3.2. Forgetting

Based on the graph, we can formulate the causal effect

between variables by causal intervention, which is denoted

as the do(·) operation [30, 31]. do(A = a) is to forcibly and

externally assign a certain value a to the variable A, which

can be considered as a “surgery” on the graph by removing

all the incoming links of A, making its value independent

of its parents (causes). After the surgery, for any node pair

A and B, we can estimate the effect of A on B as P (B |
do(A=a)) − P (B |do(A=0)), where do(A=0) denotes

the null intervention, e.g., the baseline compared to A = a.
To investigate why the forgetting happens in the new

training process, we consider the difference between the
predictions Y with and without the existence of old data
D. For each incremental step in CIL, the effect of old data
D on Y for each image is formulated as:

EffectD = P (Y =y | do(D=d))− P (Y =y | do(D=0))

= P (Y =y | D=d)− P (Y =y | D=0), (1)

where P (Y |do(D)) = P (Y |D) since D has no parents.
As observed in Figure 2 (a), all the causal paths from D

to Y is blocked by colliders. Interested readers may jump
to the first paragraph of Section 4 to know the collider prop-
erty. For example, the path D → Xo ← I → X → Y is
blocked by the collider Xo. Therefore, we have:

𝑫
𝑰

𝒀𝒐 𝑫
𝑰

𝒀𝒐
𝒀
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Figure 2: The proposed causal graphs explaining the forget-

ting and anti-forgetting in CIL. We illustrate the meaning of

each node in the CIL framework in (a). The comparison be-

tween (a)-(d) shows the key to combating forgetting is the

causal effect of old data.

EffectD = P (Y =y | D=d)− P (Y =y | D=0)

= P (Y = y)− P (Y = y) = 0. (2)

The zero effect indicates that D has no influences on Y in

the new training — forgetting.

3.3. Anti­Forgetting

Now we calculate the causal effect EffectD when us-

ing existing anti-forgetting methods: data replay and fea-

ture/label distillation as follows:

Data Replay. Since the data replay strategy introduces a
path from D to I as in Figure 2 (b), D and I is no longer in-
dependent with each other. By expanding Eq. (1), we have:

EffectD=
∑

I
P (Y | I,D = d) P (I | D = d)

−
∑

I
P (Y | I,D = 0) P (I | D = 0)

=
∑

I
P (Y |I) (P (I |D=d)− P (I |D=0)) 6= 0, (3)

where P (I | D=d)−P (I | D=0) 6= 0 due to the fact that

the replay changes the sample distribution of the new data,

and P (Y | I,D)=P (Y | I) as I is the only mediator from

D to Y . It is worth noting that as the first term P (Y | I,D)
is calculated in an end-to-end fashion: from the data I to

the label prediction Y , data replay takes the advantages of

the end-to-end feature representation learning.

Feature & Label Distillation. Similarly, as the causal links

Xo → X and Yo → Y are introduced into the graph by

using feature and logits distillation, the path D → X and

D → Y are unblocked. Take the feature distillation for

example, substituting X for I in Eq. (3), we have

EffectD=
∑

X

P (Y |X) (P (X |D=d)−P (X |D=0)) 6= 0, (4)
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where P (X |D = d)−P (X |D = 0) 6= 0 because the old

network regularizes the new feature X via the distillation.

Note that P (Y | X) is not end-to-end as that in data replay.

Thanks to the causal graphs in Figure 2, we explain how

the forgetting is mitigated by building unblocked causal

paths between D and (I,X, Y ), and then introduce the non-

zero EffectD. Most of the recent works in CIL can be con-

sidered as the combinations of these cases in Figure 2 (b)-

(d). For example, iCaRL [35] is the combination of (b) and

(d), where old exemplars are stored and the distillation loss

is calculated from soft labels. LUCIR [13], which adopts

the data replay and applies a distillation loss on the features

while fixing old class classifiers, can be viewed as an inte-

gration of (b), (c), and (d).

4. Distilling Causal Effect of Data

Thanks to the causal views, we first introduce a novel

distillation method that fundamentally equals to the causal

effect of data replay, but without any cost of replay storage

(Section 4.1 and Algorithm 1). Then, we remove the over-

whelmed new data effect to achieve balanced prediction for

the new and old classes (Section 4.2 and Algorithm 2).

Algorithm 1 One CIL step with Colliding Effect Distillation

1: Input : I, Ωo ⊲ new training data, old model

2: Output : Ω ⊲ new model

3: Ω ← Ωo ⊲ initialize new model

4: Xo ← Ωo(I) ⊲ represent new images in old features

5: repeat for I ∈ I
6: NK ← K-NEAREST-NEIGHBOR(Ωo(I ),Xo)
7: P (Y |N1), . . . , P (Y |NK)← Ω(NK )
8: W1, . . . ,WK ← WEIGHTASSIGN(K) ⊲ Eq. (7)

9: Effect ←
∑K

j=1 Wj P(Y |Nj ; Ω)
10: Ω ← argmin

Ω

(− log(Effect))

11: until converge

4.1. Distilling Colliding Effect

As we discussed in Eq. (3), to introduce the end-to-end

data effect, the path between D and I is linked by replaying

old data. However, the increasing storage contradicts the

original intention of CIL [35]. Is there another way around

to build the path between D and I without data replay?

Reviewing the causal graph in Figure 1 (a), we observe

the silver lining behind the collider Xo: If we control the

collider Xo, i.e., condition on Xo, nodes D and I will be

correlated with each other, as shown in Figure 3 (a). We

call this Colliding Effect [31], which can be intuitively un-

derstood through a real-life example: a causal graph Intel-

ligence→ Grades← Effort representing a student’s grades

are determined by both the intelligence and hard work. Usu-

ally, a student’s intelligence is independent of whether she

works hard or not. However, considering a student who got

Algorithm 2 CIL with Incremental Momentum Effect Removal

1: Input : I1, I2, . . . , IT ⊲ training data of T steps

2: Input : I ⊲ a testing image

3: For t ∈ 1, 2, . . . , T ⊲ each CIL step

4: α, β, ht ← MOVINGAVERAGE(It; Ωt) ⊲ training

5: h← (1− β) ht−1 + β ht ⊲ head direction

6: X ← FEATUREEXTRACTOR(I) ⊲ inference

7: Y ← CLASSIFIER(X − xh) ⊲ Eq. (8)

good grades and knowing that she is not smart, it tells us

immediately that she is most likely hard-working, and vice

versa. Thus, two independent variables become dependent

upon knowing the value of their joint outcome: the collider

variable (Grades).

Based on Eq. (1), after conditioning on Xo, the effect of
old data can be written as:

EffectD=
∑

I

P (Y |I,Xo) (P (I |Xo,D=d)− P (I |Xo,D=0))

=
∑

I
P (Y | I) W (I,Xo, D), (5)

where P (Y |I,Xo) = P (Y |I) since I is the only mediator

from Xo to Y , and the underlined term can be denoted as a

weight term W (I,Xo, D). By calculating the classification

P (Y |I= i) and the weight W (I= i,Xo, D), we can distill

the colliding effect into the new learning step without old

data replay.

Intuitively, the value of W (I = i,Xo, D) (written as W
below for simplicity) implies the likelihood of one image

sample I = i given Xo = xo extracted by model trained on

D = d, that is, the larger value of W shows that the more

likely the image is like i. Given all the new images repre-

sented by using the old network (D=d), suppose an image

i∗ whose old feature is xo. According to the meaning of W ,

the value is larger for an image that is more similar to i∗.

Since the similarity of images can be measured by feature

distance, we can infer that the image whose old feature Xo

is closer to xo should have a larger W . For the new data

containing n image, we can sort all the images according

to the distance to xo ascendingly. The sorted n images are

indexed as {N1, N2, . . . , Nn}.

In summary, the rule of assigning W among these n im-

ages can be summarized as: WN1
≥WN2

≥ · · · ≥WNn
.

For implementation, we select a truncated top-K frag-

ment and re-write Eq. (5) as:

EffectD=
∑

i∈{N1,N2,...,NK}

P (Y | I = i) Wi, (6)

where {WN1
, . . . ,WNK

} subject to

{

WN1
≥ WN2

≥ · · · ≥ WNK

WN1
+WN2

+ · · ·+WNK
= 1 .

(7)

3960



condition 

on

!"
#

$ %

%"

!

(a)

!"($ = &)

( ) *

+

( ) *

+

!"($ = 0)

(b)

Figure 3: (a): The colliding effect in CIL. (b): The causal

graph of removing incremental momentum effect.

It means that the classification probabilities are first calcu-

lated on each of the K images with the current model and

then weighted averaged to obtain the final prediction. For

more experiments on the choice of K and weight assign-

ment, see Section 5.2.

Compared with data replay that builds D → I , the merit

of the above colliding effect distillation is that it can work

with very limited or even without old data, which makes it

not just much more efficient, but also applicable to large-

vocabulary datasets, where each incremental step can only

afford replaying very few samples for one class.

4.2. Incremental Momentum Effect Removal

Since the old data barely appear in the subsequent in-

cremental steps, although we ensure the effect between D
and Y to be non-zero, the moving averaged momentum µ
in SGD optimizer [39] inevitably makes the prediction bi-

ased towards the new data, causing the CIL system suffers

from the severe data imbalance. As shown in Figure 4, by

visualizing the number of instances for classes in the CIL

steps, we observe a clear long-tailed distribution, which is a

challenging task.

To mitigate the long-tail bias, we follow [40] to pur-

sue the direct causal effect of the feature X during infer-

ence, which removes a counterfactual biased head projec-

tion from the final logits. The causal graph of this approach

is in Figure 3 (b), where the nodes H is the head direction

caused by the SGD momentum. This causal graph is built

on top of Figure 2 while only focuses on the current learning

process. The subtracted term can be considered as the pure

bias effect with a null input. However, the CIL cannot be

simply treated as a classic long-tail classification problem

because the data distributions across CIL steps are dynamic,

i.e., the current rare classes are the frequent classes in a pre-

vious step. Our experimental results (Figure 4) also reveal

that: even the old classes have equally rare frequencies in an

incremental step, the performance drop of a class increases

with the time interval between the current step and the step

when they are initially learned, which is not observed in

the long-tail classification. It means that the momentum ef-

fect relies not only on the final momentum but also those in

previous steps. Therefore, we propose an incremental mo-

mentum effect removing strategy.

For the incremental step t with total M SGD iterations,

0

10

20

30

40

50

60
Performance drop (%) Number of samples

20

500step 1

step 2

step 3
step 4

step 5

50 60 70 80 90 100

step 6

Number of Classes

Figure 4: The data distribution of CIFAR-100 [18] and the

performance drop of learned classes at the final CIL step

under the 5-step-20-replay setting.

by moving averaging the feature xm in each iteration m us-

ing xm = µ · xm−1 + xm with the SGD momentum µ, we

can obtain a head direction ht as the unit vector xM/ ‖xM‖
of the final xM . As the moving average of all the samples

trained in step t, ht shows the momentum effect of new

model. Unlike [40] where the ht is directly adopted, in or-

der to involve the momentum effect of old model, we design

a dynamic head direction h = (1−β) ht−1+β ht, combin-

ing both the head direction of step t and the last step t− 1.

In inference, as illustrated in Algorithm 2, for each image

i, we can get the de-biased prediction logits [Y | I = i] by

removing the proposed incremental momentum effect as:

[Y |I = i] = [Y |do(X=x)]− α · [Y |do(X=0, H=h)]

= [Y |X=x]− α · [Y |X=xh], (8)

where xh means the projection of feature x on the dynamic

head direction h, and both trade-off parameters α and β are

learned automatically in the back-propagation.

5. Experiment

5.1. Settings

Datasets. We evaluated the proposed approach on two pop-

ular datasets for class-incremental learning, i.e., CIFAR-

100 [18] and ImageNet (ILSVRC 2012) [7]. Following

previous works [35, 13], for a given dataset, the classes

were first arranged in a fixed random order and then cut

into incremental splits that come sequentially. Specifi-

cally, ImageNet is used in two CIL settings: ImageNet-

Sub [35, 13, 25] contains the first 100 classes of the ar-

ranged 1,000 classes and ImageNet-Full contains the whole

1,000 classes.

Protocols. We followed [13, 9] to split the dataset into in-

cremental steps and manage the memory budget. 1) For

splitting each dataset, half of all the classes are used to train

a model as the starting point, and the rest classes were di-

vided equally to come in T incremental steps. 2) For the old

data replay after each incremental step, a constant number

R of images for each class was stored. In conclusion, the

setting for CIL can be denoted as T -step-R-replay.

Evaluation Metrics. All models were evaluated for each

step (including the first step). It can be shown as a trend
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CIFAR-100 ImageNet-Sub ImageNet-Full
Methods

T=5 10 5 10 5 10

LUCIR† 50.76 53.60 66.44 60.04 62.61 58.01

+ DDE (ours) 59.82+9.06 60.53+6.93 70.86+4.42 68.30+8.26 66.18+3.57 62.89+4.88

PODNet† 53.38 55.97 71.43 64.90 61.01 55.36

(1
)

R
=

5

+ DDE (ours) 61.47+8.09 60.08+4.11 74.59+3.16 69.26+4.36 63.15+2.14 58.34+2.98

LUCIR† 61.68 58.30 68.13 64.04 65.21 61.60

+ DDE (ours) 64.41+2.73 62.00+3.70 71.20+3.07 69.05+5.01 67.04+1.83 64.98+3.38

PODNet† 61.40 58.92 74.50 70.40 62.88 59.56

(2
)

R
=

1
0

+ DDE (ours) 63.40+2.00 60.52+1.60 75.76+1.26 73.00+2.60 64.41+1.53 62.09+2.53

LUCIR† 63.57 60.95 70.71 67.60 66.84 64.17

+ DDE (ours) 65.27+1.70 62.36+1.41 72.34+1.63 70.20+2.60 67.51+0.67 65.77+1.60

PODNet† 64.70 62.72 75.58 73.48 65.59 63.27

+ DDE (ours) 65.42+0.72 64.12+1.40 76.71+1.13 75.41+1.93 66.42+0.83 64.71+1.44

iCaRL† [35] 57.17 52.27 65.04 59.53 51.36 46.72

BiC [47] 59.36 54.20 70.07 64.96 62.65 58.72

LUCIR [13] 63.17 60.14 70.84 68.32 64.45 61.57

Mnemonics [25] 63.34 62.28 72.58 71.37 64.54 63.01

PODNet [9] 64.83 63.19 75.54 74.33 66.95 64.13

(3
)

R
=

2
0

TPCIL [42] 65.34 63.58 76.27 74.81 64.89 62.88

Table 1: Comparisons of average incremental accuracies (%) on CIFAR100, ImageNet-Sub, and ImageNet-Full under 5/10-

step-5/10/20-replay settings with our distillation of data effect (DDE) and state-of-the-art. Models with a dagger † are

produced using their officially released code to assure the fair comparison. See Table 2 for more results without data replay.

of T + 1 classification accuracy curve or be average for

all the steps, denoted as Average Incremental Accuracy.

We also reported the forgetting curve following Arslan et

al. [4]. The forgetting at step t (t > 1) is calculated as

Ft =
1

t−1

∑t−1

j=1
f t
j , where f t

j denotes the performance drop

of classes first learned in step j after the model has been in-

crementally trained up to step t > j as:

f t
j = max

l∈{1,...,t−1}
al,j − at,j , ∀j < t (9)

where ai,j is the accuracy of the classes first learned in steps

i after the training step j. The lower ft implies the less

forgetting on previous steps, and the Average Incremental

Forgetting is the mean of ft for T incremental steps.

Implementation Details. Following [13, 9], for the net-

work backbone, we adopted a 32-layer ResNet for CI-

FAR100, an 18-layer ResNet for ImageNet, and an SGD

optimizer with momentum µ = 0.9; for the classifier, a

scaled cosine normalization classifier was adopted. Specif-

ically, Douillard et al. [9] adopted an ensemble classifier,

which is preserved in our experiments on PODNet [9].

All models were implemented with PyTorch and run on

TITAN-X GPU. Since our methods can be implemented

as a plug-in module, the common hyper-parameters, e.g.,

learning rates, batch-sizes, training epochs, herding strat-

egy, and the weights of the losses, were the same as their

original settings [13, 9], which will be given in Appendix.

For the proposed Distillation of Colliding Effect (DCE),

we used cosine distance to measure the similarity between

images. For the number of neighborhood images except

for the original image, we adopted 10 for CIFAR100 and

ImageNet-Sub, and 1 for ImageNet-Full considering the

calculation time. For the incremental Momentum Effect Re-

moval (MER), α and β were trained in the finetuning stage

using a re-sampled subset containing balanced old and new

data. When there is no replay data, we abandoned the fine-

tuning stage and set α and β to 0.5 and 0.8 empirically.

5.2. Results and Analyses

Comparisons with State-of-The-Art. To demonstrate the

effectiveness of our method, we deployed it on LUCIR [13]

and PODNet [9] using their officially released codes, and

compared them with other strong baselines and state-of-the-

art. Table 1 (3) lists the overall comparisons of CIL per-

formances on the classic 5/10-step-20-replay settings. On

CIFAR-100, we can observe that our Distillation of Data

Effect (DDE) achieves state-of-the-art 65.42% and 64.12%

average accuracy, improving the original LUCIR and POD-

Net up to 1.7% and surpassing the previous best model [42]

with additional data augmentation. On ImageNet-Sub,

we boost LUCIR and PODNet by 1.79% on average and

achieve the new state-of-the-art. For the most challeng-

ing ImageNet-Full, our model based on LUCIR achieves

67.51% and 65.77%, which surpasses the previous best

model by 1.1% on average.

Data Effect Distill vs. Data Replay. Aiming to distill the

data effect, our method can serve as a more storage-efficient
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(b) CIFAR-100 (𝑇 = 10, 𝑅 = 5)
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(c) ImageNet-Sub (𝑇 = 5, 𝑅 = 5)

30

35

40

45

50

55

60

65

70

75

80

85

90

50 60 70 80 90 100

A
c
c
u
ra

c
y
 (

%
)

Number of Classes

LUCIR (66.44) PODnet (71.43)

iCaRL (57.62) LUCIR+Ours (70.86)

PODnet+Ours (74.59)

0

5

10

15

20

25

30

35

40

45

50

50 60 70 80 90 100

F
o
rg

e
tt
in

g
 (

%
)

Number of Classes

LUCIR (19.40) PODnet (17.33)

iCaRL (27.83) LUCIR+Ours (5.47)

PODnet+Ours (8.02)

(d) ImageNet-Sub (𝑇 = 10, 𝑅 = 5)
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(e) ImageNet-Full (𝑇 = 5, 𝑅 = 5)
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(f) ImageNet-Full (𝑇 = 10, 𝑅 = 5)
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Figure 5: Comparisons of the step-wise accuracies and forgettings on CIFAR-100 (100 classes), ImageNet-Sub (100 classes)

and ImageNet-Full (1000 classes) when R = 5.

replacement for the data-replay strategy. Figure 6 and Ta-

ble 2 illustrate the effect of the data replay compared with

our method. It is worth noting that when there is no data

replay, i.e., R=0, our method achieves 59.11% average ac-

curacy, surpassing the result of replaying five samples per

class by 13.54%. To achieve the same result, traditional

data-replay methods need to store around 1,000 old im-

ages in total, while our method needs nothing. The experi-

ment empirically answers the question we asked initially:

our proposed method does distill the end-to-end data ef-

fects without replay. Moreover, as the number of old data

increases, data-replay based methods improve, while our

method still consistently boosts the performance. The re-

sults demonstrated the data effect we distilled is not entirely

overlapped with the data effect introduced by the old data.

Different Replay Numbers. To demonstrate the effective-

ness and robustness of our data effect, we implemented the

model on more challenging occasions where rarer old data

are replayed (R = 10, 5). As shown in Table 1 (1) and Ta-

ble 1 (2), original methods suffer a lot from the forgetting

due to the missing of old data, leading to the rapid decline in

the accuracies, e.g., the accuracy drops 12.81% for CIFAR-

100 and 4.23% for ImageNet as R decreases from 20 to

5. TPCIL also reported a 12.45% accuracy drop in their

ablation study on CIFAR-100 [42]. In contrast, our method

shows its effectiveness agnostic to the datasets and the num-

ber of replay data. Specifically, our method achieves more

improvement when the data constrain is stricter. For ex-

ample, it obtains up to 9.06% and 4.88% improvement on

CIFAR-100 and ImageNet when replaying only 5 data per

class. To see the step-wise results, we draw Figure 5 to show

the accuracy and forgetting for each learning step. Starting

from the same point, our method (in solid) suffers from less

forgetting and performs better at each incremental step.

Effectiveness of Each Causal Effect. Table 3 shows the

results of using Distillation of Colliding Effect (DCE) and

incremental Momentum Effect Removal (MER) alone and

together. One can see that the boost of using each compo-

nent alone is lower than using them combined. Therefore,

they do not conflict with each other and demonstrate that

both the causal effects play an important role in CIL.

Different Weight Assignments. Table 4 shows the results

of using Distillation of Colliding Effect (DCE) with differ-

ent weight assignment strategies. Top-n means for each im-

age i, we select n nearest neighbor images as discussed in

Section 4.1 and calculate the average prediction of the im-

ages i and the mean of those n images. Rand and Bottom

use randomly selected images or the most dissimilar (far-

thest) images. Variant1 and Variant2 select the same images

as Top 10, but modify the weight value for those n + 1 im-

ages (See Appendix for detail). Variant1 lower the weight

of the image itself and split more weight to the neighbors,

while Variant2 split the weight in proportion to the soft-

max of the cosine similarity between images. By compar-

ing the results of Top n, Rand, and Bottom, we demonstrated

the importance of sorting images based on the similarity of
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their old feature. Larger n can lead to somewhat better per-

formance, while as the nearer images should have larger

weights according to Section 4.1, only selecting the near-

est image (n = 1) is also good. Different variants to assign

weight values among images, as long as they follow Eq. (7),

will not affect the final prediction much.
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Figure 6:  Comparisons 

of average accuracies

with different number 

of replay data per class. 

Experiments  are  con-

ducted on CIFAR-100 

with five incremental 

steps.

Methods
CIFAR-100 ImageNet-Sub

T = 5 10 5 10

Baseline 45.57 32.72 58.55 45.06

Ours 59.11+13.54 55.31+22.59 69.22+10.67 65.51+20.45

Table 2: Comparisons of average accuracies with no replay

data. Baseline is LUCIR.

Robustness of Incremental Momentum Effect Removal.

In Table 5, we demonstrated the robustness of our incremen-

tal Momentum Effect Removal (MER) under the different

number of incremental steps. Even in a challenging situa-

tion where N = 25, it still has a significant improvement.

Different Size of the Initial Task. As shown in Table 6,

the performance of all the methods decreases due to the de-

graded representation learned from fewer classes. However,

our method still shows a steady improvement compared to

the baseline.

6. Conclusions

Can we save the old data for anti-forgetting in CIL with-

out actually storing them? This paradoxical question has

been positively answered in this paper. We first used causal

graphs to consider CIL and its anti-forgetting techniques

in a causal view. Our finding is that the data replay, ar-

guably the most reliable technique, benefits from introduc-

ing the causal effect of old data in an end-to-end fashion.

We proposed to distill the causal effect of the collider: the

old feature of a new sample, and show that such distillation

is causally equivalent to data replay. We further proposed to

remove the incremental momentum effect during testing, to

achieve balanced old and new class prediction. Our causal

solutions are model-agnostic and helped two strong base-

lines surpass their previous performance and other methods.

In future, we will investigate more causal perspectives in

CIL, which may have great potential to achieve the ultimate

life-long learning.

Methods R = 5 10 20

Accuracy (%)

Baseline [13] 50.76 61.68 63.57

+All 59.82+9.06 64.41+2.73 65.27+1.70

+DCE 58.53+7.77 64.04+2.36 65.18+1.61

+MER 53.55+2.79 63.40+1.72 64.43+0.86

Forgetting (%)

Baseline [13] 28.34 17.51 14.08

+All 11.93-16.41 6.23-11.28 7.11-6.97

+DCE 16.82-11.52 10.16-7.35 8.41-5.67

+MER 17.45-10.89 12.15-5.36 10.01-4.07

Table 3: The individual improvements of the proposed Dis-

tillation of Colliding Effect (DCE) and incremental Mo-

mentum Effect Removal (MER). Experiments are con-

ducted on CIFAR-100 with 5 incremental steps.

R Baseline Top1 Top5 Top10 Rand Bottom Variant1 Variant2

5 50.76 55.92 58.12 58.53 54.88 41.70 58.22 58.41

10 61.68 63.51 63.66 64.04 53.80 51.41 63.54 63.97

20 63.57 64.76 64.93 65.18 64.16 57.07 64.87 65.22

Table 4: Comparisons of average accuracies using the Dis-

tillation of Colliding Effect (DCE) with different weight as-

signments. Experiments are conducted on CIFAR-100 with

5 incremental steps. Baseline is LUCIR.

Methods N=1 2 5 10 25

Baseline [13] 67.98 64.04 50.76 53.6 43.52
Accuracy(%)

+MER 68.48 65.44 53.55 57.86 45.95

RI (%) +MER 0.74 2.19 5.50 7.95 5.58

Baseline [13] 28.82 23.74 28.34 23.63 32.22
Forgetting (%)

+MER 25.24 16.55 17.45 11.68 20.47

RI (%) +MER 12.42 30.29 38.43 50.57 36.47

Table 5: Evaluation of average accuracies using incremental

Momentum Effect Removal (MER) with varying incremen-

tal steps. RI(%) is the relative improvement in increasing

accuracy and lowering forgetting with MER. Experiments

are conducted on CIFAR-100 for R = 5.

Class size of

initial task
Methods

Average Accuracy(%)

R = 5 10 20

10
Baseline [13] 50.45 54.39 58.87

Ours 52.15+1.70 55.71+1.32 59.17+0.30

20
Baseline [13] 51.95 56.31 59.42

Ours 55.88+3.93 58.38+2.07 59.93+0.51

Table 6: Comparisons of average accuracies with the ini-

tial task of fewer classes. Experiments are conducted on

CIFAR-100 with each incremental step of 10 classes.
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