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Abstract

This paper studies the problem of semi-supervised video

object segmentation(VOS). Multiple works have shown that

memory-based approaches can be effective for video object

segmentation. They are mostly based on pixel-level match-

ing, both spatially and temporally. The main shortcom-

ing of memory-based approaches is that they do not take

into account the sequential order among frames and do

not exploit object-level knowledge from the target. To ad-

dress this limitation, we propose to Learn position and tar-

get Consistency framework for Memory-based video object

segmentation, termed as LCM. It applies the memory mech-

anism to retrieve pixels globally, and meanwhile learns

position consistency for more reliable segmentation. The

learned location response promotes a better discrimination

between target and distractors. Besides, LCM introduces

an object-level relationship from the target to maintain tar-

get consistency, making LCM more robust to error drifting.

Experiments show that our LCM achieves state-of-the-art

performance on both DAVIS and Youtube-VOS benchmark.

And we rank the 1st in the DAVIS 2020 challenge semi-

supervised VOS task.

1. Introduction

Video object segmentation(VOS) is a fundamental com-

puter vision task, with a wide range of applications includ-

ing video editing, video composition and autonomous driv-

ing. In this paper, we focus on the task of semi-supervised

video object segmentation. Given a video and the ground

truth object mask of the first frame, semi-supervised VOS

predicts the segmentation masks of the objects specified by

the ground truth mask in the first frame for the remain-

ing frames. In video sequences, the target object will un-

dergo large appearance changes due to continuous motion

and variable camera view. And it may disappear in some

frames due to occlusion between different objects. Further-

more, there are also similar instances of same categories

Reference frame

w/o PGM & ORM

w/ PGM & ORM

(LCM)

Figure 1. Typical memory-based approaches rely on pixel-level

similarity, which leads to errors in prediction, as show in second

row. The proposed Position Guidance Module(PGM) helps the

network track the motion trajectory(bottom left). And the object-

aware Object Relation Module(ORM) prevents the network from

making fragmented segmentation pieces(bottom right).

that are difficult to distinguish, making the problem even

harder. Therefore, semi-supervised VOS is extremely chal-

lenging despite the provided annotation in the first frame.

The fundamental problem of VOS lies in how to

make full use of the spatio-temporally structured infor-

mation contained in video frames. Memory-based ap-

proaches are recently proposed with significant perfor-

mance improvements in popular VOS benchmarks, e.g.

DAVIS[33, 34] and Youtube-VOS[46]. Space-Time Mem-

ory network(STM)[29] is the first memory-based semi-

supervised VOS method, developing a memory mechanism

to store information from all previous frames for the query

frame to read. It differs from other matching-based meth-

ods as it expands its search range to the entire space-time

domain and perform dense matching in the feature space.

However, memory-based methods only consider pixel-level

matching and tend to retrieve all pixels with high match-

ing score in the query image. It may fail when a non-target

region share similar visual appearance with the target re-
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gions as illustrated in Figure 1. Recently, KMN[36] in-

troduces memory-to-query matching to improve STM. But

the solution remains pixel similarity matching which cannot

deal with appearance changes and deformation. In order to

tackle the aforementioned issues, we propose to improve

memory-based methods from two aspects: 1) Position con-

sistency. The movement of objects usually follows a certain

trajectory, which serves as an important instruction to guide

segmentation. 2) Target consistency. The overall embed-

ding feature for the tracked target should maintain object-

level consistency throughout the entire video.

Propagation-based methods[48, 45, 24] introduce to di-

rectly utilize the prediction from previous frames for better

segmentation. Inspired by these works, we propose to apply

previous positional information as a guidance for memory-

based methods to maintain position consistency. Typical

matching-based methods[17, 6] only consider pixel-level

feature without the context information from the entire ob-

ject. Inspired by some works in tracking[2] and one/few-

shot detection[10, 14], we propose to integrate object-level

feature into memory-based network to maintain target con-

sistency.

To this end, we propose a novel framework to Learn po-

sition and target Consistency for Memory-based video ob-

ject segmentation(LCM). Taking advantage of STM, LCM

performs pixel-level matching mechanism to retrieve target

pixels based on similarity and stores previous information

in a memory pool. This procedure is named Global Re-

trieval Module(GRM). Besides, LCM learns a local embed-

ding named Position Guidance Module(PGM) to fully uti-

lize the position consistency and guides the segmentation

by learning a location response. To maintain target consis-

tency, LCM introduces Object Relation Module(ORM). As

the target object is annotated in the first frame of a video,

the object relationship from the first value embedding is en-

coded to the query frame, which serves as a consistent fu-

sion for context feature during the entire video sequence.

Figure 1 illustrates the effectiveness of our LCM against

typical errors in memory-based methods.

Our contributions can be summarized as follows:

• We propose a novel Position Guidance Module to com-

pute a location response to maintain position consis-

tency in memory-based methods.

• We propose Object Relation Module to effectively fuse

object-level information for maintaining consistency

of the target object.

• We achieve state-of-the-art performance on both

DAVIS and Youtube-VOS benchmark and rank the 1st

in the DAVIS 2020 challenge semi-supervised VOS

task.

2. Related Works

Top-down methods for VOS. Top-down methods

tackle video object segmentation with two processes. They

first conduct detection methods to obtain proposals for tar-

get objects and then predict mask results. PReMVOS[27]

utilizes Mask RCNN[12] to generate coarse mask proposals

and conducts refinement, optical flow and re-identification

to achieve a high performance. DyeNet[21] applies

RPN[35] to extract proposals and uses Re-ID Module to

associate proposal with recurrent mask propagation. TAN-

DTTM[18] proposes Temporal Aggregation Network and

Dynamic Template Matching to combine RPN with videos

and select correct RoIs. Top-down methods rely heavily on

the pre-trained detectors and the pipelines are usually too

complicated to conduct end-to-end training.

Propagation-based methods for VOS. Propagation-

based methods utilize the information from previous

frames. MaskTrack[31] directly concatenates previous

mask with current image as the input. RGMP[45] also con-

catenates previous masks and proposes a siamese encoder

to utilize the first frame. OSMN[48] designs a modulator

to encode spatial and channel modulation parameters com-

puted from previous results. AGSS-VOS[24] uses current

image and previous results and combines instance-specific

branch and instance-agnostic branch with attention-guided

decoder. In general, previous frame is similar in appearance

to the current frame, but it cannot handle occlusion and er-

ror drifting. And previous works usually conduct implicit

feature fusion which is lack of interpretability.

Matching-based methods for VOS. Matching-based

methods perform pixel-level matching between template

frame and current frame. PML[6] proposes a embed-

ding network with triplet loss and nearest neighbor clas-

sifier. VideoMatch[17] conducts soft matching with fore-

ground and background features to measure similarity.

FEELVOS[39] proposes global and local matching accord-

ing to the distance value. CFBI[49] applies background

matching together with an instance-level attention mecha-

nism. The main inspiration of our work is STM[29] which

proposes to use all previous frames by storing information

as memory. KMN[36] applies Query-to-Memory match-

ing to improve original STM with kernelized memory read.

Matching-based methods ignore the temporal information

especially positional relationship. And they miss the knowl-

edge from the overall target object.

Attention mechanism. Attention is widely adopted in

machine learning including natural language process and

computer vision. Non-local[42] network computes atten-

tion response at a position as a weighted sum of the fea-

tures at all positions, capturing global and long-term infor-

mation. [53] proposes a generalized attention formulation

for modeling spatial attention. Many semantic segmenta-

tion works[19, 52, 50] utilize attention to build context in-
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Figure 2. The overview of our LCM. The information of past frames are stored in memory pool. Global Retrieval Module(GRM) conducts

pixel-level matching between query and memory pool. Position Guidance Module(PGM) encodes information from previous frame. Object

Relation Module(ORM) fuses feature from first value embedding.

formation for every pixels. [14] emphasizes the features of

the query and images via co-attention and co-excitation.

3. Methods

We first present the overview of our LCM in section 3.1.

In section 3.2, we describe the Global Retrieval Module.

Then we introduce the proposed Position Guidance Module

and Object Relation Module in section 3.3 and section 3.4.

Finally, the detail of training strategy is in section 3.5.

3.1. Overview

The overall architecture of LCM is illustrated in Fig-

ure 2. LCM uses a typical Encoder-Decoder architecture

to conduct segmentation. For a query image, the query en-

coder produces three embeddings, i.e. Key-G, Key-L and

V alue. The embeddings are fully exploited in three sub-

modules: Global Retrieval Module(GRM), Position Guid-

ance Module(PGM) and Object Relation Module(ORM).

First, GRM is designed the same as Space-Time Memory

Network(STM)[29]. It calculates a pixel-level feature cor-

relation between the current frame and memory pool. The

Key-G and value from previous frames are stored in mem-

ory pool via the memory encoder. Second, we propose

PGM, which learns a feature embedding for both current

frame and previous adjacent frame. Obviously previous

frame contains similar positional information with current

frame. Thus we build a positional relationship between

these two frames which enhances positional constrain for

the retrieved pixels. Moreover, to merge object-level infor-

mation into pixel-level matching procedure and to prevent

the accumulative error in memory pool, we propose ORM.

The information of objects in the first frame will be main-

tained during entire sequential inference. Finally, we in-

troduce the training strategy of our LCM. In the following

section, we will further present a specific description.

3.2. Global Retrieval Module

Global Retrieval Module(GRM) highly borrows the im-

plementation of Space-time Memory Network(STM)[29].

As illustrated in Figure 2, Previous frames together with its

mask predictions are encoded through the memory encoder

meanwhile current frame is encoded through the query en-

coder. We use the ResNet-50[13] as backbone for both

encoders. For the tth frame, the output feature maps are
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defined as rM∈RH×W×C and rQ∈RH×W×C . For previ-

ous frames, the memory global key kM∈RH×W×C/8 and

memory value vM∈RH×W×C/2 are embedded through two

separated 3×3 convolutional layers from rM . Then both

embeddings are stored in memory pool and are concate-

nated along the temporal dimension, which are defined as

kMp ∈RT×H×W×C/8 and vMp ∈RT×H×W×C/2. For query

image, the query global key kQ∈RH×W×C/8 will be em-

bedded from rQ. The Global Retrieval Module retrieves the

matched pixel feature based on the similarity of the global

key between query and memory pool by the following for-

mulation:

s(i, j) =
exp(kMp (i)⊙kQ(j)T)

∑
i exp(k

M
p (i)⊙kQ(j)T)

(1)

where i and j are the pixel feature indexes of memory pool

and the query. ⊙ represents the matrix inner production, and

function s denotes the softmax operation, determining the

location of the most similar pixel feature in memory pool

for the query. Then the retrieved value feature is calculated

as:

yGRM (j) =
∑

i

s(i, j)⊙vMp (i) (2)

Global Retrieval Module encourages the query to search

for the pixel-level appearance feature with high similarity

along both spatial and temporal dimension. The main con-

tribution of this module is its high recall. However, such

mechanism does not fully utilize the characteristics of video

object segmentation. The calculation of the correlation map

is equally conducted with all features in memory pool with-

out position consistency. As a consequence, the network

tends to learn where to find the similar area but not correctly

tracking the target object. The following proposed modules

aim to solve above problems.

3.3. Position Guidance Module

In video object segmentation, the motion trajectory of an

object is continuous and the recent frames usually contain

the cues of approximate location of the target. When con-

ducting Global Retrieval, all pixels with high similarity will

be matched. Thus, if some small areas or other objects be-

sides the tracked one have similar appearance feature, the

Global Retrieval Module often incorrectly retrieves them

as illustrated in Figure 1. Thus, the positional information

from recent frames should be effectively used.

Here we introduce Position Guidance Module(PGM)

which encodes previous adjacent frame to learn position

consistency. As shown in Figure 2, in addition to output

global key, we also propose to extract local key from the

res4 feature map for local position addressing. Specifically,

another 3×3 convolutional layer is applied for both query

embedding and previous adjacent memory embedding to

Key-L(Q) Key-L(M)
Positional

Encoding
Value(Q)Predictiont-1

HQWQ×HMWM

HQ×WQ×C HM×WM×C HM×WM

1×HMWM

HQWQ×K

HQ×WQ

HQWQ×1HQWQ×HMWM

+

+

*

×
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Select Top K

×

Mean

Broadcast

g(Mt-1)

+

*

×

Softmax on HQWQ
Element-wise sum

Matrix inner product

Element-wise product

Figure 3. Implementation of Position Guidance Module.

output query local key k
Q
L∈R

H×W×C/8 and memory local

key kML ∈RH×W×C/8.

The implementation of Position Guidance Module is de-

picted in Figure 3. The global key is learned to encode

visual semantics for matching robust to appearance varia-

tions as described in STM. In comparison, the local key is

designed to not only address feature similarity but also en-

code positional correspondence. Since the matrix operation

for these embeddings is position-invariant, we supplement

them with 2D positional encodings[30, 4] to maintain loca-

tion cues. We use sine and cosine functions with different

frequencies to define a fixed absolute encoding associated

with the corresponding position, formulating it as pos(i).
Positional encodings are added to both local keys followed

by a 1×1 convolutional layer fn. We depict the process as

follows.

pM (i) = fn(k
M
L (i) + pos(i)) (3)

pQ(j) = fn(k
Q
L (j) + pos(i)) (4)

Then we reshape pM and pQ and apply matrix inner

product to get the embedding S with size of HW×HW .

Softmax operation is applied on the query dimension to

form a response distribution for each location in the previ-

ous frame. Meanwhile we use the previous predicted mask

to reduce the response of non-object areas. The calculation

is defined as:

S(i, j) =
exp(pQ(j)⊙pM (i)T)∑
j exp(p

Q(j)⊙pM (i)T)
∗g(Mt−1) (5)

where g(x) = exp(x)
e

prevents the response from the loca-

tion of background close to zero since the previous predic-

tion is not always correct. Next we select the top-K values

on the memory dimension and average them to get the po-

sition map of size H×W . Experimentally, we set K = 8.

The selected locations in the memory map determine a sig-

nificant position association with corresponding query loca-

tion. And the location with high response value in the po-

sition map represents the area where objects are most likely
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Figure 4. The effectiveness of PGM.

to appear in the query image. Finally, this position map

serves as a spatial attention map and we conduct element-

wise product between the position map and the query value

vQ:

yPGM (j) =

∑
i topK{S(i, j)}

K
∗vQ(j) (6)

To demonstrate the effectiveness of PGM, we illustrate

the typical case in Figure 4. Without PGM, pixels of similar

objects are likely to be retrieved due to the high appearance

similarity. As a comparison, PGM promotes a better dis-

crimination between target and distractors. We normalize

the learned location response in PGM to a heatmap. The

result shows that PGM learns a response distribution which

not only considers the similarity of the appearance features

between objects, but also correctly determines the location

area of the target.

3.4. Object Relation Module

In video object segmentation, it is critical to utilize

object-level feature of the target, which is not covered by

above mechanism. The matching-based pixel retrieval is a

bottom-up approach and lack of context information. Dur-

ing video inference, the accumulative error often brings

noisy (Key-G, value) pairs into memory pool and will

mislead the subsequent pixel matching process and position

guidance as shown in middle right of Figure 1. To tackle

above problems, it is essential to additionally utilize the

first frame as it always provides intact and reliable masks.

Specifically, we propose Object Relation Module(ORM) to

fuse the object-level information of the first frame as a prior

into the inference of entire video stream to maintain target

consistency.

In Object Relation Module, we start from the first value

vF and the query value vQ. The module structure is il-

lustrated in Figure 5. According to the ground truth mask,

for each object we select the foreground feature in the first

value vF into a value set F{fi}, where i denotes the loca-

×

+

+

Object

Extraction Mutual Relation

First Value

Value(Q)

… …

GAP

Channel Attention

GT

Figure 5. Process of Object Relation Module.

tion that belongs to certain object mask. Inspired by [14],

we design a cross relation mechanism to merge object-level

feature into the query value. For both F{fi} and vQ(j), we

conduct non-local operation and output respective non-local

relation feature FQ{fi} and v
Q
F (j) as follows:

FQ{(fi)} =
1

d

∑

j

f(F{fi}, v
Q(j))∗g(vQ(j)) (7)

v
Q
F (j) =

1

d

∑

i

f(vQ(j), F{fi})∗g(F{fi}) (8)

where d = H∗W is the normalization factor and g is a

1×1 convolutional layer. f denotes dot product between

two vectors. Then the original feature is enhanced by the

non-local relation feature via element-wise sum. Further-

more, we conduct global average pooling on the enhanced

first value feature followed by two fully-connected layers

and Sigmoid function as in the design of SENet[15], serv-

ing as the channel-wise attention. Thus, the query value

can adaptively re-weighting the importance coefficient over

channels through the instruction from object-level feature.

The process is summarized as follows, where GAP indi-

cates global average pooling:

vQ(j) = vQ(j) + v
Q
F (j) (9)

F{fi} = F{fi}+ FQ{(fi)} (10)

yORM (j) = vQ(j)∗GAP (F{fi}) (11)

Object Relation Module encodes object-sensitive infor-

mation flow into the feature extraction. The output is

merged with Position Guidance Module and concatenated

with the memory value from Global Retrieval Module as the

final feature. We employ the decoder described in [45, 29]

to gradually upsample the feature map combined with resid-

ual skip connections to estimate the object mask. We apply

soft aggregation[45, 29] to merge the multi-object predic-

tions.

3.5. Training Strategy

Pre-training on static images. As widely used in re-

cent VOS task[45, 29, 36], we simulate fake video dataset
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with static images to pre-train the network for better pa-

rameter initialization. We leverage image segmentation

datasets[8, 37, 25] for pre-training. A synthetic clip con-

tains three frames. Specifically, one image is sampled from

real dataset and generates other two fake images by apply-

ing random affine transforms.

Main-training on real videos without temporal limit.

In this step, we leverage video object segmentation datasets

to train the model. Different from the original main training

setting in [29], we do not limit video sampling intervals.

Three frames are randomly selected from a video sequence

and we randomly shuffle the order of them. Only objects

that appear in all three frames are selected as foreground

objects. This strategy encourages the network to strength

retrieval capability since the target object will appear in all

possible regions.

Fine-tuning on real videos as sequence. At infer-

ence of video object segmentation, the mask results is com-

puted frame by frame sequentially. Therefore, in this train-

ing stage we further fine-tune the model to reduce the gap

between training and testing. We sample three frames with

time-order and the skip number is randomly selected from

1 to 5. The predicted soft mask result is used to compute

memory embeddings. This training mechanism construct

training samples with sequence information, which benefits

the training of PGM.

Training Details. We initialize the network with Ima-

geNet pretrained parameters. During pre-training, we con-

duct translation, rotation, zooming and bluring to transform

images and randomly crop 384×384 patches. We minimize

the cross-entropy loss using Adam optimizer with learning

rate of 5e-4. During main-training and fine-tuning, we ran-

domly crop a 640×384 patch around the maximum bound-

ing box of all objects in three frames. Adam optimizer with

learning rate of 1e-5 is used in main-training and SGD op-

timizer with learning rate of 3e-4 for fine-tuning. We use 8

Tesla V100 GPUs. Pre-training takes 25 hours(10 epoch).

Training without temporal limit takes 12 hours(200 epoch).

Training as sequence takes 3 hours(50 epoch). We do not

apply post-processing or online training.

4. Experiments

We evaluate our model on DAVIS[33, 34] and YouTube-

VOS[46], two popular VOS benchmarks with multiple

objects. For YouTube-VOS, we train our model on

the YouTube-VOS training set and report the result on

YouTube-VOS 2018 validation set. For the evaluation on

DAVIS, we train our model on DAVIS 2017 training set

with 60 videos. Both DAVIS 2016 and 2017 are evaluated

using an identical model trained on DAVIS 2017 for a fair

comparison with the previous works. We also report the re-

sult trained with both DAVIS 2017 and YouTube-VOS(3471

videos) following recent works.

Seen Unseen

Overall J F J F
OSMN[48] 51.2 60.0 60.1 40.6 44.0

MSK[32] 53.1 59.9 59.5 45.0 47.9

RGMP[45] 53.8 59.5 - 45.2 -

OnAVOS[40] 55.2 60.1 62.7 46.6 51.4

RVOS[38] 56.8 63.6 67.2 45.5 51.0

OSVOS[3] 58.8 59.8 60.5 54.2 60.7

S2S[47] 64.4 71.0 70.0 55.5 61.2

A-GAME[20] 66.1 67.8 - 60.8 -

PreMVOS[27] 66.9 71.4 75.9 56.5 63.7

BoLTVOS[41] 71.1 71.6 - 64.3 -

DMM[51] 58.0 60.3 63.5 50.6 57.4

CapsuleVOS[51] 62.3 67.3 53.7 68.1 59.9

GC[22] 73.2 72.6 75.6 68.9 75.7

AFB URR[23] 79.6 78.8 83.1 74.1 82.6

GraphMem[26] 80.2 80.7 85.1 74.0 80.9

CFBI[49] 81.4 81.1 85.8 75.3 83.4

LWTL[11] 81.5 80.4 84.9 76.4 84.4

KMN[36] 81.4 81.4 85.6 75.3 83.3

STM[29] 79.4 79.7 84.2 72.8 80.9

LCM 82.0 82.2 86.7 75.7 83.4

Table 1. The quantitative evaluation on Youtube-VOS 2018 vali-

dation dataset.

The evaluation metric is the average of J score and F
score. J score calculates the average IoU between the pre-

diction and the ground truth mask. F score calculates an

average boundary similarity between the boundary of the

prediction and the ground truth mask.

4.1. Compare with the State­of­the­art Methods

Youtube-VOS[46] is the largest dataset for video seg-

mentation which consists of 4453 high-resolution videos.

In detail, the dataset contains 3471 videos in the training set

(65 categories), 474 videos in the validation set (additional

26 unseen categories). We train our model on Youtube-VOS

training set and evaluate it on Youtube-VOS-18 validation

set.

As shown in Table 1, our approach LCM obtains a fi-

nal score of 82.0%, significantly outperforming our baseline

STM(79.4%) of 2.6%. It demonstrates the effectiveness

of our proposed modules on typical memory-based meth-

ods. Compared with other recent works, LCM also achieves

state-of-the-art performance. CFBI[49] is built on a strong

pipeline with COCO[25] pre-trained DeepLabV3+[5] and

a well-designed segmentation head. KMN applies a Hide-

and-Seek training strategy which improves the diversity

and accuracy of training data and is a general data-

augmentation for any other memory-based VOS methods

including LCM. Without these enhancements, our perfor-

mance is still higher. This result demonstrates the ro-
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J Mean F Mean Overall

Validation Set

OSVOS[3] 56.6 63.9 60.3

PReMVOS[27] 73.9 81.7 77.8

OSVOSs[28] 64.7 71.3 68.0

OSMN[48] 52.5 57.1 54.8

VideoMatch[17] 56.5 68.2 62.4

RGMP[45] 64.8 68.6 66.7

A-Game[20] 67.2 72.7 70.0

FAVOS[7] 54.6 61.8 58.2

FEELVOS[39](+YV) 69.1 74.0 71.5

DMM[51] 68.1 73.3 70.7

RANet[43] 63.2 - 65.7

GC[22] 69.3 73.5 71.4

AFB URR[23] 73.0 76.1 74.6

LWTL[11](+YV) 79.1 84.1 81.6

CFBI[49](+YV) 79.1 84.6 81.9

GraphMem[26](+YV) 80.2 85.2 82.8

KMN[36](+YV) 80.0 85.6 82.8

STM[29] 69.2 74.0 71.6

LCM 73.1 77.2 75.2

STM[29](+YV) 79.2 84.3 81.8

LCM(+YV) 80.5 86.5 83.5

Test-dev Set

PReMVOS[27] 67.5 75.7 71.6

RGMP[45] 51.3 54.4 52.9

FEELVOS[39](+YV) 55.2 60.5 57.8

RANet[43] 53.4 - 55.3

CFBI[49](+YV) 71.1 78.5 74.8

KMN[36](+YV) 74.1 80.3 77.2

STM[29](+YV) 69.3 75.2 72.2

LCM(+YV) 74.4 81.8 78.1

Table 2. The quantitative evaluation on DAVIS-2017 validation

and test-dev dataset. (+YV) indicates training with both DAVIS

and Youtube-VOS.

bustness and generalization of our approach on a complex

dataset.

DAVIS 2017[34] is a multi-object extension of DAVIS

2016 and it is more challenging than DAVIS 2016 since the

model needs to consider the difference between various ob-

jects. The validation set of DAVIS 2017 consists of 59 ob-

jects in 30 videos. In this section we evaluate our model on

both DAVIS 2017 validation and test-dev benchmark.

The results are compared to state-of-the-art approaches

in Table 2. Our method shows state-of-the-art results. When

applying both DAVIS and Youtube-VOS datasets for train-

ing, LCM achieves 83.5%, surpassing our baseline STM

of 1.7%. And LCM also shows higher performance than

other existing methods including online-learning methods

and offline-learning methods. Follwing recent work, we

also report the result with only DAVIS for training. And

Time(s) J Mean F Mean Overall

OSVOS[3] 9 79.8 80.6 80.2

MaskRNN[16] - 80.7 80.9 80.8

LSE[9] - 82.9 80.3 81.6

CINN[1] 30 83.4 85.0 84.2

PReMVOS[27] 32.8 84.9 88.6 86.8

OnAVOS[40] 13 86.1 84.9 85.5

RANet[43] 4 86.6 87.6 87.1

FEELVOS[39] 0.45 81.1 82.2 81.7

RGMP[45] 0.13 81.5 82.0 81.8

A-Game[20] 0.07 82.0 82.2 82.1

FAVOS[7] 1.8 82.4 79.5 81.0

DMVOS[44] 0.035 87.8 87.5 88.0

RANet[43] 0.03 85.5 85.4 85.5

GC[22] 0.04 87.6 85.7 86.6

CFBI[49] 0.18 88.3 90.5 89.4

KMN[36] 0.12 89.5 91.5 90.5

STM[29] 0.112 88.7 89.9 89.3

LCM 0.118 89.9 91.4 90.7

Table 3. The quantitative evaluation on DAVIS-2016 validation

dataset. The running time of STM is our reimplement result.

LCM outperforms the baseline STM of 3.6%. In addition,

we report the result on the DAVIS testing split and also

shows best results of 78.1%, surpassing STM by a signif-

icant margin(+5.9). By employing similar approaches in

LCM together with other tricks such as better backbone,

strong segmentation head, multi-scale testing and model en-

semble, we achieve 84.1% on the DAVIS challenge split and

rank the 1st in the DAVIS 2020 challenge semi-supervised

VOS task.

DAVIS 2016[33] consists of 20 videos annotated with

high-quality masks each for a single target object. As shown

in Table 3, LCM also achieves state-of-the-art performance.

Compared to other methods, LCM is slightly higher than

KMN of 0.2%. Since DAVIS 2016 is relatively a simple

dataset and its performance highly relies on the precision of

segmentation detail. A possible reason is that the Hide-and-

Seek can provide more precise boundaries as described in

KMN. Compared to the baseline STM, LCM shows better

accuracy (89.3vs.90.7).

We also report the running time on DAVIS2016. We use

1 Tesla P100 GPU for inference. The increased running

time brought by PGM and ORM is no more than 6% com-

pared with the baseline STM. We also compare it with other

existing methods and our LCM maintains a comparable fast

inference speed with higher performance.

4.2. Qualitative Results.

We show the qualitative results compared with memory-

based method STM in Figure 6. We use the author’s offi-

cially released pre-computed results. The result shows that
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Figure 6. Qualitative results of our proposed LCM. Our model is more robust under challenging situation such as occlusion, appearance

change and similar objects.

LCM can reduce typical errors in memory-based method

and is more robust under challenging situation such as oc-

clusion, appearance change and similar objects.

4.3. Ablation Study

We conduct an ablation study on DAVIS 2017 validation

set to demonstrate the effectiveness of our approach.

Network Sub-module. We experimentally analyze the

effectiveness of our proposed three sub-modules. In this

experiment, we do not apply pre-training step for saving

time and directly use DAVIS and Youtube-VOS to train

our model. The result is shown in Table 4. When apply-

ing all three proposed modules, LCM achieves 79.2% on

DAVIS 2017 validation set without pre-training. The per-

formance drops to 77.8% and 78.4% respectively When we

disable Position Guidance Module or Object Relation Mod-

ule. Without both modules, the result degrades to 76.9%,

which demonstrates the importance of these two modules.

Furthermore, when disabling Global Retrieval Module, the

performance heavily drops from 79.2% to 67.5%. The

reason is that Global Retrieval Module is the fundamental

module of LCM otherwise a large amount of information is

absent without memory pool.

Training Strategy. We experimentally analyze the im-

pact of our training strategy. The result is shown in Ta-

ble 5. When only conducting pre-training and training with-

out temporal limit, the performance achieves 82.9%, which

is already a state-of-the-art performance. When only con-

ducting pre-training and training as sequence, the result de-

grades to 80.7%.The reason is that small sampling interval

makes the model incapable to learn appearance change and

fast motion. Consequently, our framework has the best per-

GRM PGM ORM J Mean F Mean Overall

X X X 77.1 81.4 79.2

X X 75.5 80.1 77.8

X X 76.0 80.8 78.4

X 74.6 79.2 76.9

X X 65.2 69.8 67.5

Table 4. Ablation study of the network sub-module on DAVIS

2017 validation without pre-training.

Training Strategy J F Avg

Combining three training stages 80.5 86.5 83.5

w/o training as sequence 79.9 85.9 82.9

w/o training without temporal limit 77.9 83.5 80.7

Table 5. Ablation study of the training strategy on DAVIS 2017

validation.

formance when combining all three training stages.

5. Conclusion

This paper investigates the problem of memory-based

video object segmentation(VOS) and proposes Learning po-

sition and target Consistency of Memory-based video ob-

ject segmentation(LCM). We follow memory mechanism

and introduce Global Retrieval Module(GRM) to conduct

pixel-level matching. Moreover, we design Position Guid-

ance Module(PGM) for learning position consistency. And

we integrate object-level information with Object Relation

Module(ORM). Our approach achieves state-of-the-art per-

formance on VOS benchmark.
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