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Abstract

The extraction of auto-correlation in images has shown

great potential in deep learning networks, such as the self-

attention mechanism in the channel domain and the self-

similarity mechanism in the spatial domain. However, the

realization of the above mechanisms mostly requires com-

plicated module stacking and a large number of convolu-

tion calculations, which inevitably increases model com-

plexity and memory cost. Therefore, we propose a pseudo

3D auto-correlation network (P3AN) to explore a more effi-

cient way of capturing contextual information in image de-

noising. On the one hand, P3AN uses fast 1D convolution

instead of dense connections to realize criss-cross interac-

tion, which requires less computational resources. On the

other hand, the operation does not change the feature size

and makes it easy to expand. It means that only a simple

adaptive fusion is needed to obtain contextual information

that includes both the channel domain and the spatial do-

main. Our method built a pseudo 3D auto-correlation at-

tention block through 1D convolutions and a lightweight 2D

structure for more discriminative features. Extensive exper-

iments have been conducted on three synthetic and four real

noisy datasets. According to quantitative metrics and visual

quality evaluation, the P3AN shows great superiority and

surpasses state-of-the-art image denoising methods.

1. Introduction
As a low-level vision task, image denoising aims to re-

cover the underlying clean image from an observed noisy

one, which is a fundamental step for various high-level

vision and image analysis applications [42]. In recent

years, many advanced methods have achieved remarkable

progress in removing synthesized additive white Gaussian

noise. However, the noise in real images often has a compli-

cated generation process in CCD or CMOS camera systems.

Affected by different devices and image signal processing

(ISP) pipelines within the camera, the denoising algorithms

based on synthetic data are inherently difficult to simu-

*Haoqian Wang is the corresponding author.

late and remove irregular real noise accurately [1, 36]. For

blind image denoising, the low-quality noise images with-

out specific noise statistical priors become the only source

of guidance. So it is particularly important to capture auto-

correlation prior information from the input.

The image auto-correlation prior has been widely ex-

plored and played an essential role in many traditional noise

reduction algorithms. In order to obtain more robust learn-

ing and presentation abilities, recent methods try to use deep

learning methods to accumulate more useful and compre-

hensive prior knowledge. In recent years, auto-correlation

features extracted by convolutional neural networks (CNN)

can be divided into channel-wise and spatial-wise features,

which are calculated by the channel-based model and space-

based model, respectively. Similar to other high-level vision

tasks, channel-based model can capture non-linear cross-

channel information about channels of interest, which is de-

fined as a self-attention mechanism [3, 12, 22, 29, 34, 55].

Through features are aggregated and recalibrated in differ-

ent ways, self-attention can capture cross-channel interac-

tion. Lightweight attention aggregation is conducive to as-

sign sophisticated channel-wise dependencies efficiently.

The space-based model revolves around the spatial self-

similarity that has been proven as a powerful feature of

natural images [30, 35, 44]. A common way to obtain the

global auto-correlation in the spatial domain is using a non-

local block [56]. As shown in Fig. 1(a), it calculates the

response as the weighted sum of all pixels. The spatial auto-

correlation is hidden in the pixel-wise long-range contextual

information. The dense connection generates huge attention

maps with high complexity. Huang et al. proposed criss-

cross attention with sparsely-connected graphs, as shown

in Fig. 1(b) [24]. They only extract contextual information

in its horizontal and vertical direction to narrow the search.

But they still need to traverse each pixel to obtain full-image

auto-correlation for each position, which does not fully play

the role of sparse connections. Although the idea of utiliz-

ing auto-correlation prior of images has achieved great suc-

cesses in various restoration tasks, most CNNs built with

this still suffer from a heavier computational burden.
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Therefore, the exploration of image auto-correlation en-

counters a bottleneck in balancing model performance and

computational complexity. On the one hand, most exist-

ing methods are still dedicated to building more sophis-

ticated auto-correlation modules to achieve better perfor-

mance, which further increases application difficulty in the

real world. On the other hand, the feature maps are usu-

ally 3-dimensional, so a complete auto-correlation feature

should have contextual information from both channel and

spatial directions. It is not feasible to introduce 3D convo-

lution accompanying the explosive growth of parameters.

There are currently some methods that combine the channel

self-attention and the spatial self-similarity through a series

or parallel structure [15, 46]. This step-by-step operation

increases the complexity of the model and destroys the con-

tinuous correlation in the local area.

To address the above problems efficiently, we proposed a

pseudo 3D auto-correlation network (P3AN) to simulate 3D

convolution with a 2D structure and integrate channel and

spatial auto-correlation into a unified module. As shown

in Fig. 1(c), to avoid the high computational complexity

caused by huge attention maps, we use fast 1D convolution

instead of a non-local densely-connected layer. The fea-

ture correlations in a specific horizontal or vertical direc-

tion are captured and merged to minimize the correlation

map. At the same time, parameter sharing is introduced

into convolution operations to save GPU memory. Our op-

eration does not change the size of the feature map, which

makes cross-directional fusion possible. It can be seen from

Fig. 1(d) that only simple channel integration and adaptive

fusion are needed to integrate the three directions of hori-

zontal, vertical, and channel. Through consecutive pseudo

3D auto-correlation blocks (P3AB) stack and skip connec-

tion, each location can collect contextual information by

considering all local pixels in 3D space. Our method re-

alizes a lightweight pseudo 3D interaction network that can

be learned end-to-end with low time and space complexity.

The main innovative contributions are as follows:

• We propose a novel spatial auto-correlation module

with fast 1D convolution. The strategy of direction in-

dependence and parameter sharing can effectively re-

duce time and space complexity while capturing con-

textual information from full image dependencies.

• The operation in one-dimensional space avoids dimen-

sionality reduction, which is easy to expand. We de-

sign a lightweight 2D structure to adaptively fuse the

correlation features in the three directions of horizon-

tal, vertical, and channel, and get more discriminative

features for real image denoising.

• We evaluate quantitative indicators and visual quality

on synthetic and real noise datasets. Our proposed net-

work has lower model complexity and higher perfor-

mance than state-of-the-art image denoising methods.
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(a) Spatial Auto-Correlation with Fully-Connected.
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(b) Spatial Auto-Correlation with Sparsely-Connected.
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(c) Spatial Auto-Correlation with 1D Convolution.
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(d) Pseudo 3D Auto-Correlation with 1D Convolution.

Figure 1. Diagram of four methods to aggregate auto-correlation.

Each position (e.g., red) can collect information from other pixels

2. Related Works

2.1. Image Denoising

Most traditional denoising methods [6,7,11,14] aimed to

remove synthetic additive white Gaussian noise. Because it

conforms to a specific prior distribution, the removal of syn-

thetic noise is usually modeled by sparsity or self-similarity.

The use of deep learning for image denoising has been

extensively researched recently. CNN applies a powerful

learning model to eliminate noise and has obtained a signif-

icant performance improvement [4, 7, 20, 28, 32, 52, 53, 57].

However, the real camera noise is heavily transformed by

the camera ISP, the flexible network structures to extract

discriminative features needs to be further improved. CBD-

Net [19] trains a blind denoising model through two steps of

noise estimation and non-blind denoising. RIDNet [3] se-
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Figure 2. The architecture of the proposed P3AN. The P3ABs captures the pseudo 3D auto-correlation by consecutive feature interaction.

lectively learns distinctive distinguishing features through

an attention mechanism. The advanced VDN proposed by

Yue et al. [50] uses variational inference techniques to es-

timate the noise distribution within the Bayesian frame-

work. But the sensor noise model ignores the signal auto-

correlation, which makes it hard to estimate the real noise in

a spatio-chromatically correlated form. AINDNet [26] uses

a migration learning strategy to propose a denoising struc-

ture with a strong generalization. MIRNet [51] learns rich

spatial context features through parallel multi-resolution

convolution streams and maintains high-resolution details.

Although such deep networks have achieved good perfor-

mance, recent explorations focus on building more complex

structures and deeper networks. The hard training process

increases the risk of saturation of denoising performance.

2.2. Auto­Correlation Aggregation
Auto-correlation features usually consist of self-

attention and self-similarity, representing the contextual in-

formation of channel direction and spatial direction, respec-

tively. SE-Net [22] proposed by Hu et al. designed an ef-

fective mechanism to learn channel attention. Subsequently,

GE [21]used deep convolution [9] to aggregate features to

explore spatial expansion. GSoP [17] introduced second-

order pooling, and SAN [13] used covariance pooling to

obtain second-order attention, both of which achieved more

effective feature aggregation through high-order statistics.

The self-similar prior provides a powerful self-prediction

ability for natural image restoration [5, 18, 58]. Wang et

al. [44] proposed a non-local attention module for deep

CNN, which calculates long-range semantic relevance by

assigning weights to elements in all locations. Recent meth-

ods including NLRN [31], RNAN [56], and SAN [13] in-

corporate non-local operations in their networks for im-

age restoration. For reducing the computational complexity

caused by dense global convolution, Huang et al. proposed

criss-cross attention [25], which adopts a criss-cross ap-

proach to obtain context information. To obtain more com-

plete correlation features, CBAM [46] and scSE [40] use

2D convolution to calculate spatial attention and then com-

bine it with a independent channel attention. Dual Atten-

tion Network (DANet) [16] also considers non-local chan-

nel and spatial attention. Due to their high model complex-

ity, most auto-correlation modules are only used in single

or several convolutional blocks. It is important to learn the

cross-direction correlation with low model complexity.

3. Proposed Method

3.1. Network Architecture
As shown in Fig. 2, for the noise image x, we use three

convolution layers to extract shallow features. The size of

the convolution kernel is 3×3, 1×1 and 3×3 respectively.

Define FS(·) as the corresponding function, the shallow fea-

tures x0 extracted in the first stage can be expressed as:

x0 = FS(x). (1)

Next,the auto-correlation feature learning process consists

of several stacked P3ABs and a skip connection. We define

the function corresponding to the P3AB as FP(·). Assume

the number of P3AB in the entire network is n, then the

output of the i-th block of the network is

xi = F i
P(xi−1), i = 1,2, ...,n, (2)

where F i
P(·) corresponds to the i-th P3AB. The implemen-

tation details of F i
P(·) will be explained in Section 3.2. The

input of the first P3AB is x0. This process is executed itera-

tively, and the output of the last P3AB is as follows:

xn = Fn
P (xn−1) = Fn

P (F
n−1
P (· · ·(F1

P (x0)) · ··)). (3)

Then we establish a skip connection between the shallow

and the deep features to facilitate the cross-layer flow:

x f = xn +x0. (4)

In image reconstruction, the original image is undoubt-

edly highly similar to the high-quality image, where there is

no noise. The fact indicates that the two images have a lot

of shared information, so we introduced the global residual

connection (GRC) as a shortcut map to learn the residual in-

formation between the original input x and output denoised

image y. Here we use a 3× 3 convolutional layer defined

as FC3 to adjust the fused features adaptively. Finally, the

reconstructed image can be obtained as follows:

y = FC3(x f )+x. (5)

Multiple skip connections form a multi-level residual

mechanism. Cross-layer information exchange between

layers that are far apart can help the model to retain more

prior information in the noisy image. The multi-level resid-

ual learning can stabilize training and improve performance.

We choose the same L1 loss function used in the previ-

ous network training methods for a fair comparison. The

optimization goal is making the denoised images as close

as possible to the corresponding real clean images. Given

a training set {x
j
LQ,y

j
HQ} which contains N pairs of images,

we minimize the L1 reconstruction loss as:
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Figure 3. Different feature correlation remapping structures and their parameter matrices. The C is the number of elements and w is

learnable weights. (a) The fully connected convolution layer with densely-connected weights. (b) The channel reduction structure with two

fully connected layers. The r means the reduction factor. (c) The channel mapping with independent weights. (d) The locally connected

layer with C convolutions and k is the size of kernels. (e) The 1D fast convolution with all elements sharing the same learning parameters.

Methods Auto-Correlation Parameters PSNR (dB)

Baseline N/A 0 28.01

Fully Connected σ(We) C2 30.34

Channel Reduction σ( f{W1 ,W2}
(e)) 2×C2/r 29.86

Channel Mapping σ(w⊙ e) C 29.64

Locally Connected σ(∑k
j=1 w

j
i e

j
i ) k×C 31.58

1D Fast Conv (Ours) σ(∑k
j=1 w je

j
i ) k 31.72

Table 1. Comparison of various feature auto-correlation modules

on Urban100 [23] with noise level σ = 50. Parameters indicates

number of learnable weights; σ is a Sigmoid function; ⊙ indicates

element-wise product; k is kernel size of the local convolution.

L1(Θ) =
1

N

N

∑
j=1

‖FP3AN(x
j
LQ)− y

j
HQ‖, (6)

where FP3AN(·) represents our network, and Θ is a set of

all the parameters that to be optimized. We provide more

details about the P3AB in the next section.

3.2. Pseudo 3D Auto­Correlation Extraction
3.2.1 1D Fast Convolution

We compare the current popular structure of extracting fea-

ture auto-correlation in Fig. 3. Then we explained the ef-

fectiveness and efficiency of the 1D fast convolution used

in terms of model complexity and parameter amount.

For the fully connected layer, as shown in Fig. 3(a), each

node is connected to all the nodes in the previous layer and

integrates the features extracted from the front. Due to its

dense connection characteristics, the parameters of the fully

connected layer are really large. In the process of extracting

spatial self-similarity, every node is fully connected, so a lot

of calculations are required. Given the aggregated feature

e ∈ R
C, auto-correlation weights can be learned by

ω = σ(We), (7)

where σ is a Sigmoid function and W is a matrix with C2

parameters. The long-range dependence calculate all pixels,

so a computational burden is required for the global spatial

self-similarity. Specifically, the size of the intermediate fea-

ture map f ∈ R
H×W in Fig. 1(a) and Fig. 1(b) is (H×W)×

(H×W) in non-local operations and (H×W)×(H+W−1)
in the criss-cross attention operations, respectively.

Channel reduction in Fig. 3(b) has been widely adopted

by currently popular attention mechanism. It usually uses

two non-linear fully connected layers and a Sigmoid func-

tion to generate channel weights. To control the complexity

of the model, the two fully connected layers reduce the di-

mension and capture non-linear cross-channel interaction.

The weights of auto-correlation can be computed as

ω = σ( f{W1,W2}(e))). (8)

After channel reduction, the sizes of W1 and W2 are set to

C× (C
r
) and (C

r
)×C. The number of parameters of the cor-

relation matrix can be calculated as 2×C2/r, which is less

than full connection but still a large computational burden.
Channel mapping in Fig. 3(c) shows that the optimiza-

tion of the weight of each channel is independent, so the

amount of its parameter number is only C. But it just

contains directly corresponding weight and does not learn

the correlation between neighbors. Therefore, to ensure

both efficiency and effectiveness, our work explores another

method that can capture local unidirectional interaction, as

shown in Fig. 3(d). Specifically, we use single-direction lo-

cally connected convolution to learn auto-correlation. This

local connection does not use the global receptive field, so

the feature map will keep the original size in dimension.
Compared with the methods of extracting spatial self-

similarity and channel self-attention mentioned above, this

local auto-correlation is only calculated by considering the

interaction between ei and its k neighbors. Each feature vec-

tor can be calculated separately. The formula is as follows:

ωi = σ(
k

∑
j=1

w
j
i e

j
i ), (9)

where i depends on the size of the feature map. When the

feature is a C-dimensional vector, the amount of parameters

in the auto-correlation is k×C, which is already less than

all the above methods that consider contextual information.

In this paper, we explored a more efficient way to capture

local contextual information. By sharing the same parame-

ters to be learned, the Eq. 9 can be simplified to:

ωi = σ(
k

∑
j=1

w je
j
i ). (10)

As shown in the Fig. 3(e), the cross-channel local connec-

tion is replaced with a lightweight structure based on 1D

fast convolution. The number of sharing parameters of the
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lightweight local connection is incredibly small, and only

k weights are required for one operation. We reduce the

computational complexity from a quadratic to a linear scale

in the input length and then to a constant. This is a very

significant improvement in the efficiency of calculating the

auto-correlation information in a single direction.

We compare various feature auto-correlation modules on

Urban100 [23] with noise level σ = 50 in Tab. 1. We use

the ResNet-50 [20] as the baseline and then add correspond-

ing structures to compare model complexity and denoising

performance. We can see that our method achieves better

performance with much lower model complexity and fewer

parameters and the local connection is the second best. It

proves that efficiency and effectiveness can be guaranteed

by capturing local interactions properly.

3.2.2 Pseudo 3D Auto-Correlation Block

For the elements in each direction of features, 1D fast con-

volution can collect information from all other locations

without changing the feature size. Therefore, this aggre-

gation method can be directly extended to 3D space to cap-

ture all-around context information. As shown in Fig. 4, we

build a lightweight pseudo-3D auto-correlation block based

on 1D fast convolution, which is defined as P3AB.

We use xt ∈ R
H×W×C (t ∈ [0,n]) to denote the input fea-

ture map. For each position, we extract the relevance of all

elements in the horizontal, vertical and channel directions,

and the lengths are w, h, and c, respectively. We define

the 1D convolution in Eq. 11 as the function F1DC(·). The

[ f ĥ
i , f v̂

j , f ĉ
k ] represent the original feature vectors in different

directions. Then the auto-correlations are extracted by

[ f Ĥ
i , f V̂

j , f Ĉ
m ] = F1DC([ f

ĥ
i , f v̂

j , f ĉ
m]), fi, j,m,∈ xt , (11)

[ f Ĥ
i , f V̂

j , f Ĉ
k ] capture the correlations without length chang-

ing. Feature vectors in different directions share convolu-

tion parameters independently. We traverse all positions:

f Ĥ = { f Ĥ
0 , f Ĥ

1 , f Ĥ
2 , ..., f Ĥ

c×h},

f V̂ = { f V̂
0 , f V̂

1 , f V̂
2 , ..., f V̂

c×w},

f Ĉ = { f Ĉ
0 , f Ĉ

1 , f Ĉ
2 , ..., f Ĉ

w×h}.

(12)

As shown in Fig. 4, thanks to the good usability of 1D fast

convolution, f Ĥ, f V̂, and f Ĉ have the same size, so it can be

concatenated in the channel, and a feature map with channel

3c can be obtained. Then the adaptive feature fusion (AFF)

is performed, which is defined as:

fa = F2
C (F

1
C ([ f

Ĥ, f V̂, f Ĉ])), (13)

where F2
C and F1

C represent the 1 × 1 convolutional layer

with the kernels of 3c and c, respectively. fa is the output

of pseudo 3D auto-correlation feature map, and its shape is

consistent with the input size. Therefore, residual learning

is added directly to reserve better cross-layer information.

When input feature map xt to the P3AB module, the output

feature map xt+1 can be obtained as follow:

1
w

1
h

1
c

1

1
h

1
c

Sigmoid

k

Adaptive Feature Fusion (AFF)

w

h

c
3c

w

Horizontal
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h
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1
1 
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Figure 4. The internal implementation details of P3AB. After 1D

fast convolution and adaptively feature fusion (AFF), the output

contains the auto-correlation from three directions: horizontal,

vertical, and channel. Red arrows indicate the flow of operations.

xt+1 = xt + fa. (14)

It should be noted that when t = 0, the input of t-th

PCAB does not carry any auto-correlation information. If

t > 0, the P3AB can further explore information from the

output of the previous block. Through stacking P3ABs con-

tinuously, each position can collect auto-correlation from

all pixels in a given image. Based on forwarding multiple

transformations and the AFF, feature receptive field can be

expanded to global reception only with local 1D convolu-

tions. This decomposition strategy will reduce the time and

space complexity efficiently. Besides, the cross-layer con-

nection between layers of different depth proved to be more

conducive to transfer the prior information in the noise im-

age. We design the skip connections at different network lo-

cations to form a multi-level residual mechanism, which can

stabilize model training and improve model performance.

4. Experiments
4.1. Datasets

We train our network on three synthetic noisy images

datasets and four real noisy images datasets respectively.

For ensuring fairness of comparison, we train all competi-

tion methods on the same training set.

Synthetic Noisy Images: We use training sets in DIV2K

as high-quality clean images. Then four different white

Gaussian noise levels with σ = 10,30,50,70 are added to

clean images respectively to generate noise image pairs.

The color image denoising performance of P3AN is eval-

uated on the benchmarks: BSD68 [39], Kodak24 [41], and

Urban100 [23], all are publicly available for downloading.
Real Noisy Images: We use the Smartphone Image De-

noising Dataset (SIDD) [1] to train and evaluate the perfor-

mance of our model on real-world image denoising. The

images in SIDD are captured by five smartphone cameras

in 10 static scenes. They have different lighting conditions

and camera settings, and a total of 30,000 noisy images are

included. We separated 24,000 images for model training

and 1280 images for validation. We used two open-source
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Figure 5. Visual comparison for color image denoising with noise level σ = 50 on Urban100 [23] and BSD68 [39].

Method
Kodak24 BSD68 Urban100

10 30 50 70 10 30 50 70 10 30 50 70

CBM3D [10] 36.57 30.89 28.63 27.27 35.91 29.73 27.38 26.00 36.00 30.36 27.94 26.31

TNRD [8] 34.33 28.83 27.17 24.94 33.36 27.64 25.96 23.83 33.60 27.40 25.52 22.63

RED [33] 34.91 29.71 27.62 26.36 33.89 28.46 26.35 25.09 34.59 29.02 26.40 24.74

DnCNN [52] 36.98 31.39 29.16 27.64 36.31 30.40 28.01 26.56 36.21 30.28 28.16 26.17

MemNet [43] N/A 29.67 27.65 26.40 N/A 28.39 26.33 25.08 N/A 28.93 26.53 24.93

IRCNN [53] 36.70 31.24 28.93 N/A 36.06 30.22 27.86 N/A 35.81 30.28 27.69 N/A

FFDNet [54] 36.81 31.39 29.10 27.68 36.14 30.31 27.96 26.53 35.77 30.53 28.05 26.39

RNAN [56] 37.24 31.86 29.58 28.16 36.43 30.63 28.27 26.83 36.59 31.50 29.08 27.45

PANet [34] 37.35 31.96 29.65 28.20 36.50 30.70 28.33 26.89 36.80 31.87 29.47 27.87

P3AN (Ours) 37.38 31.99 29.69 28.25 36.54 30.72 28.37 26.94 36.84 31.90 29.51 27.96

Table 2. Quantitative results about color image denoising. Best results are highlighted.

real noise datasets during the test: Darmstadt Noise Dataset

(DND) [38] and Nam [36]. Specifically, DND contains 50

pairs of images from four consumer cameras. Nam con-

tains paired images of 11 static scenes. Besides, was also

adopted the datasets from PolyU [47] to train models and

further evaluate the denoising performance.
4.2. Implementation Details

In the experiment, we insert 20 P3ABs in the main net-

work (i.e., n = 20). And we set k = 5 in the 1D fast con-

volution of P3AB. Each training data performs the same

data augmentation, including random rotations of 90, 180,

270, and horizontal flipping. When training models, we se-

lect the best configuration according to the property of the

datasets. For the synthetic noise training set DIV2K, there

are 16 cropped 96×96 noise patches in each training batch,

and the training epochs is taken as 1000. The number of in-

put and output feature channels of each P3AB is 64. We use

ADAM optimizer with {β1 = 0.9,β2 = 0.999, epsilon =
10−8}. The learning rate is set as 1× 10−4 and is halved

after every 200 epochs. For the real noise training set SSID

with higher resolution, 32 cropped 128×128 noise patches

are each training batch and epochs are taker as 200. The

parameters of ADAM optimizer are set to {β1 = 0.9,β2 =
0.999, epsilon = 10−8}. The learning rate is initialized to

2×10−4 and linearly decreases to half every 20 epochs un-

til 1e-6. We use PyTorch [37] to implement all our models

and train them on NVIDIA GeForce RTX 2080 Ti GPU.

4.3. Comparisons with Other Methods
We report the comparing results on standard benchmarks

to show the different performance of the proposed method

and state-of-the-art denoising methods. We use peak signal-

to-noise ratio (PSNR) and structural similarity index metric

(SSIM) [45] as the quantitative criteria.

4.3.1 Quantitative Comparison:
Synthetic Noise: We compare the following state-of-

the-art algorithms: CBM3D [10], TNRD [8], RED [33],

DnCNN [52], MemNet [43], IRCNN [53], FFDNet [54],

RNAN [56], and PANet [34]. Tab. 2 shows quantitative re-
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Nikon_D800: ISO_3200

Figure 6. Visual comparisons between P3AN and other state-of-the-art denoising methods on the on the SIDD [1] benchmark. Our method

eliminates complex noise effectively while retaining more structural content and texture, leading to artifact-free results.

DnCNN-B FFDNet+

CBDNet RIDNet P3AN (Ours)

Noisy

Figure 7. Denoising example from Canon EOS ISO 3200.

Method SIDD DND

DnCNN-B [52] 23.66 / 0.583 32.43 / 0.790

FFDNet+ [54] - / - 37.61 / 0.942

CBDNet [19] 33.28 / 0.868 38.06 / 0.942

RIDNet [3] 38.71 / 0.914 39.26 / 0.953

VDN [50] 39.23 / 0.955 39.38 / 0.952

AINDNet [26] 39.15 / 0.955 39.53 / 0.956

MIRNet [51] 39.72 / 0.959 39.88/0.956

P3AN (Ours) 39.85 / 0.971 39.68 / 0.960

Table 3. Quantitative comparison on SSID and DND.

sults of color image denoising. Compared with all previous

methods, our proposed P3AN performs the best results on

all the datasets with all noise levels. In particular, our net-

work performs significantly well on the noise level σ = 70.

It shows that the proposed method has better resilience on

heavily polluted images. Our network can extract complete

auto-correlation from the cross-directional 3D space simul-

taneously to guide recovery, which is more superior than

self-similarity state-of-the-art PANet.
Real Noise: We compare our approach with 12 state-of-

the-art real noise removal algorithms: DnCNN-B [52], Neat

Image (NI) [2], Noise Clinic (NC) [27], MCWNNM [49],

RDN [57], FFDNet+ [54], TWSC [48], CBDNet [19], RID-

Net [3], VDN [50], AINDNet [26], and MIRNet [51]. As

shown in Tab. 3 and Tab. 4, four real photographs bench-

mark datasets are used to evaluate models quantitatively.

Obviously, compared to other methods, P3AN has achieved

a significant improvement in PSNR and SSIM. In the open-

source testsets PolyU and Nam, the denoising results of our

��������	
�
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� ������� ������
������ ���

Figure 8. Denoising example from Nam [36] testing set.

Method PolyU Nam

DnCNN-B [52] 34.68 / 0.874 34.95 / 0.885

NI 35.91 / 0.921 36.61 / 0.926

NC [27] 36.84 / 0.936 37.69 / 0.952

MCWNNM [49] 37.72 / 0.945 37.84 / 0.956

RDN [57] 37.94 / 0.946 38.16 / 0.956

FFDNet+ [54] 38.17 / 0.951 38.81 / 0.957

TWSC [48] 38.68 / 0.958 38.96 / 0.962

CBDNet [19] 38.74 / 0.961 39.08 / 0.969

RIDNet [3] 38.86 / 0.962 39.20 / 0.973

VDN [50] 39.04 / 0.965 39.68 / 0.976

P3AN (Ours) 40.65 / 0.976 40.78 / 0.982

Table 4. Quantitative comparison on PolyU and Nam.

method are 1.61 dB and 1.10 dB better than VDN on PSNR,

respectively. The test results of SIDD and DND need to be

accessed on the official benchmark website. We report the

obtained official evaluation results in Tab. 3. On the SIDD,

it achieves a gain of 0.13 dB compared with the state-of-

the-art. Although our method does not obtain the highest

PSNR on DND compared with the latest MIRNet, we have

the highest SSIM, which further indicates that the denoised

images from our model are closer to the ground truth.

Visual Comparison: The visual evaluation of synthetic

noise removal was performed on Urban100. As shown in

Fig. 5, for some more complex textures, DnCNN, IRCNN,

FFDNet, and RNAN exhibit excessive smoothness. RED

and MemNet produce color difference, for example, the

blue line in img100 becomes green. PANet has slightly bet-

ter results, but it also brings some distortion and blur in the

straight lines. It can be seen that only our method removes
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Method
Synthetic Noise Real Noise

RED DnCNN MemNet RNAN PANet Ours DnCNN-B FFDNet+ RDN CBDNet RIDNet VDN Ours

Params. (106) 4.2 0.68 0.69 7.59 6.10 1.53 0.56 0.49 21.97 4.34 1.50 4.36 0.95

Flops (109) 135.17 148.53 149.63 276.84 249.62 122.87 146.94 107.29 717.82 144.36 392.53 158.49 105.76

Table 5. Analysis of the complexity and inference speed of different models for synthetic noise removal and real noise removal.

(a) Paramaters. (b) Performance.

Figure 9. Variation curve of model complexity and performance

with the different local receptive fields of 1D fast convolution.

noise while preserving details of the original structure as

much as possible, and get results closest to the ground truth.

For real noisy images, we visualize the denoising re-

sults on the SSID benchmark and Nam test sets. In Fig. 6

we compare popular methods, including the latest denois-

ing network AIDNet and MIRNet this year. Obviously,

the NC, CBDNet, and RIDNet methods have some residual

noise and artifacts. The results of TWSC and VDN have

missed and deformed lines and lost detailed information.

Although the AIDNet and MIRNet methods show better

denoising performance, they excessively smooth the struc-

tural lines. Our method effectively recovers a more accurate

image from the challenging irregular noise image, as close

to the original image as possible in color and texture de-

tails. The same comparison can be seen in Figs. 7 and 8.

It is difficult for other networks to remove noise and blur

while retaining accurate textures. The proposed P3AN bet-

ter describes the complete image information and produces

visually-pleasing results. It achieves the best overall visual

quality among the latest competitive algorithms.

4.4. Model Analysis

Local Receptive Field: We analyzed the influence of

the receptive field in 1D fast convolution on the model com-

plexity and performance. The relation curves are drawn in

Fig 9. The number of parameters will increase along with

the increase of the receptive field. It can be seen in Fig 9(a)

that the model parameters show a non-linear exponential in-

crease when k becomes larger. We selected the coordinate

points of k = 3,5,8 and marked them in green, red, and

blue. The relation curve between k and the PSNR is ploted

in Fig. 9(b), which shows that in the previous increase of k,

the PSNR value will increase accordingly. Then the PSNR

only improves slightly when k > 6. The model performance

changes hardly when k > 8, but the amount of parameters

has an explosive increase. The corresponding coordinates

are marked for better indication. Therefore, for the trade-

off between model performance and complexity and calcu-

lation burden, we set k as 5. The quantitative results show

that when k = 5, the parameter quantity is 0.95× 106, and

the PSNR evaluated on the DND testset is 39.6. This perfor-

mance is sufficient to defeat other state-of-the-art methods

while ensuring the lightweight of the model, which is bene-

ficial for further expansion and practical applications.

Model Complexity: We analyze the model parameters

and floating-point operations (FLOP) in the experiment to

evaluate the model complexity. The comparison results be-

tween different methods based on synthetic noise and real

noise images are reported in Tab. 5, respectively. To ensure

a fair comparison, we use PolyU and BSD68 to evaluate

different types of denoising networks. Each result is an av-

erage value obtained after ten repeated experiments. Com-

pared with the DnCNN with only 17 layers, it can be seen

our method achieves the best computational efficiency with

a deeper network on synthetic data. As for the real noise

removal task, the P3AN utilizes moderate-scale parameters

and supports fast model inference, achieving a trade-off be-

tween model complexity and performance. These results

show that our P3AN not only achieves high precision in de-

noising tasks but also is a more practical lightweight net-

work. It is worth mentioning that due to the superiority of

1D convolution, the computational memory of our network

will not rise sharply as the input image size increases. This

progress dramatically reduces the dependence of deep net-

works on high-performance hardware devices.

5. Conclusion

In this paper, we focus on modifying the popular basic

convolution structure used for feature auto-correlation ex-

traction. A lightweight pseudo 3D auto-correlation network

(P3AN) is designed to avoid dense connections and high-

dimensional operations. Based on local 1D fast convolu-

tion, P3AN can extract auto-correlation information from

the three directions of horizontal, vertical, and channel si-

multaneously. Consecutive blocks can obtain features with

varying receptive fields, which means that effective local

attention can also cover global interactions of the entire in-

put. This novel method of aggregating contextual features

unifies channel self-attention and spatial self-similarity cap-

ture into the same framework. Experiments show that our

method has much fewer parameters and low computational

cost while achieving very competitive performance.
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