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Abstract

Recent single-view 3D reconstruction methods recon-

struct object’s shape and texture from a single image with

only 2D image-level annotation. However, without ex-

plicit 3D attribute-level supervision, it is still difficult to

achieve satisfying reconstruction accuracy. In this paper,

we propose a Self-supervised Mesh Reconstruction (SMR)

approach to enhance 3D mesh attribute learning process.

Our approach is motivated by observations that (1) 3D at-

tributes from interpolation and prediction should be consis-

tent, and (2) feature representation of landmarks from all

images should be consistent. By only requiring silhouette

mask annotation, our SMR can be trained in an end-to-

end manner and generalizes to reconstruct natural objects

of birds, cows, motorbikes, etc. Experiments demonstrate

that our approach improves both 2D supervised and unsu-

pervised 3D mesh reconstruction on multiple datasets. We

also show that our model can be adapted to other image

synthesis tasks, e.g., novel view generation, shape trans-

fer, and texture transfer, with promising results. Our code

is publicly available at https://github.com/Jia-

Research-Lab.

1. Introduction

Single-view 3D Object Reconstruction is to recover 3D

information, such as shape and texture, of the object from

a single image [7, 15, 20, 41]. It is a long-standing prob-

lem in computer vision with various applications, including

3D scene analysis, robot navigation, and virtual/augmented

reality. Traditional methods usually fit the parameters of a

3D prior morphable model, such as 3DMM [1] for faces

and SMPL [23] for human. Building these prior models is

expensive and time-consuming, and thus is not quickly ap-

plicable to many different natural objects.

In the deep learning era, deep models can learn to re-

construct 3D objects in a supervised manner [7]. 3D su-

pervised reconstruction methods [4, 39, 5, 6, 25, 31, 11] di-

rectly minimize the discrepancy between the ground-truth

3D attributes and the predicted ones. They usually achieve
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Figure 1: Our proposed self-supervised methods for 3D

mesh reconstruction. Interpolated consistency provides

fine-grained 3D annotations to train the reconstruction

model by self-supervised regression. Landmark consistency

further improves the reconstructed quality in local regions

by self-supervised classification for landmarks.

supreme performances but have to be trained on synthe-

sized or 3D scanned datasets with ground-truth 3D an-

notations. Meanwhile, since 2D attributes (e.g., silhou-

ette mask or landmark) are usually easier to be obtained

than 3D attributes, 2D supervised reconstruction methods

[16, 22, 3, 15, 28, 8] do not require 3D annotations. The

key module of 2D supervised approaches is a differentiable

render [24, 16, 22], which builds a differentiable stream to

link 3D model space to 2D images and makes it possible to

reconstruct 3D objects through 2D image-level supervision.

Though 2D supervised reconstruction alleviates the de-

pendency on 3D annotation, it is mainly to minimize the

image-level reconstruction error and does not ensure 3D at-

tribute prediction accuracy. The 3D reconstructed results

provided in the work of ARCH [11] show that combining

2D with 3D supervision can further improve the accuracy

of 3D reconstruction. Therefore, we raise the question if it

is possible to achieve 3D attribute-level reconstruction only

with 2D annotation.

In this work, we propose Self-Supervised Mesh Recon-

struction (SMR) to reconstruct category-specific 3D mesh

objects from single images. 3D attributes, including cam-

era, shape, texture, and light, are first predicted by attribute

encoder and then are supervised at both 2D image and 3D
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attribute levels. At the 2D image level, similar to other 2D

supervision approaches [3, 15], reconstructed models are

rendered to the same images as original input. At the 3D

attribute level, as illustrated in Fig. 1, our two novel self-

supervised methods, i.e. Interpolated Consistency (IC) and

Landmark Consistency (LC), further improve the learning

process of 3D mesh attributes.

For Interpolated Consistency (IC), our motivation is that

the interpolated 3D attributes should be consistent with their

rendered images’ encoded attributes. In other words, the in-

terpolated attributes can be treated as the pseudo 3D anno-

tation to train the reconstruction model by self-supervised

learning, as illustrated in Fig. 1(a). Compared with the

original [10, 18] or randomly augmented attribute in [30],

our interpolated attributes can render images with more

viewpoints, geometrical structures, and appearances, thus is

more efficient to promote the learning process of the target

attribute encoder.

Moreover, we propose Landmark Consistency (LC) to

further improve landmark-level reconstruction, as illus-

trated in Fig. 1(b). If the local parts of a 3D object are well

reconstructed, visible landmark feature should be consistent

across all images. We treat the mesh vertices as the land-

marks of objects. Then the feature of each visible landmark

is classified to the mesh index. This ensures specialty of

each landmark and improves the local quality of 3D mesh

reconstruction.

Our final contributions are:

1. We propose interpolated consistency and landmark

consistency as two self-supervised methods to learn

the 3D mesh attributes.

2. We propose SMR to reconstruct category-specific 3D

mesh objects from a collection of single images. It

is an end-to-end training approach and is general to

model 3D objects.

3. Experiments on the ShapeNet [2] and the BFM [41]

datasets demonstrate that our method steadily im-

proves both 2D supervised and unsupervised recon-

struction. On the CUB-200-2011 [38] dataset, our

SMR outperforms current state-of-the-art mesh recon-

struction methods [15, 18, 20].

2. Related Work

According to the types of supervision, modern single-

view 3D reconstruction can be mainly divided into three

groups, i.e. 3D supervised [4, 39, 5, 6, 25, 31, 11], 2D super-

vised [16, 22, 3, 15, 28, 8], and Unsupervised reconstruc-

tion [26, 20, 13, 19].

2.1. 3D Supervised Reconstruction

3D supervised reconstruction directly trains a model to

predict the 3D attributes, given many training images with

ground truth 3D models (e.g. meshes, point cloud, or vox-

els). Pixel2mesh [39] and Mesh R-CNN [5] reconstruct

mesh vertices as the shape attribute by iteratively sampling

vertices’ features and predicting their increment to ground-

truth vertices. O-Net [25] predicts a 3D model shape at-

tribute by classifying whether the randomly sampled 3D

points are inside or outside the object. It achieves high

3D reconstruction performance and does not work if no 3D

ground-truth is available. Our SMR does not need any 3D

ground truth annotation and still performs 3D attribute-level

supervision through our self-supervised methods.

2.2. 2D Supervised Reconstruction

CMR [15] is the first to reconstruct category-specific 3D

models in the wild by 2D supervised reconstruction. It pre-

dicts 3D attributes from a single image, and utilizes the

differentiable renderer [16] to re-project the reconstructed

3D model back to 2D image space. It finally adopts 2D

supervised methods, including image/silhouette reconstruc-

tion and landmark regression [15], to train the network.

Since shape and camera attributes are complicated to be

separately encoded [18, 8], these 2D supervised methods

usually require well-calibrated camera parameters possi-

bly pre-calculated by SfM [29]. UMR [20] does not re-

quire camera parameters. But it still needs an external

SCOPS [12] model to provide semantic parts as the prior in-

formation. In contrast, our SMR reconstructs 3D attributes

without these additional prior models of camera calibra-

tion, category-specific template mesh, and semantic part

model [12], which make it easier to be trained in an end-

to-end manner.

2.3. Unsupervised Reconstruction

Recent work [41, 13, 19] further avoids 2D and 3D an-

notation by unsupervised learning. Unsup3d [41] achieves

impressive reconstruction accuracy from only a collection

of single images using the symmetric property. It only ap-

plies to symmetric and angle-limited objects (e.g., human

faces). Cycle Consistency (CC) was proposed in Cycle-

GAN [45] and was widely used in different unsupervised

learning tasks [18, 19, 27, 21, 37]. CSM [18] and SSV [27]

utilize geometric cycle consistency to predict pose param-

eters in an unsupervised manual, where the prediction net-

work can correctly reproduce the pose of synthesis images.

MUNIT [10] makes use of cycle consistency to disentangle

images into content and appearance attributes. Navaneet et

al. proposes shape cycle consistency for unsupervised point

cloud reconstruction [19].

Our reconstruction supervision also inherits the property

of cycle consistency. The difference is that ours is a uni-

fied framework to generate fine-grained distribution by in-

terpolation, experimentally effective in predicting 3D mesh

attributes.
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Figure 2: Overview of our Self-supervised 3D Mesh Reconstruction (SMR). Without any 3D ground-truth annotation, our

Reconstructed Model (a) in Sec.3.2 can be trained to predict 3D mesh attributes from single images through 2D image-level

supervision (b) in Sec.3.3.1, Interpolated consistency (c) in Sec.3.3.2, and Landmark Consistency (d) in Sec.3.3.3.

3. Approach

Given a collection of category-specific images with 2D

silhouette annotation, we aim to train an encoder to recon-

struct the camera, shape, texture, and light attributes of 3D

mesh objects from single images.

3.1. Differentiable Rendering

To begin with, we briefly introduce the classic 3D mesh

model and differentiable rendering. Let O(S, T ) denote a

3D mesh object. Shape attribute S ∈ RV×3 represents the

mesh vertices (and faces). The total number of vertices is

V . Texture attribute T ∈ RH×W×3 represents the UV map

with resolution H × W . Let C = (a, e, d) be the render-

ing camera, in which a ∈ [0◦, 360◦], e ∈ [−90◦,+90◦],
and d ∈ (0,+∞] stand for the the azimuth, elevation and

distance parameters. Light attribute L ∈ R
l is modeled

by Spherical Harmonics [33], which consists of a different

spherical basis of angular frequency. l is the dimension of

coefficient.

Given 3D attributes A = [C,L, S, T ], a 3D object

O(S, T ) can be rendered as the 2D image and silhouette

Xr = [Ir,Mr] under camera view C and in lighting en-

vironment L. Xr is concatenated by the projected RGB

image Ir ∈ R
H×W×3 and the silhouette mask Mr ∈

R
H×W×1 in channel axis. The rendering process 3D ob-

ject is formulated as

Xr = R(A) = R([C,L, S, T ]) (1)

where R is a differentiable renderer, equivalent to a differ-

entiable operation and does not contain any trainable pa-

rameters.

3.2. Reconstruction Model

For a category-specific dataset, the ith input single im-

age Iri ∈ RH×W×3 and its silhouette Mr
i ∈ RH×W×1 are

concatenated as the input Xi = [Ii,Mi], (i = 1, 2, ..., N)
in channel axis, where N is the number of training sam-

ples. 3D mesh reconstruction is to train an encoder Eθ that

predicts 3D mesh attributes from a single input as

Ai = [Ci, Li, Si, Ti] = Eθ(Xi), (2)
where θ is the trainable parameter of the encoder. Note that

Eθ is exactly the inverse process of R.

We independently predict attributes by four simple sub-

encoders, as illustrated in Fig. 2(a). For camera encoder Ec,

we predict a 4D vector consisting of [ax, ay, e, d], where e

and d represent the elevation and distance parameters of the

camera. ax and ay denote the Cartesian coordinates of az-

imuth, and a = atan2(ax, ay)
1. We calculate the azimuth

parameter this way to avoid the discontinuous regression

problem in the definition domain [0◦, 360◦].
The shape encoder Es predicts the relative shape incre-

ment ∆S to a spherical mesh S0, and S = S0 + ∆S cal-

culates the object shape attribute. For texture encoder Et,

rather than directly outputting the texture UV map by an

encoder-decoder model, we first predict a 2D flow map,

and then apply spatial transformation [14] to generate tex-

ture UV map T . Similar strategies were also taken in

CMR [15], which output texture with higher quality. Fi-

nally, for the light attribute, sub-encoder El directly en-

codes a l-dimension vector as the Spherical Harmonics

model coefficient.

3D Supervision for Attribute Learning For the ith im-

age, if its 3D ground truth attributes A
gt
i are available, we

1https://en.wikipedia.org/wiki/Atan2
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Figure 3: Different supervised reconstruction methods from

2D image space to 3D attribute space.

directly train the encoder to predict attribute Ai = Eθ(Xi)
through regression as

θ = argmin
θ

1

N

N∑

i=1

‖ Eθ(Xi)−A
gt
i ‖1 . (3)

As illustrated in Fig. 3(a), we take the performance of us-

ing 3D supervision as the upper bound of general 3D object

reconstruction.

3.3. Selfsupervised Mesh Reconstruction

In this section, we describe how our method trains the

encoder Eθ to learn 3D attributes at the 2D image level and

the 3D attribute-level self-supervised learning.

3.3.1 2D Image-Level Supervision

As mentioned in Sec. 3.1, differentiable renderer R links

2D image space to 3D attribute space. Thus, we first opti-

mize Eθ by 2D image-level supervision, formulated as

θ = argmin
θ

1

N

N∑

i=1

Dist(R(Eθ(Xi)), Xi), (4)

where Dist(·, ·) indicates the distance between the recon-

structed data Xr
i = [Iri ,M

r
i ] = R(Eθ(Xi)) and input data

Xi = [Ii,Mi]. This process is illustrated in Fig. 3(b). Sim-

ilar to most 2D supervised reconstruction [3, 22, 20], we

adopt image distance and silhouette distance loss to mea-

sure their difference.

Image Distance Foreground of the rendered and input

images should be close by the L1 distance. Thus we rep-

resent the image distance loss as

Limg =
1

N

N∑

i=1

‖ Ii ⊙Mi − Iri ⊙Mr
i ‖1, (5)

where ⊙ denotes element-wise multiplication.

Silhouette Distance Besides, we utilize mask IoU loss to

ensure that the projected silhouette Mr
i is identical to the

ground truth silhouette Mi. Thus, the silhouette distance

loss is written as

Lsil =
1

N

N∑

i=1

(1−
‖ Mi ⊙Mr

i ‖1
‖ Mi +Mr

i −Mi ⊙Mr
i ‖1

). (6)

Finally, the overall 2D image-level supervision is to min-

imize the weighted sum over above distance losses as

L2D = λimgLimg + λsilLsil, (7)

where λimg and λsil are the weights. L2D supervises the

reconstruction model by back propagating the loss gradient

to the encoder Eθ through the differentiable renderer R.

3.3.2 Interpolated Consistency

2D image-level supervision in Section 3.3.1 can only opti-

mize Eθ under original viewpoints of single images. Exper-

imental results in Table 1 show that there is a large gap to 3D

supervised reconstruction. To improve the reconstruction

accuracy, we utilize the characteristics of category-specific

3D mesh model to perform 3D attribute-level supervision.

Our first motivation is to treat the encoded attributes Ai

as the 3D annotations of the rendered image R(Ai), and

optimize Eθ through self-supervised regression. Therefore,

apart from minimizing Eq. (4), we also optimize

θ = argmin
θ

1

N

N∑

i=1

‖ Eθ(R(Eθ(Xi)))−Eθ(Xi) ‖1 . (8)

Discussion There is representation of cycle consistency,

as illustrated in Fig. 3(c). CSM [18] adopts this supervised

method. The problem is that the number of encoded at-

tributes is limited and might result in overfitting or degen-

erate reconstruction [19]. To alleviate the problem, ran-

dom augmentation strategies were used to generate novel

attributes in [27, 19, 30]. However, if we do not know the

prior distribution of these 3D attributes, it might generate

distorted body structure or out-of-view images, which af-

fects the training process.

Our solution, differently, is to obtain the novel 3D an-

notations by linear interpolation, as illustrated in Fig. 3(d).

For any pair of encoded attributes Ai = [Ci, Li, Si, Ti] and

Aj = [Cj , Lj , Sj , Tj ], we control the interpolation by a 4D

vector α = [αc, αl, αs, αt] sampled in a uniform distribu-

tion U ∼ (0, 1) as

Aα
ij = [Cα

ij , L
α
ij , S

α
ij , T

α
ij ] = (1− α) ·Ai + α ·Aj . (9)

The advantage is that it effectively generates a large number

of fine-grained 3D mesh attributes, following similar dis-

tributions of original dataset, as illustrated in Fig. 4. We

explain the physical meaning of each 3D attribute interpo-

lation in the following.

Camera Interpolation The camera attribute C consists of

azimuth, elevation, and distance parameters. Interpolation

between different camera attributes Cα
ij = (1−αc)·Ci+αc ·

Cj can provide rendered image in their middle viewpoints.

This can improve Ec’s sensitivity and facilitate novel-view

image synthesis.
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Light Interpolation The light attribute L is a l-d Spherical

Harmonics coefficient. By interpolation Lα
ij = (1 − αl) ·

Li + αl · Lj , we generate a variety of gradually changed

lighting environment, enhancing the light sub-encoder and

improving the quality of rendered images.

Shape and Texture Interpolation Each vertex of mesh

of a category-specific object represents a specific landmark

of object [15]. Thus we also interpolate shape and tex-

ture attributes by Sα
ij = (1 − αs) · Si + αs · Sj and

Tα
ij = (1−αt)·Ti+αt ·Tj . This process can construct novel

3D models following the original geometrical and appear-

ance distribution. Noted that texture attribute is represented

by 2D maps, making texture interpolation similar to Mixup

[44] in image augmentation.

These interpolated 3D attributes Aα
ij serve as the ground-

truth 3D annotations to the rendered image Xα
ij , written as

Xα
ij = R(Aα

ij). (10)

We then predict the 3D attributes of Xα
ij via encoder Eθ. IC

loss LIC is employed to train encoder Eθ by self-supervised

regression as

LIC = 1

N

∑N

i=1
‖ Eθ(X

α
ij)−Aα

ij ‖1 . (11)

IC provides various fine-grained 3D models as the annota-

tions to separately train each sub-encoder, which avoids the

requirement of 3D ground-truth annotation when perform-

ing 3D supervision.

3.3.3 Landmark Consistency

Our proposed IC promotes the learning process of 3D

attributes by introducing self-supervised 3D supervision.

However, we notice that a few parts of reconstructed ob-

jects are still not realistic enough, as illustrated in Fig. 5.

To further improve the local region quality of reconstructed

objects, we propose landmark consistency as another self-

supervised method. Our motivation is that feature repre-

sentation of landmarks in all original and rendered images

should be consistent. For instance, suppose the kth land-

mark represents the center of left eye of a bird in one 3D

model, in other 3D models, it should also have the same

semantic meaning.

Specifically, as shown in Fig. 2(d), for the input image,

we first extract its pixel-level feature maps F , like [36],

by a U-Net [35] encoder Ef , and then project each mesh

vertex to 2D image space as a landmark. Next, we cal-

culate the landmark’s location lk and pool the local fea-

ture fk = F (lk) by spatial transformation [14] from the

feature maps. Finally, we adopt a Multi-Layer Perceptron

(MLP) Dφ(·) with weight φ to predict index category of

each landmark. Since ground-truth category of fk is also

k, we build a self-supervised classification system for land-

marks to train the 3D attribute encoder Eθ, as

LLC = −
1

N

N∑

i=1

V∑

k=1

vkyk log(Dφ(fk)), (12)

where yk is a one-hot vector with size V , in which only the

kth value is 1, and vk indicates if kth vertex is visible.

Our proposed LC maximizes feature distances of dif-

ferent landmarks and minimizes the distances of the same

landmarks, which promote Eθ to reconstruct consistent and

distinguishable landmarks for higher reconstruction quality

in local regions.

3.3.4 Overall Loss

Finally, we combine supervised reconstruction at both im-

age and attribute levels as the overall training loss for en-

coder Eθ as

L = λ2DL2D + λICLIC + λLCLLC , (13)

where λ2D, λIC , and λLC respectively control the weights

of 2D supervision, IC, and LC. During testing, we recon-

struct the 3D mesh object from single images by predicting

the 3D attributes through Eθ.

4. Experiments

To evaluate the effectiveness of our method, we first in-

troduce the datasets and metrics in Sec. 4.1 and combine

IC and LC with the 2D supervised and unsupervised recon-

struction in Sec. 4.2. Sec. 4.3 compares SMR with start-

of-the-arts. We then reconstruct more objects in the wild

in Sec. 4.4. Finally, we show SMR’s application in image

synthesis in Sec. 4.5. Network structures and more experi-

mental results are included in the supplementary material.

4.1. Datasets and Metrics

Datasets: We perform single-view 3D reconstruction ex-

periments on the ShapeNet [2], BFM [41] and CUB-200-

2011 [38] datasets. ShapeNet is a large-scale synthesized
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Encoder Supervision Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

Eθ 3D 46.4 32.5 53.6 57.8 39.9 42.0 49.7 57.9 43.4 46.3 38.8 50.6 54.7 47.2

Eθ 2D 42.9 30.0 50.4 55.6 36.1 34.8 45.2 54.9 38.5 41.1 35.8 42.1 50.1 42.8

Eθ 2D + CC [18] 43.9 30.2 50.8 56.1 36.8 36.3 45.5 55.1 39.2 41.7 36.2 44.5 50.2 43.5

Eθ 2D + IC 44.7 31.1 52.8 56.9 39.1 39.2 48.2 57.4 42.6 44.8 37.6 49.3 53.8 46.0

Eθ 2D + IC + LC 45.2 31.6 53.2 57.6 39.7 39.5 48.9 57.6 42.9 45.6 38.1 49.8 54.0 46.5

Table 1: Comparison among different supervised methods for 3D Reconstruction on ShapeNet by shape 3D IoU.

Methods
Annotations Mask IoU

(%, ↑)

SSIM

(%, ↑)

PCK

(%, ↑)
FID (↓)

Camera Template Landmarks Parts [12] Silhouette Mask

CMR [15] ✓ ✓ ✓ ✗ ✓ 73.8 44.6 28.5 115.1

CSM [15] ✗ ✓ ✗ ✗ ✓ - - 48.0 -

DIB-R [3] ✓ ✗ ✗ ✗ ✓ 75.7 - - -

UMR [20] ✗ ✗ ✗ ✓ ✓ 73.4 71.3 58.2 83.6

SMR (Ours) ✗ ✗ ✗ ✗ ✓ 80.6 83.2 62.2 79.2

Table 2: Comparison between our SMR and state-of-the-arts on the CUB-200-2011 dataset by multiple metrics. Ours only

requires silhouette annotations and achieves better reconstruction in the original image view and novel view with higher Mask

IoU, SSIM and PCK. It yields lower novel-view FID.

3D CAD dataset, containing 3D ground truth models of

common object categories, e.g., car, chair, and bench. We

adopt the same train/test split provided by Soft-Ras [22]

to evaluated the accuracy of 2D supervised reconstruction.

BFM (Basel Face Model) [32] is a synthetic face prior

model, and [41] built a 3D face reconstruction dataset based

on it. We perform experiments on this dataset to evalu-

ate the effect of IC and LC when combined with unsuper-

vised reconstruction. CUB-200-2011 is a category-specific

bird dataset consisting of single images and 2D annotations,

such as 2D masks and landmarks. Recently, many methods

[18, 15, 3, 20] evaluate their performance of single-view 3D

reconstruction on this dataset and UMR [20] achieved state-

of-the-art performance.

Evaluation Metrics: On the ShapeNet dataset, we evalu-

ate the 3D reconstruction accuracy by 3D Intersection of

Union (3D IoU) [22] between the reconstructed and ground

truth 3D voxels of objects. On the BFM dataset, we mea-

sure the reconstructed depth metric Scale-Invariant Depth

Error (SIDE) and Mean Angle Deviation (MAD) [41]. On

the CUB-200-2011 dataset, although it does not contain any

3D annotation, we compare our model with state-of-the-art

methods through the quality of synthesized images under

the original and novel views.

The original view reconstruction is evaluated by Mask

IoU and SSIM [40] between the reconstructed and input

data. Since CUB-200-2011 has keypoint annotations, we

also report Percent of Correct Keypoints (PCK) metric [18]

that evaluates the accuracy of keypoint transfer for visible

keypoints. PCK also indicates the performance of 3D object

reconstruction. The novel-view reconstruction is evaluated

by image generation metric FID [9]. We calculate the mean

FID of the synthesized images in the novel view from 0◦ to

360◦ at an interval of 30◦.

Implementation Details: The spherical mesh has V = 642
vertices and 1, 280 faces, same as those of [15, 20, 3].

The resolution of input images and texture UV maps is

256× 256, except the shapenet dataset where the resolution

is 64×64 [22]. The light parameter l = 9. The loss weights

λimg = λsil = 10, λ2d = λIC = 1.0, and λLC = 0.1,

which are obtained by grid search. We adopt DIB-R [3] as

our differentiable renderer since it is applicable to all these

3D attributes. During training, the learning rate is initialized

as 1× 10−4 and decays 0.8 every 30 epoch. The optimizer

is Adam [17] with β1 = 0.5 and β2 = 0.999.

4.2. Comparison with Different Supervisions

Reconstruction on ShapeNet: Our SMR is a new su-

pervised method designed for category-specific 3D mesh

reconstruction. Therefore, our first experiment compares

SMR with different supervised reconstruction baselines on

the ShapeNet dataset, including 3D supervision, 2D super-

vision, and Cycle Consistency (CC) [18, 10, 19]. For fair

comparison, all these methods adopt the same attribute en-

coder Eθ, as illustrated in Fig. 2(a). To compare the shape

reconstruction accuracy on the ShapeNet dataset, a camera

parameter is necessary to determine the scale and canonical

viewpoint of the 3D object. There are a total of 13 cate-

gories on the ShapeNet, and we reconstruct them separately.

The evaluation metric is shape’s 3D IoU, and the results are

shown in Table 1.

Analysis: For 2D supervised reconstruction, silhouette an-
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Methods SIDE (×10
−2, ↓) MAD (deg. ↓)

3D Supervised 0.410 ± 0.103 10.78 ± 1.01

Average Depth 1.990 ± 0.556 23.26 ± 2.85

Unsup3D [41] 0.793 ± 0.140 16.51 ± 1.56

Unsup3D [41] + Random [30] 0.773 ± - 15.32 ± -

Unsup3D [41] + IC 0.762 ± 0.135 14.94 ± 0.135

Unsup3D [41] + LC 0.763 ± 0.139 14.64 ± 0.136

Unsup3D [41] + IC + LC 0.758 ± 0.133 14.55 ± 0.131

Table 3: Combination of our self-supervised methods with

unsupervised 3D reconstruction on the BFM dataset.

notations are provided. Then 2D image-level supervision

(in Sec. 3.3.1) is adopted to train the reconstruction model,

which achieves 42.8% 3D IoU. For the 3D supervised re-

construction, since 3D attribute annotations are provided,

we directly optimize the chamfer loss [34] between the pre-

dicted and ground truth shape attributes. 3D supervision

obtained the highest 47.2% 3D IoU and surpassed 2D super-

vision by a large margin in all categories. It demonstrates

the importance of 3D attribute-level supervision.

CC [18, 19] can be viewed as a baseline self-supervised

method, which takes the original encoded attribute as the

3D annotation to the rendered image. Its α is randomly

sampled to either 0 or 1, while our IC samples values be-

tween 0 and 1, as shown in Fig. 3(c)&(d). The experimen-

tal result shows that CC only improves accuracy by 0.7%.

While ours achieves 46.5% 3D IoU when introducing IC

and LC, significantly outperforms 2D and CC supervised

methods and is even comparable with full 3D supervision.

These experimental results validate that our method is use-

ful to promote 2D supervised mesh reconstruction.

Reconstruction on BFM: In this experiment, we com-

bine our proposed IC and LC with the unsupervised recon-

struction methods [41, 30] on the BFM Face reconstruction

dataset. We adopt the same network as Unsup3D and only

introduce IC and LC for fair comparison. We evaluate the

performance in terms of error of depth and normal recon-

struction, i.e. SIDE and MAD [41]. The main difference

between [30] and our IC is that the former randomly aug-

ments attributes. The results are shown in Table 3. 3D su-

pervised reconstruction still achieves the best performance,

while our method improves Unsup3D on both SIDE and

MAD metrics, which manifest the effectiveness of IC and

LC in 3D mesh reconstruction.

4.3. Comparison with Stateofthearts

Quantitative Results Previous experiments were con-

ducted on synthesized datasets with 3D annotations. In real

world, most objects are photographed without 3D informa-

tion. In this experiment, we compare our SMR with state-

of-the-art methods [15, 3, 20] on CUB-200-2011 to demon-

strate reconstruction performance for single images in the

wild. The quantitative results are shown in Table 1. Com-

pared with other methods that require cameras, landmarks,

or parts annotations [12] annotations, ours are supervised

IC
LC

PCK

(%, ↑)
FID ↓

Camera Shape Texture Light

✗ ✗ ✗ ✗ ✗ 42.6 174.1

✗ ✓ ✓ ✓ ✗ 48.1 118.5

✓ ✗ ✓ ✓ ✗ 52.8 101.3

✓ ✓ ✗ ✓ ✗ 58.2 95.7

✓ ✓ ✓ ✗ ✗ 58.9 92.6

✓ ✓ ✓ ✓ ✗ 59.7 88.4

✓ ✓ ✓ ✓ ✓ 62.2 79.2

Table 4: Effect of our proposed Self-Supervised Recon-

struction modules.

by only silhouette annotation. Among these metrics, Mask

IoU, SSIM, and PCK reflect the reconstructed accuracy un-

der the original viewpoint, and we achieve significantly

higher accuracy than others. FID reflects the mean recon-

structed accuracy under a novel viewpoint from 0◦ ∼ 360◦,

and our SMR also achieves the best performance.

Ablation To validate the effect of each proposed consis-

tency in our method, we perform an ablation experiment by

removing one of them each time and test the reconstruction

quality by the PCK of transferred keypoints and the FID of

novel-view images as in Table 4. If there is only 2D su-

pervision without any IC, both PCK and FID scores are the

worst, explaining the importance of IC. Also, we note that

the camera and shape IC are relatively more critical than

texture and light IC, indicating that camera and shape at-

tributes should be preferentially optimized. By introducing

LC, our method reconstructs objects with the best perfor-

mance, and the percent of correct key points is also signifi-

cantly improved.

Qualitative Results The qualitative results are shown in

Fig. 5. The reconstructed objects of CMR [15] look reason-

able in shape and rough in texture. State-of-the-art method

UMR [20] works better than CMR [15]. However, it still

contains errors around the edge and overall color. For our

method, if there is only 2D image-level supervision, the per-

formance is not good. After introducing IC, the visualized

results are competitive with UMR [20]. Finally, LC fur-

ther improves the reconstructed quality in local parts, such

as eyes and swings. The qualitative results demonstrate the

effect of our IC and LC. We also render the reconstructed

3D model under different camera parameters to synthesize

novel-view images, as illustrated in Fig. 6.

4.4. More Reconstruction Results in the Wild

To validate generalization of SMR, we implement it on

more category-specific objects, as shown in Fig. 7. The cow,

motorbike, and horse images are collected from LSUN [43]

datasets, and the silhouette masks are detected by detec-

tron2 [42]. Our method does not require any category-

specific template mesh or semantic parts [20] to reconstruct

the 3D models. It is a general method for single images in

the wild.
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SMR

(2D + IC + LC)

UMR

Input

2D 

Supervision

2D + IC

CMR

Figure 5: Qualitative comparison on the CUB-200-2011

dataset. Our SMR reconstructs object with more shape de-

tails and texture (best view by zoom-in).

Input

Image

Reconstructed 

Object

Reconstructed 

Shape
𝟎° 𝟏𝟐𝟎° 𝟐𝟒𝟎°

Figure 6: Novel-view object generation from single images.

We encode the input image and modify the camera’s az-

imuth parameter to render novel-view images.

4.5. Application in Image Synthesis

After obtaining the encoder Eθ, the above attribute in-

terpolation (Eq. (9)) and rendering (Eq. (10)) process can

synthesize images Xn from input Xa, Xb. We can control

the camera, light, shape, and texture of Xn by setting dif-

ferent interpolation values α = [αc, αl, αs, αt] according to

Eq. (9). We represent image synthesis as the following.

Camera Transfer: We can set αc = 1 and αl = αs =
αt = 0 to perform camera transfer or novel-view synthesis

as Xn = R([Cb, La, Sa, Ta]).

Shape Transfer: Similarly, setting αs = 1, αc = αl =
αt = 0 changes the shape attribute to realize shape or pose

transfer of Xn = R([Ca, La, Sb, Ta]).

Texture Transfer: Setting αt = 1 and αc = αs = αl = 0
means replacing the original texture UV map, which real-

izes texture transfer as Xn = R([Ca, La, Sa, Tb]).

Figure 7: 3D object reconstruction in the wild by SMR.
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Figure 8: Different applications of SMR. We perform at-

tribute transfer by replacing the original attribute.

Re-lighting: Since light attribute is also predict in our

model, it is easy to perform image relighting by setting

a different Spherical Harmonic coefficient Lr, as Xn =
R([Ca, Lr, Sa, Ta]).

The visual results are shown in Fig. 8. Our SMR do not

need additional networks for these image synthesis tasks.

5. Conclusion

We have proposed SMR, including 2D supervised, IC,

and LC, to reconstruct 3D mesh from single images with

only silhouette annotations. IC generates fine-grained 3D

models to train the attribute encoder, and LC further im-

proves the reconstruction quality in local regions. Our SMR

improves both 2D supervised and unsupervised reconstruc-

tion and achieves state-of-the-art 3D reconstruction on mul-

tiple datasets. The main limitation of our method is the dif-

ficulty in modeling non-rigid objects, e.g., human bodies.

We leave it to future work for building a more general re-

construction method of deformed objects in the wild.
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