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Abstract

The functional map framework has proven to be ex-

tremely effective for representing dense correspondences

between deformable shapes. A key step in this framework

is to formulate suitable preservation constraints to encode

the geometric information that must be preserved by the un-

known map. For this issue, we construct novel and power-

ful constraints to determine the functional map, where mul-

tiscale spectral manifold wavelets are required to be pre-

served at each scale correspondingly. Such constraints al-

low us to extract significantly more information than previ-

ous methods, especially those based on descriptor preser-

vation constraints, and strongly ensure the isometric prop-

erty of the map. In addition, we also propose a remarkable

efficient iterative method to alternatively update the func-

tional maps and pointwise maps. Moreover, when we use

the tight wavelet frames in iterations, the computation of the

functional maps boils down to a simple filtering procedure

with low-pass and various band-pass filters, which avoids

time-consuming solving large systems of linear equations

commonly presented in functional maps. We demonstrate

on a wide variety of experiments with different datasets that

our approach achieves significant improvements both in the

shape correspondence quality and the computing efficiency.

1. Introduction

Finding correspondences between non-rigid shapes is

a fundamental problem in computer graphics, vision and

pattern recognition, with countless applications including

shape comparison, texture transfer and shape interpolation,

just to name a few [37].

Since many real-world deformations are approximately

isometric, finding near isometric maps possesses practical
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Figure 1. Demonstration of our efficient shape correspondence it-

erative updating. Starting with a noisy functional map between

two isometric deformation shapes, we alternately optimize the

functional maps and the pointwise maps. The pointwise maps are

visualized by color transfer. Note that iterating twice can reach

significant improvements even with a quite noisy initialization and

costs 0.54 seconds for triangle meshes with 16K vertices.

significance in non-rigid shape analysis and it has been well

studied in the last decades. Among extensive strategies

for this task, one of the most influential techniques in re-

cent years is the functional map framework, originally pro-

vided by [24] and extended by plenty of fellow-up works

[29, 31, 28, 30]. This framework proposed to determine a

functional map operator, that maps between the spaces of

square-integrable functions on the respective shapes, then

a high-quality pointwise correspondence can be recovered

from the correspondence of special functions. The most at-

tractive property of functional maps is finding correspon-

dence boils down to a quite simple and efficient algebraic

problem.

A key step in the functional map framework is to for-

mulate function preservation constraints to a linear system

of equations. These function preservation constraints typ-

ically encode the information (e.g., geometric or appear-

ance) that must be globally preserved by the unknown map.

In isometric shape correspondence, the commonly used

constraints include those aiming at approximately align-

ing the given descriptor functions and commuting with the

Laplace-Beltrami operators as well [24, 27, 8], or more
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powerful descriptor preservation constraints via commuta-

tivity [23] and manifold optimization [14]. However, the

above descriptor based constraints still suffer severe disad-

vantages in correspondence quality or computing efficiency,

due to the difficulties of obtaining a large set of informa-

tive and linearly independent descriptor functions and the

insufficient encoding for isometric properties of deformed

shapes.

Contributions. To address the above-mentioned chal-

lenges in the recent functional maps, in this paper, we con-

centrate on exploiting novel constraints and efficient com-

putation ways into the pipeline of the functional maps. Our

inspirations come from the powerful spectral manifold (or

graph) wavelets (SMWs) [11, 15], which are constructed

with a similar manner to the classical wavelets, still via sig-

nal filtering in the frequency spaces of manifolds with a set

of suitable filters (functions). SMWs inherit most of the

powerful properties of the classical wavelets, such as space-

frequency locality, multiscale characteristics, etc, and can

be computed efficiently.

The core idea of our work is that we impose SMWs

preservation constraints on the functional maps, where the

multiscale SMWs are required to be preserved at each scale

correspondingly. This strategy resorts to the attractive prop-

erties of SMWs in non-rigid shape analysis tasks, mainly

including (1) SMWs still hold the intrinsic invariance un-

der shape isometric deformations. (2) They can efficiently

and flexibly encode shape features of different frequency

bands, ranging from the geometric features of the immedi-

ate neighborhoods around each point to the neighborhood

with greater diffusion radii. Therefore, via a few scales

of intrinsic SMWs located at each point on the shapes

preserved during the mapping, the isometric properties of

the maps can be sufficiently extracted and strongly en-

sured, while maintaining the overall linear system nature

of the functional map framework. As opposed to the high-

dimensional descriptors or additional regularizers in the

previous works, our constraints are much simpler, more

compact and efficient.

In addition, we also propose a remarkable efficient itera-

tion way to alternatively update the computation of the func-

tional maps and pointwise maps, where high-quality corre-

spondences generally can be reached with only two or three

iterations, as shown in Figure 1. More specifically, we show

that if using suitable SMWs, more exactly, tight wavelet

frames, the computation of the functional mapping matrices

boils down to a simple iterative filtering procedure by vari-

ous band-pass filters. This way eventually avoids the time-

consuming solution of a large system of linear equations

commonly presented in previous works and leads the ma-

trices closer to the structures of isometric pointwise maps.

We demonstrate on a wide range of experiments that our

method helps to obtain better correspondences, especially

with significantly higher computation efficiency.

2. Related works

Shape correspondence is a very well-studied area of

computer graphics. Readers can be referred to the survey

[34] for an in-depth view of this field. Below we review

the methods most closely related to ours, mainly including

spectral and iterative methods.

Point-based spectral methods. A traditional approach

to correspondence problems is finding a pointwise matching

between the points on two or more shapes. One prominent

spectral matching strategy involves the minimization of a

distortion criterion from pointwise spectral descriptor simi-

larity [36, 3, 6, 16] or descriptors with additional integrated

pairwise relations aiming for more desirable properties for

the matching [38]. Some spectral methods were based

on directly optimizing between spectral shape embeddings

based on either adjacency or Laplacian matrices of graphs

and triangle meshes [26]. Recently, these approaches have

been generalized by spectral generalized multidimensional

scaling [1], which explicitly formulates the minimum dis-

tortion of shape correspondence in the spectral domain. Al-

though these approaches are mature and can often result in

high-quality mappings, they still often lack flexibility and

are not suited well in the presence of more general non-rigid

deformations.

Functional maps. Functional map framework was orig-

inally introduced by [24] and have been extended sig-

nificantly in [23, 22, 29] (see an overview in [25] ) re-

cently. These methods are based on the notion that it is

often easier to obtain correspondences between functions,

rather than points, Then, a good pointwise correspondence

can be extracted from the functional maps [31]. Com-

pared with the point-based methods, functional map frame-

work has a particular advantage of being flexible and al-

lows us to easily incorporate constraints including preser-

vation of geometric quantities (descriptors), thus several

works try to formulate more powerful constraints in func-

tional maps to reach desirable properties, including the par-

tial map [29, 17], more powerful descriptor constraints via

commutativity [23], manifold optimization[14], continu-

ous and orientation-preserving correspondences[28], prod-

uct preservation [22], among many others. Differing from

these works commonly relying on a large set of high-

quality descriptor functions, we instead use the intrinsic

wavelets preservation as constraints in our functional map

framework, which could encode multiscale geometric fea-

tures into the mapping while keeping high computation ef-

ficiency, and lead the maps closer to an isometric one.

Particularly our work is also closely related to a series of

map refinement methods, originally proposed by Iterative

closest point (ICP) [24]. The follow-up work BCICP[28]

introduced a refinement step in both the spectral and spa-
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tial domains, aiming to strongly promote the bijectivity and

continuity of the point-wise maps. ZoomOut [19] and its

extension consistent ZoomOut[12] recovered a higher res-

olution map from a lower resolution one through a sim-

ple and efficient iterative spectral up-sampling technique.

Instead of progressively treating the frequency informa-

tion like ZoomOut, our method processes overall frequency

band information encoded in corresponding wavelet func-

tions in each iteration.

3. Background and notation

We model a shape as a connected smooth compact two-

dimensional manifold M (possible with boundaries) em-

bedded into R
3. The space of square-integrable func-

tions on the manifold M are denoted by L2(M) =
{

f : M → R,
∫

M
f(x)

2
dx <∞

}

, where dx is the area el-

ement induced by the Riemannian metric and < f, g >M=
∫

M
f(x)g(x)dx expresses the standard inner product on

M. Any function f(x) ∈ L2(M) can be equipped with

an Laplace–Beltrami operator (LBO) (or Laplacian ), de-

fined as ∆Mf(x) = −divM(∇Mf(x)), where ∇M and

divM are the intrinsic gradient and divergence respectively.

3.1. Signal processing on manifolds

As the LBO is positive-semidefinite, it admits a real

eigen-decomposition ∆Mφi(x) = λiφi(x), i = 0, 1, ...,
with non-negative eigenvalues (or spectrum) 0=λ0 ≤ λ1 ≤
. . . and the set of the eigenfunctions {φi(x)}i≥0 forms

an complete orthonormal basis for L2(M), w.r.t the stan-

dard inner product. Especially, the eigenvalues {λi}i≥0

and the corresponding eigenfunctions {φi(x)}i≥0 of the

LBO show obvious harmonic properties that they respec-

tively act the roles of frequency and Fourier basis for the

space L2(M), with a order from low to high frequency.

Therefore, any function f ∈ L2(M) can be expressed as

f(x) =
∑

i≥0 〈f, φi〉Mφi(x) and the product 〈f, φi〉M is

called (manifold) Fourier coefficient.

The harmonic properties of {λi}i≥0 and {φi(x)}i≥0

allow us to further define manifold filtering operator

from the frequency space, i.e., given a suitable filter

g(λ), the filtering result of the function f is f̂(x) =
∑

i≥0 g(λi)〈f, φi〉Mφi(x).

3.2. Functional Maps

Definition. Functional maps [24] proposed a very effi-

cient pipeline to transfer functions between shapes and can

be used to realize high-quality shape correspondence.

Let T : M → N be a pointwise map between two

manifolds M and N . Then, consider a functional map (a

linear operator) TF : L2(M) → L2(N ) that maps func-

tions from M to N , here the image of TF is defined as

TF (f) = f ◦ T−1, f ∈ L2(M). Assuming to be given

two orthonormal bases {φMi }i≥0 and {φNj }j≥0 of L2(M)

and L2(N ) respectively, the functional map TF , admits a

matrix representation C = (cji), the image and entries of

which are

TF (f) =
∑

j

∑

i

〈
f, φMi

〉

M

〈
TF (φ

M
i ), φNj

〉

N
︸ ︷︷ ︸

cji

φNj .

(1)

Note that, owing to be orthogonal and harmonic, the eigen-

functions of the LBO are commonly used as the bases of

functional maps. As suggested in [24], actually small trun-

cated subsets of the eigenfunctions (i.e., the first k ) can ap-

proximate the map TF significantly well. This choice usu-

ally makes the matrix C ∈ R
k×k small and has the low-pass

effect to produce smooth correspondence.

In fact, TF in (1) amounts to a linear transformation

of the Fourier coefficients of f from basis {φMi }i≥0 to

{φNj }j≥0. Let a,b ∈ R
k be the Fourier coefficient vectors

of f and its map TF (f) respectively, then, the functional

mapping in (1) boils down to a linear equation b = Ca.

Obviously after fixing the bases of the functional spaces,

determining the unknown matrix C becomes the most im-

portant step as C fully encodes the original map TF .

Computation of the matrix C. To determine the un-

kown C, we often generally formulate many linear con-

straints on C that allows us to recover the functional map

by solving a least squares system. Assuming to be given

a set of q pairs of corresponding functions {f1, · · · , fq} ∈
L2(M) and {g1, · · · , gq} ∈ L2(N ), possibly derived from

the constraints that correspond to descriptor and segment

preservation together with the operator commutativity, we

store the Fourier coefficients of these constraint functions

as columns of the matrices A and B (both of size k × q)

respectively, then incorporate them into a linear system of

equations and find the best C in the least squares sense, i.e.

C = argmin
C

‖CA−B‖2F + α ‖∆NC−C∆M‖2F .

If necessary, the solution can be refined using a certain post-

processing iterative refinement.

Pointwise map recovery. As stated in [24], the orig-

inal pointwise map T indeed can be recovered from TF
well. More detailedly, for each point x on M, its corre-

spondence on N is treated as T (x) = argmaxyTF (f)(y),
where f = δx is the delta-function at the point x on the

shape M. Since 〈δx, φi〉 = φi(x), in discrete settings, if let

the columns of the matrices ΦM and ΦN respectively corre-

spond to the first k eigenfunctions of the LBOs of the shape

M and N , then each row of them corresponds to a Fourier

coefficient vector of each point. According to Plancherel’s

theorem that the distance between the Fourier coefficient

vectors of the functions is equal to the L2 difference be-

tween the functions themselves, we can efficiently recover
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Figure 2. Isometric deformation invariance of SMWs. Several

pairs of multiscale SMWs are demonstrated on two cat shapes re-

lated with isometric deformations. Each wavelet pair are respec-

tively located at the point (the top row) and its isometric mapping

image (the second row). Obviously they are isometric deformation

invariant.

the pointwise map T via a nearest neighbour searching be-

tween the column vectors of CΦT
M and ΦT

N .

4. Method

Despite plenty of observations about the functional rep-

resentation C associated with an isometric pointwise map

T have been explored [24, 33, 19] (e.g. the orthogonality of

C) recently, finding suitable and sufficient constraints on C

to ensure the isometry of T and the computation efficiency

still seems to be a difficult and open problem. For this rea-

son, motivated by the remarkable properties of SMWs, we

intend to employ them as preservation constraints to gener-

ate functional maps and also consider an efficient computa-

tion method. Most importantly, using the proposed frame-

work, we expect to obtain a high-quality shape correspon-

dence that outperforms the state-of-art methods.

4.1. Spectral manifold wavelets

To conquer the difficulties of translating and scaling the

wavelets on irregular spaces like graphs and manifolds,

Hammond et al. [11] proposed the spectral graph wavelets

in analogy to the behaviors of the classical wavelets in the

frequency space. where the wavelets can be simply derived

from the results of filtering to special functions with various

band-pass filters. Indeed, their work can easily be extended

to construct wavelets on manifolds that are capable of incor-

porating the underlying shape geometry, just via replacing

the eigen-decomposition of the graph Laplace operator with

the LBO. In our framework, we turn to call them spectral

manifold wavelets (SMWs).

To be specific, given a spectral filter g(λ) : R+ → R
+, a

smooth and compactly supported real-valued function, the

SMW at scale s and located at point y is defined as

ψs,y(x) =
∑

i≥0

g(sλi)φ
∗
i (y)φi(x). (2)

Here, the scaling parameter s determines the support inter-

val of the filter g(λ), i.e., the frequency band passed. When

the filter g(sλ) journeys up from low to high frequency

bands, the locality of the wavelet ψs,y on the surface will

increase and vice versa. In order to simultaneously capture

the low-frequency features of signals, another real-valued

function h : R+ → R
+ that satisfy h(0) > 0 and h(λ) → 0

when λ → ∞ is designed for acting as a low-pass filter.

Similarly, the corresponding scaling function at point y can

also be obtained via filtering, i.e.

ϕy(x) =
∑

i≥0

h(λi)φ
∗
i (y)φi(x).

In practical applications, when the scale parameter s is sam-

pled into a finite set of discrete values, the scaling functions

are able to guarantee the original signal f stably recovered

from the wavelet coefficients.

Note that, SMW is actually a special kernel on mani-

folds and closely related to the heat kernel [36], while only

differing in the filters used. As opposed to only low-pass

frequency filters in the heat kernel, both low and band-pass

filters are used in SMW, and thus it is equipped with better

abilities to analyze shape geometric features.

4.2. Multiscale wavelet preservation

Note that, (2) shows the SMWs naturally inherit the iso-

metric invariance of the eigen-decomposition of the LBO.

Therefore, given a pair of shapes M and N related with

an isometric deformation, if the pointwise map T between

them is isometric, then for each point y ∈ M, we have

TF (ψ
M
s,y) = ψN

s,T (y).

Such isometric invariance is demonstrated in Figure 2.

In addition, we know that the multiscale neighboring

topological structure around each point x can be efficiently

characterized by the corresponding wavelets, as shown in

a variety of previous works [11, 16]. More specifically, the

SMW with small s can capture the geometric features of the

immediate neighborhoods around its located point, which

correspondences to the high-frequency structural informa-

tion (details) of the shape. In contrast, a larger s allows

the diffusion process to spread farther in the shape, result-

ing in the SMW encoding the features of neighborhoods

with greater radii which contains low-frequency informa-

tion of the shape structure. Now considering the multiscale

wavelets into the functional maps, we can further have the

functional maps TF of the isometric mapping T satisfying

TF (ψ
M
sl,y

) = ψN
sl,T (y), l = 0, 1, · · · , L. (3)

Note that, for simplicity, we denote the scaling function

ϕy(x) by ψs0,y(x), whose scale parameter index of the

wavelets l = 0. The equations in (3) mean that the struc-

tural information of each frequency band are sufficiently

preserved respectively in an isometric map T .

14539



4.3. Maps with wavelet preservation constraints

As the isometric properties of the maps can be encoded

fully in the multiscale SMWs, we are inspired to employ

the wavelet constraints to determine a functional map con-

forming with an isometric pointwise map, and then use it

to realize a high-quality shape correspondence. The core

idea is to ensure the isometry of the map T , we intend to

impose multiscale wavelets preservation constraints to de-

termine the unknown C, with jointly considering various

scales s. For a clearer statement, now let us consider the

discrete and matrix settings.

In dicretized settings, let shapes M and N be repre-

sented by triangular meshes with m and n vertices re-

spectively. Firstly we use the method of [20] to compute

the discretized LBOs of the shape M and N , which are

represented as matrices LM and LN respectively, where

LM = A
−1
MWM and LN = A

−1
N WN , here AM is

the diagonal matrix of lumped area elements and WM

is the cotangent weight matrix. We assume the matrices

ΦM ∈ R
m×k and ΦN ∈ R

n×k contain the first k eigenvec-

tors of LM and LN . Now represent the map T : M → N
as a matrix P ∈ R

m×n, s.t. P(i, j) = 1 if T (i) = j

and 0 otherwise, where i and j are the vertex indices of

M and N respectively. Further, we denote the diago-

nal matrix ΛM = diag(λM0 , λM1 , · · · , λMk−1) and ΛN =

diag(λN0 , λ
N
1 , · · · , λ

N
k−1) to contain the first k eigenvalues

the LBOs. With matrix settings, now we have the functional

matrix C given by the projection of P onto the correspond-

ing Fourier basis, i.e. C = Φ+
NP

TΦM. where + denotes

the Moore-Penrose pseudo-inverse. Due to the orthogonal-

ity of LBOs’ eigenvector with respect to the area-weighted

inner product, we have ΦT
NANΦN = I, where I is an iden-

tity matrix, i.e.,Φ+
N = ΦT

NAN .

Given a filter g(λ), according to (2), we can get two

wavelet matrices ΨM
s = ΦMg(sΛM)Φ+

M ∈ R
m×m and

ΨN
s = ΦN g(sΛN )Φ+

N ∈ R
n×n, where each column corre-

spondences to the SMWs at scale s and located at the cor-

responding vertex (index). In practice, the scale parameter

s is also sampled into a set of points {sl}
L
l=0.

From (2), we know the Fourier coefficient matrices of the

wavelets ΨM
s and ΨN

s are g(sΛM)Φ+
M and g(sΛN )Φ+

N re-

spectively. Thus, according to Plancherel’s theorem (stated

in the last part of Section 3.2), we hope to find a mapping

matrix P and its functional mapping matrix C that satisfy

the wavelet preservation constraints at each scale sl. This

strategy can be eventually formulated as the following op-

timal problem, which aims to find the best C and P in the

least squares sense, i.e.

min
P,C

L∑

l=0

∥
∥Cg(slΛM)Φ+

M − g(slΛN )Φ+
NP

T
∥
∥
2

F
,

s.t. P1 = 1,PT
1 ≤ 1.

(4)
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Figure 3. Filters of various types of wavelets. The colored lines

in the left and right figures show the multiscale cubic spline filters

(a general wavelet) and the Meyer filters (a tight wavelet frame)

respectively, while the dark lines show their G(λ) (7).

Solution. The above optimization problem (4) is not jointly

convex, as both P and C are unknown and they meanwhile

interact with each other. For this reason, we try to solve it

approximately, via alternating the updating of P and C. To

be specific, firstly we fix the matrix P and then solve (4)

with respect to C, via solving the following problem

min
C

L∑

l=0

∥
∥Cg(slΛM)Φ+

M − g(slΛN )Φ+
NP

T
∥
∥
2

F
. (5)

The above problem (5) actually has a analytical solution if

we let

Cg (slΛM) Φ+
M = g (slΛN ) Φ+

NP
T, l = 0, · · · , L. (6)

Finding a matrix C directly that satisfies all the condi-

tions in (6) is still not a trivial task, due to a large sys-

tem of linear equations involved. However, we find that if

using suitable filters {g(slλ)}
L
l=0, more specifically, if the

wavelets form a tight frame for the function spaces of the

manifolds, the computation complexity of C can be signif-

icantly reduced, by avoiding solving such a large system of

linear equations. Next, let us briefly introduce the contents

of the tight wavelet frames on manifolds first.

As mentioned in [11], for a mesh with n vertices

{xi}
n

i=1, if given a set of discrete scales {sl}
L

l=1 and

appropriate filters g(λ) and h(λ), the set of wavelets

{ψsl,xi
}L, n

l=0,i=1 ( Note that, for simplicity, here we denote

h(λ) by g(s0λ) and the scaling function by wavelet ψs0,xi
)

will form a frame for the functional space of the shape, with

the bounds A = min
λ∈[0,λmax]

G(λ) and B = max
λ∈[0,λmax]

G(λ),

where

G(λ) =

L∑

l=0

g(slλ)
2
. (7)

Specially, if the bounds A = B, then such type of wavelet

set is called tight frame, and further, if A = B = 1, it

is termed Parseval frame. Figure 3 respectively shows the

filters of one common wavelet and one tight wavelet frame

and their G(λ) as well.
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Tight frames have plenty of attractive properties. Above

all they can conserve the energy between the original and

the transformed domains, thus allowing to easier and more

accurate signal reconstruction [4]. In our framework, the

tight wavelet frame [15] used brings more efficient compu-

tation and more accurate mapping constraints for the prob-

lem (4) than general wavelets, as we have following obser-

vation:

Remark 4.1. If the wavelet sets
{
ψM
sl,xi

}L, m

l=0,i=1
and

{
ψN
sl,xi

}L, n

l=0,i=1
both derived from the filter g(λ) could form

tight frames for the functional spaces of the shapes M and

N respectively, then the matrix C in (6) can be obtained via

C =

L∑

l=0

g (slΛN ) Φ+
NP

TΦMg (slΛM), (8)

Proof. See Appendix A.

Note that, compared with the general exact form of C,

i.e. C = Φ+
NP

TΦM, our solution to C in (8) can be treated

as a filtering operation to this general form using various

band-pass filters g(slΛ), l = 0, · · · , L and equivalent to a

refinement. Note also that, this approach only relies on the

products of matrices and vectors, avoiding to solve a large

system of linear equations commonly presented in previous

works.

We consider using the Meyer tight wavelet frame pro-

posed by [15] (as shown in Figure 3) in our framework, as

the filters of such wavelets frame get an adaptive bandwidth,

which is more suitable to analyze the signals and can cap-

ture more geometric features than other frames.

After fixing C, we try to recover the pointwise mapping

matrix P. Here, we still take the traditional nearest neigh-

bor searching introduced in Section 3.2 to achieve this goal.

That means, to find the image of the ith vertice of M on the

shape N , we can solve the optimization problem

T (i) = argmin
j

∥
∥C(ΦM(i))T − (ΦN (j))T

∥
∥
2

F
,

where ΦM(i) denotes the ith row of the eigenvector matrix

ΦM. We encode the obtained pointwise map T as a ma-

trix P and update the C according to (8). Then iterate this

procedure to continuously refine the matrices C and P, un-

til arriving desirable correspondence accuracy. Finally our

pipeline is concluded in Algorithm 1, where the maxIt de-

notes the maximum iterations.

5. Experiments and discussion

In this section, we will test our method on extensive chal-

lenging shapes from several public datasets. All experi-

ments are tested on a PC with Intel(R) Core i7-9700K CPU

at 3.60 GHz and 16.0 GB RAM, using MATLAB R2019b.

Algorithm 1: Shape correspondence via multiscale

SMWs preservation.

Input: ΦM,ΦN , {g(sΛM)}s, {g(sΛN )}s,maxIt
Output: C,P

Initialization: P0

for k = 0 to maxIt− 1 do

Ck =
∑

s g(sΛN )Φ+
NP

T
kΦMg(sΛM)

T (i) = min
j

∥
∥Ck(ΦM(i))T − (ΦN (j))T

∥
∥
2

F
, ∀i

Encode the map T as a matrix Pk+1.

end

5.1. Implement details

Datasets. We will use five public domain datasets across

standard to challenging ones to test our method. FAUST [5]

is composed of 10 poses of 10 human subjects with signif-

icant variability between different human subjects. SCAPE

[2] contains 71 registered meshes of a particular human

subject in different poses. TOSCA [7] contains a total of

80 shapes divided into 8 classes across animals to human

bodies with varying resolutions. SHREC’16 Topology[18]

includes 26 non-intersecting manifold kids shapes that are

produced by merging self-intersecting parts of the shapes

from KIDS dataset[32]. SHREC’16 Partiality benchmark

[9] spans different classes and includes two sub-datasets

(cuts and holes) to exemplify different kinds of partiality.

Evaluation methodology. We use the correspondence

quality characteristics (CQC) curves [13] , which exhibit

the percentages of matches that are at most r in geodesic

error, as well as the average geodesic error of all the points

on the shape M, to measure the correspondence quality.

Parameter settings. To balance the performance and

the computation efficiency well, we generally set k = 100,

L = 5 and take 3 iterations in the all following experi-

ments. Detailed discussion about the parameter choices can

be found in Appendix B.

5.2. Results and comparisons

In this section, we first show the comparisons with four

most similar methods where functional mapping refine-

ments and iterations are used, including ICP [24], CPD [31],

BCICP [28] and ZoomOut [19], and also compare with

other elegant state-of-the-art strategies for shape correspon-

dence like SmoothShells [10] both w.r.t matching quality

and computing efficiency.

Comparison with similar pipelines. We first test the

performances of all methods on three benchmark datasets

FAUST, SCAPE and TOSCA. For all competitors, we take

the matching results of using the nearest searching in SHOT

[35] descriptor spaces as their initialization and use the set-

tings and codes provided online by their authors. All the
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Figure 4. Matching performance comparisons on three benchmark datasets FAUST, SCAPE and TOSCA, evaluated by CQC curves.

0.181 0.065 0.034 0.058 0.037 0.017

Source Init ICP CPD BCICP ZoomOut Ours Ground truth

0.156 0.094 0.071 0.049 0.035 0.013

0.210 0.136 0.163 0.026 0.103 0.015

𝑒𝑟𝑟𝑜𝑟 =

𝑒𝑟𝑟𝑜𝑟 =

𝑒𝑟𝑟𝑜𝑟 =
Figure 5. Matching accuracy comparisons via color transfer. The

shapes are respectively from the SCAPE (top row), FAUST (sec-

ond row) and TOSCA (bottom row), with average geodesic errors

shown below each shape. Less error and color distortion happened

in our method compared with the others.

Table 1. Quantitative comparison with representative functional

map based refinement with the same initialization. Only refine-

ment runtime is counted.
Average error (×10−3) Average runtime (s)

Method \Dataset FAUST SCAPE TOSCA FAUST SCAPE TOSCA

SHOT (Init) 137.8 157.0 148.7 — — —

ICP 37.9 23.9 64.0 5.8 19.2 251.6

CPD 23.5 21.9 61.7 31.4 123.9 20.1

BCICP 14.1 29.3 18.8 292.8 449.8 68.36

ZoomOut 16.8 16.5 29.1 2.01 2.32 3.88

Ours 10.9 11.3 16.1 0.37 0.67 1.94

CQC curves and the average errors on these three datasets

are shown in Figure 4 and Table 1 respectively. We can

find that our method improves the correspondence quality

to other competitors. Besides, Figure 5 demonstrates more

visual comparisons via color transfer between the shapes

based on the respective correspondence. The results an-

nounce our advantages in matching accuracy once again.

We also compare the matching performance on SHREC’16

Partiality benchmark and SHREC’16 Topology [18], two

particularly challenging datasets with plenty of additional

variations of broken, missing connectivity or topological

noises respectively. As shown in Figure 6 and 7, our

approach still achieves superior accuracy to other meth-

ods even under challenging circumstances. Note that, our

method still outperforms the PFM [9], a sophisticated work

that devotes to dealing with partial correspondence and rep-

resents the state-of-the-art in this field.

In addition, our method brings great improvements in

computing efficiency to other methods. As with an effi-

cient iteration and the computation times be mainly paid

on the products of matrices and vectors in (8) and nearest

searching for pointwise map recovery, without any time-

consuming solutions of linear equations or calculations of

geodesic distances, our pipeline posses a comparably effi-

cient computation. Besides, our framework can use the ap-

proximate nearest neighbor searching FLANN library [21]

instead of exact nearest neighbor searching and the sub-

sampling approaches provided by ZoomOut [19] to accel-

erate the recovery of the pointwise maps. The computing

times on three benchmark datasets are demonstrated in Ta-

ble 1, which shows our superiority in computing efficiency.

Comparison with other strategies. We also com-

pare with other shape correspondence strategies like

SmoothShells [10], which is an elegant and state-of-the-art

method that combines geometric and spectral alignment by

embedding the input shapes into an extrinsic-intrinsic prod-

uct space. The corresponding quantitative and visual com-

parisons are shown in Table 2 and Figure 8 respectively. Our

approach produces comparable results with SmoothShells

while providing great efficiency improvements.

Robustness. We test our robustness on shapes with dif-

ferent conditions, as shown in Figure 9. The CQC curves

(left) show the comparison on the SCAPE remesh dataset

from [28], where the shapes have different number of ver-

tices and often significantly different triangulation (connec-

tivity). Moreover, the results on shapes with different res-

olutions and correspondence initialization are also shown

in the right figure. Obviously our performance is still fully

guaranteed in these cases which are closer to origin SCAPE
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Figure 6. Matching performance comparisons on the SHREC’16 Partiality [9] benchmark. All CQC curves are shown on the left two

figures, while the visual comparison with PFM [29] via color transfer are shown on the right. The color distortions disappear in our method

as opposed to PFM.
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Figure 7. Matching performance comparisons on the SHREC’16

Topology.

Source SmoothShells Ours

Figure 8. Visual Comparison with SmoothShells [10]. Our

method produces a more exact result and runs more faster than

SmoothShells, where the runtime of ours and the Smoothshells

are 10.2s and 350.8s respectively.

Table 2. Quantitative comparison with SmoothShells. The runtime

contains pre-computing and refinement time.
Average error (×10−3) Average runtime (s)

Method \Dataset FAUST SCAPE TOSCA FAUST SCAPE TOSCA

SmoothShells 12.4 15.8 17.2 142.4 216.1 678.2

Ours 10.9 11.3 16.1 2.4 4.6 58.1

Improv Ours 12.1% 28.5% 6.4% 58× 46× 10×

dataset which has the same vertices and triangulation.

6. Conclusion

We have presented a novel approach for shape corre-

spondence that incorporated novel constraints into the func-

Source

Groundtruth

500 4K 15K

Initialization

Our results

                    
 

   

   

   

   

 
            

    
   
   
     
       
    

Figure 9. Robustness demonstration. The left CQC lines show the

correspondence results on the SCAPE remesh dataset, while the

right figure shows our results on shapes with different resolutions

and correspondence initialization (represented via color transfer).

tional map framework. The core idea is that multiscale

spectral manifold wavelets are required to be preserved at

each scale respectively in the functional maps. Such con-

straints have been proven to be able to strongly ensure the

isometry of the underlying pointwise maps. We also pro-

vided an efficient iteration strategy for the determinations

of the functional maps and the pointwise maps, where high-

quality correspondence can be achieved with only three it-

erations. Our method produced state-of-the-art correspon-

dence results on extensive challenging datasets. The imple-

mentation to replicate our results will be released upon the

publication.
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Barr. Discrete differential-geometry operators for triangu-

lated 2-manifolds. In Visualization and mathematics III,

pages 35–57. Springer, 2003.

[21] Marius Muja and David G Lowe. Scalable nearest neigh-

bor algorithms for high dimensional data. IEEE transactions

on pattern analysis and machine intelligence, 36(11):2227–

2240, 2014.

[22] Dorian Nogneng, Simone Melzi, Emanuele Rodola, Um-

berto Castellani, Michael M Bronstein, and Maks Ovs-

janikov. Improved functional mappings via product preser-

vation. Computer Graphics Forum, 37(2):179–190, 2018.

[23] Dorian Nogneng and Maks Ovsjanikov. Informative De-

scriptor Preservation via Commutativity for Shape Matching.

Computer Graphics Forum, 36(2):259–267, 2017.

[24] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian

Butscher, and Leonidas Guibas. Functional maps: A flexible

representation of maps between shapes. ACM Trans. Graph.,

31(4), July 2012.

[25] Maks Ovsjanikov, Etienne Corman, Michael Bronstein,
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