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Abstract

Recent advances in neuroscience have highlighted the

effectiveness of multi-modal medical data for investigat-

ing certain pathologies and understanding human cogni-

tion. However, obtaining full sets of different modali-

ties is limited by various factors, such as long acquisition

times, high examination costs and artifact suppression. In

addition, the complexity, high dimensionality and hetero-

geneity of neuroimaging data remains another key chal-

lenge in leveraging existing randomized scans effectively,

as data of the same modality is often measured differently

by different machines. There is a clear need to go beyond

the traditional imaging-dependent process and synthesize

anatomically specific target-modality data from a source in-

put. In this paper, we propose to learn dedicated features

that cross both intre- and intra-modal variations using a

novel CSCℓ4Net. Through an initial unification of intra-

modal data in the feature maps and multivariate canon-

ical adaptation, CSCℓ4Net facilitates feature-level mutual

transformation. The positive definite Riemannian manifold-

penalized data fidelity term further enables CSCℓ4Net to re-

construct missing measurements according to transformed

features. Finally, the maximization ℓ4-norm boils down to

a computationally efficient optimization problem. Exten-

sive experiments validate the ability and robustness of our

CSCℓ4Net compared to the state-of-the-art methods on mul-

tiple datasets.

1. Introduction

Craniocerebral examination can be carried out using

a multitude of imaging techniques with varying degrees

of specificity and invasiveness, each directly or indirectly

quantifying the structure, function and pathology of the

brain. These multi-modal neuroimaging techniques, such as

magnetic resonance imaging (MRI) and positron emission

tomography (PET), offer diverse and complementary infor-

mation to investigate human cognitive activities, population
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Figure 1. Architecture of our CSCℓ4Net. CSCℓ4Net is constructed

by repeatedly stacking multivariate canonical CSC layers. The

blue bar denotes the CSC layer, the yellow bar is the global average

pooling, and the orange bar shows the softmax. Ẑ
x,|l| and Ẑ

y,|l|

are feature maps of the l-th layer. M represents the manifold on

each tangent space T having T M. P is the associator and H
denotes a Hilbert space.

imaging cohorts, neurodegeneration, and certain pathology.

However, acquiring a full library of multi-modal images is

impractical since the collection faces several constraints, in-

cluding long acquisition times (e.g. a normal MRI scan can

take as long as an hour), high examination cost, or even

worse, image corruption in the event of artifacts from pa-

tient motion. Missing data is a critical problem in neurolog-

ical studies and clinical diagnosis [11], and thus there is a

clear need to obtain the absent data through beyond simple

scanning.

Recently, there has been a surge of interest in synthesiz-

ing target-modality medical images by transferring infor-

mation across different appearances [12, 28, 30, 37]. One

early and noteworthy model for this was joint sparse rep-

resentation [11, 24], which allows multi-modal data to be

mapped in a common space rather than in separate ways to

obtain a linear approximation. Based on this, the convolu-

tional sparse coding (CSC) model replaces the local opti-

mization with a global shift-invariant one, achieving signif-

icant improvements [8, 10, 26]. Further, deep learning has
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obtained promising results in multi-modal image synthesis,

mostly with convolutional neural networks (CNNs) [4] and

generative adversarial networks (GANs) [34, 37].

While synthesis methods have had significant impact

on research, there is now a debate regarding whether such

synthetic images can substitute real acquisitions in clinical

analyses. In general, clinical diagnosis requires multiple

biomarkers to identify the disease and its status. When the

target acquisitions are missing, accurate synthesis is essen-

tial. Although this challenge has been tackled by generating

objective modality byproducts, current results remain unac-

ceptable for clinical diagnosis.

In addition to differences in modalities, the complex-

ity, high-dimensionality and heterogeneity of medical data

remains another key challenge in leveraging existing ran-

domized scans effectively. Specifically, imaging using ma-

chines developed by different manufacturers (e.g. Philips,

Siemens, GE, etc.), the abundance of various physical pa-

rameters, and the presence of temporal dependency, all in-

troduce conflicted and inconsistent features, thus prevent-

ing the complete use of real acquired data. It is nontrivial to

harmonize all the different information and construct their

correlations, but efforts to address the above challenges and

develop a reliable algorithm to effectively utilize data are

extremely necessary for both research and clinical decision

support.

In this paper, we propose an unsupervised multivariate

canonical CSCℓ4Net, a novel approach to crossing both

intra-modal (i.e. more than one measurement from the same

data modality) and inter-modal (i.e. more than one data

modality) heterogeneities. Our model synthesizes anatom-

ically specific target modality data from a source modal-

ity, and makes efficient use of real acquisitions. CSCℓ4Net

works well under multiple datasets, despite the high di-

mensionality, temporal dependency and irregularity of neu-

roimaging, making it possible to combine acquisitions

from different scanner manufacturers by initially normaliz-

ing differences between features, and then mapping them

into the Hilbert space for multivariate canonical adapta-

tion. Both cross-modal geometry transformations and a

neuroimaging-specific positive definite conditions are in-

corporated within a Riemannian manifold. Finally, solving

an ℓ4-maximization instead of an ℓ1-minimization problem

enables us to employ the lowest sample complexity for high

computational medical data. An overview of our CSCℓ4Net

is shown in Fig. 1.

To summarize, this paper provides the following contri-

butions:

• To the best of our knowledge, this is the first work to

generate anatomically meaningful images, by model-

ing an unsupervised multivariate canonical CSCℓ4Net.

• We propose a novel intra-modal unit normalization for

the initial unification of variate data of the same modal-

ity to guarantee a unique convolutional sparse solution.

• The multivariate canonical feature mapping is formu-

lated over the multi-layer CSC to optimize the inter-

modal structure.

• We introduce a Riemannian manifold-penalized trans-

formation data fidelity term under the positive defi-

nite condition, for which we show how a reformulation

based on CSC is crucial to empirical success.

• We prove that maximizing the ℓ4-norm instead of min-

imizing the ℓ1-norm leads to the lowest complexity and

the highest robustness.

2. Related Work

2.1. Image Synthesis

Image synthesis (a.k.a. image-to-image translation) is

commonly performed via appearance transformations, such

as linear regression or distribution transformation. Previ-

ous works with stand-alone image pairs tend to focus on

constructing a linear relationship in different contrasts [24].

Limited by few off-the-shelf paired data, Vemulapalli et

al. [28] relaxed the invariable supervision by matching sim-

ilarities across different modalities of image patches, and

then jointly maximizing both global mutual information and

local spatial consistency. Huang et al. [11] proposed a data-

efficient synthesis method by mapping both a few pairs and

large amounts of unpaired patches into a high-dimensional

space, and then adopting Laplacian eigenmaps for geomet-

ric co-regularization. Neural style transfer [4] is another

popular strategy for content-fixed image style translation,

which computes the distance via the Gram matrix statistics

of pre-trained deep features. GAN [6] was introduced to

generate images using a random noise vector with discrim-

inator judgment. Subsequently, many improvements and

task-oriented generative models have been proposed. Cy-

cleGAN [39] uses a simple yet efficient strategy with cycle-

consistent adversarial networks for unsupervised image-to-

image translation. To synthesize high-resolution images

from semantic labels, Wang et al. [30] proposed an adver-

sarial learning objective which leverages GANs in a condi-

tional setting and discards hand-crafted losses or pre-trained

networks. FUNIT [16] contains a content and class-leveled

encoder and an overall decoder for synthesizing the anal-

ogous image in a desirable category from the given class

input. Leveraging the U-Net architecture, a data augmen-

tation method [35] was established by learning both spatial

deformation fields and intensity transforms to generate sam-

ples. TrGAN [29] focus on improving unsupervised image

synthesis and representation learning.

2.2. Medical Image Analysis

The existing studies on medical imaging [12, 37, 13],

e.g. synthesis, segmentation and registration, have shown
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great promise for either research purposes or clinical anal-

ysis, mostly toward a macro objective, i.e. computer-

aided diagnosis (CAD). In [14], a probabilistic model was

proposed for joint registration and synthesis with cross-

modality alignment. Uzunova et al. [27] used a multi-scale

GAN to generate large amounts of high-quality medical im-

ages by learning a growing resolution conditioned on front

scales. Shao et al. [25] presented a diagnosis-guided multi-

modal feature selection method for prognostic prediction of

a specific disease. Ravi et al. [23] employed adversarial

learning in their proposed DaniNet, a degenerative adver-

sarial neuroimage network that allows neurodegeneration to

be modeled.

One of the fundamental purposes of medical image pro-

cessing is to implement CAD, which in turn allows clini-

cians to make accurate decisions or provide treatment. To-

ward generalization and practicability, our work is comple-

mentary to the aforementioned approaches, where we im-

prove the usage of large-scale heterogeneous medical data

in an unsupervised manner.

2.3. Convolutional Sparse Coding

Convolutional sparse coding (CSC) has been success-

fully used in a wide range of computer vision and medi-

cal image processing problems [3, 8, 10]. CSC deals with

the suboptimality of conventional local-independent repre-

sentations by introducing a global shift-invariant filter. Fast

CSC model was proposed by Bristow et al. [3], where the

quad-decomposition solves the CSC objective in the Fourier

domain, resulting in fast training. CSC-SR, introduced by

Gu et al. [8], uses CSC with improved consistency to super-

resolve natural images. Heide [10] tackled feature learning

with fast and flexible CSC. Huang et al. [12] constructed

two invertible mappings based on CSC for cross-modality

synthesis and super-resolution of brain images. To re-

construct clean images, while avoiding adversarial attacks,

Sun et al. [26] presented a stratified CSC algorithm with the

benefit of an input transformation-based defense.

3. Mathematical Description of CSC

Given samples {x1,x2, ...xS} in R
N , the problem of

learning a set of convolutions of sparse feature maps zk ∈
R

N by filters fk ∈ R
M , ∀k = {1, ...,K} can be expressed

as minimizing the optimization function that combines the

least-squares error and the ℓ1-norm penalty on the represen-

tations:

argmin
f ,z

1

2

∥

∥

∥

∥

∥

x−

K
∑

k=1

fk ∗ zk

∥

∥

∥

∥

∥

2

2

+ λ

K
∑

k=1

‖zk‖1

s.t. ‖fk‖
2
2 ≤ 1 ∀k = {1, ...,K} ,

(1)

where ∗ represents the 2D convolution operator and λ de-

notes a regularization parameter for the sparsity of the ℓ1-

norm. The objective of Eq. (1) is not jointly convex with

respect to f and z, but is convex in optimizing one variable

while fixing the other [31]. On the basis of such a con-

vex optimization theory, the alternating direction method

of multipliers (ADMM) was presented to solve the aug-

mented Lagrangian formulation by introducing more prox-

ies solving in the Fourier domain. ADMM transforms the

convolution operation to an element-wise multiplication in

order to speed up the spatial dominated convolution, i.e.,

from O(KNM) time complexity in the spatial space to

O(KN logN) in the frequency domain. Despite the ac-

celerated computation attained by FCSC [10], the auxiliary

variables are still deemed heavy training parts, especially

for tuning. More recent works [19, 40] alleviate such a lim-

itation by forming the coordinate descent solution in a local

greedy fashion.

Once the biconvex problem of Eq. (1) has been solved

by alternating between learning filters and learning feature

maps, the reconstruction can be obtained by a summation

of the convolution outputs (i.e. convolving every row of f

by z), leading to x′ = fk ∗ zk.

4. Multivariate Canonical CSCℓ4Net

4.1. Intra-Modal Unit Normalization

Let X = {x1, ...,xS} be a source domain train-

ing set containing S source modality images, and Y =
{y1, ...,yT } be a target domain training set containing T

target modality examples. We define F as the filter of the

convolutional feature maps Z. When standard training fol-

lowing the independence assumption illustrated in Eq. (1)

is applied to two modalities, this leads to two separate fil-

ters of shift-invariant atoms Fx, Fy , with their correspond-

ing feature maps Zx and Zy . However, when the same

modality data are sampled from random measurements (i.e.

intra-modal variation), the new features of these variables

are no longer a CSC solution. To overcome this problem,

we attempt to regularize the intra-modal data to guarantee

a unique convolutionally sparse solution. Considering that

a unit normalization of data is taken from the random mea-

surements of one modality, one possibility is to normalize

the column elements of Zx and Zy to unity, i.e., ‖Zx
i ‖

2
2 = 1,

∥

∥Z
y
j

∥

∥

2

2
= 1, ∀i = 1, ..., S, ∀j = 1, ..., T . However, us-

ing the unit normalization leads to ”erased” modality infor-

mation, which is especially the case in the context of neu-

roimaging data. To circumvent this issue, we eliminate the

intra-modal scaling ambiguity by first computing the max-

imum ℓ2 norm of Zx and Zy , respectively, and then per-

forming our intra-modal unit normalization (IUN). The IUN

(termed as Υ) of the convolutional feature maps becomes

Ẑx
i =

Zx
i

max(‖Zx
i ‖2)

√

1− ‖Zx
i ‖

2
, ∀i = 1, ..., S,
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Ẑ
y
j =

Z
y
j

max(
∥

∥Z
y
j

∥

∥

2
)
√

1−
∥

∥Z
y
j

∥

∥

2
, ∀j = 1, ..., T. (2)

The restricted elements of Zx and Zy need to be unified

by IUN and satisfy the general unit normalization

∥

∥

∥
Ẑx

i

∥

∥

∥

2

2
=

1, ∀i, and

∥

∥

∥
Ẑ

y
j

∥

∥

∥

2

2
= 1, ∀j.

4.2. Multivariate Canonical Feature Mapping

The CSC model of Eq. (1) has the advantage of compu-

tational efficiency when compared to the network-relevant

methods. However, the pure penalty under ℓ1-norm ignores

the diversity and complexity of data, leading to unsatisfac-

tory results. Recent studies [6, 36] have shown that, by

stacking multiple layers on top of each other, the extracted

features are deeper and thus the performance of applications

(e.g. classification or reconstruction) can be further boosted.

Inspired by the success of extensive efforts on networks, we

construct a CSC network architecture with a novel multi-

variate canonical adapted feature mapping layer, which has

cross-modal learning power with synthetic potential.

Without loss of generality, we consider the CSC over

IUN, which has multiple layers (termed as CSC-Net). We

denote a function f(·, ·) for the feature mapping of each

layer, such that Zx′ = f(X,Ψx), Zy ′ = f(Y,Ψy),
where Ψx = {Fx,Υ, λ}, Ψy = {Fy,Υ, λ}. Let l be the

network layers, where l ∈ [1, L]. In CSC-Net, the fea-

ture maps Ẑ can be defined as the representation of the

layer l with tensor properties of height h and width w:

Ẑ
x,|l|
i ∈ R

N |l|×h|l|×w|l|

, ∀i, l, and Ẑ
y,|l|
j ∈ R

N |l|×h|l|×w|l|

,

∀j, l. To hierarchically approximate the convolutional fea-

ture maps, we construct a sparse intermediate representa-

tion which imposes the same structure on the upper layer of

the representation. Intuitively, the l-th layer of Z for X and

Y can be estimated as Ẑ
x,|l|
i = f(Ẑ

x,|l−1|
i ,Ψx,|l−1|) and

Ẑ
y,|l|
j = f(Ẑ

y,|l−1|
j ,Ψy,|l−1|), respectively.

In addition to the multi-layer sparse and deeper represen-

tation, another core module of the CSC-Net is the multivari-

ate canonical adaptation (MCA). The multivariate formula-

tion is initially normalized by IUN for intra-modal unity,

and then we optimize the inter-modal (i.e. cross-modal

data) structure using the constructed space, allowing us to

utilize the feature maps learned in the previous step. Many

domain-related studies [11, 38, 17] are based on the con-

cept of feature shift, which can be summarized as learning a

domain-invariant feature representation between the source

and target domains for objective transformation. Motivated

by the state-of-the-art domain adaptation works [21, 5], we

cross-transfer both intra-modal and inter-modal features to

a high-level projective space to handle the multivariate het-

erogeneous medical data. Specifically, we begin by import-

ing a reproducing kernel Hilbert space (RKHS), where the

learned features between the CSC-Net layers and RKHS

can be formed to minimize the maximum mean discrep-

ancy (MMD) [7] between the source and target domains

optimally, using a kernel k(xi, yj) =
〈

Ẑx
i , Ẑ

y
j

〉

H
under a

Hilbert spaceH. Note that, 〈·, ·〉H represents the inner prod-

uct, and k is defined on the vector. Following the virtue of

the MMD function in Eq. (3),

L(X,Y ) =
1

S2

S
∑

i=1

S
∑

j=1

k(Ẑx
i , Ẑ

x
j ) +

1

T 2

T
∑

i=1

T
∑

j=1

k(Ẑ
y
i , Ẑ

y
j )

−
2

ST

S
∑

i=1

T
∑

j=1

k(Ẑx
i , Ẑ

y
j ),

(3)

we adapt the multiple feature layers using the multilayer

MMD penalty (termed as LH(X,Y )) for adapting the

cross-modal CSC-Net, which is defined as

LH(X,Y ) =
1

S2

S
∑

i=1

S
∑

j=1

∏

l∈L

k|l|(Ẑ
x,|l|
i , Ẑ

x,|l|
j )

+
1

T 2

T
∑

i=1

T
∑

j=1

∏

l∈L

k|l|(Ẑ
y,|l|
i , Ẑ

y,|l|
j )

−
2

ST

S
∑

i=1

T
∑

j=1

∏

l∈L

k|l|(Ẑ
x,|l|
i , Ẑ

y,|l|
j ).

(4)

Here, the previously described kernel k is computed by

the Gaussian kernel function defined on the vectorization of

tensors Ẑ
x,|l|
i ∈ R

N |l|×h|l|×w|l|

and Ẑ
y,|l|
j ∈ R

N |l|×h|l|×w|l|

of the layer l ∈ L. The calculation in a RKHS space

can be expressed as e
−
∥

∥

∥
Ẑ

x,|l|
i

−Ẑ
y,|l|
j

∥

∥

∥

2

p

, where p is a band-

width parameter reflected in the Gaussian kernel function.
∏

l∈L k|l|(Ẑ
x,|l|
i , Ẑ

y,|l|
j ) gives the multiplicative results of

the inner products.

4.2.1 Geometric Matching

While LH(X,Y ) is endowed with attractive properties for

domain invariant representations, its inability to preserve

the natural vector structure of a domain leads to the geo-

metric mismatching problem. In addition, deriving an ap-

proach that both has an adequate transformation capability

and satisfying the neuroimaging constraints is a key chal-

lenge. For medical imaging, the positive definite (PD) con-

dition is necessary for diffeomorphisms [1]. This regulation

(i.e. PD) is omitted in most image synthesis works. As a

result, the image being approximated is superficially con-

sistent, but the underlying tissue information or structures

are incorrect. To ensure the correctness of medical image

synthesis, both information geometry and the PD condition

are considered within a Riemannian manifold (RM) [22].
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Building on the multilayer MMD introduced earlier, sup-

pose the RM is also a smooth manifold constructed in the

Hilbert spaceH. Theoretically, the RM is equipped with an

inner product, denoted as 〈·, ·〉T , on each tangent space T
having manifold M, which can be defined as TM. As a

consequence, the norm in the tangent space is equivalent to

that of the Hilbert space TM ∼= H.

To make the sparse feature maps respect their intrinsic

geometries, we assume that all learned maps comply with

the original data properties, i.e. the distances between data

structures, as well as their corresponding maps, are closed

in the RM. Particularly for measurements under high-level

feature maps, the main point of RM is to make sense of the

image transformation in the manifold setting. Inspired by

the benefits of joint learning [11], we follow such a strat-

egy and model an associated function for converting Zx to

Zy . This is done by a linear projection P of Zx and Zy us-

ing a least square problem:

∥

∥

∥
Ẑy −PẐx

∥

∥

∥

2
. We then recall

how the RM can be defined analogously for preserving data

fidelity over the image transformation term. We begin by

giving the Riemannian metric
〈

Ẑx
i , Ẑ

y
j

〉

T
for Ẑx

i and Ẑ
y
j in

TM, and then we rewrite the associated loss in the above

least square problem by computing distances on the man-

ifold as dM(Ẑy,PẐx) =
∥

∥

∥
log(Ẑy)−

1

2PẐx log(Ẑy)−
1

2

∥

∥

∥

2
,

where log denotes the matrix logarithm and dM is affine in-

variant. Note that dM is computed on RA by projecting the

symmetric data from T onto the manifold with the positive

definite property [2]. For the l-layer CSC-Net, the coordi-

nate representation of dM is

LM(X,Y ) =

S
∑

i=1

T
∑

j=1

∏

l∈L

d
|l|
M(Ẑ

y,|l|
i ,P

|l|
i,jẐ

x,|l|
j ). (5)

Here, LM(X,Y ) denotes the loss function for the multi-

layer cross-modal data fidelity of the RM penalty under the

positive definite condition.

4.3. ℓ4 Maximization

Generally, CSC consists of minimizing a convolutional

model-fitted least-square system and a sparse regularizer

by adopting an ℓ0 or ℓ1 penalty to promote the expected

sparsity for recovering objectives. The ℓ0-norm is NP-hard

when finding a local minimum of a nonconvex function,

while the ℓ1-norm provides a unique solution through a con-

vex program in the polynomial time. Although existing

CSC algorithms can be separately optimized by alternating

subproblems to update sparse feature maps and filters under

the non-smooth ℓ1 penalty and the ℓ2 constraint, when ap-

plied to neuroimaging (which has a high-dimensional char-

acter), this leads to a high computational complexity due to

the quasi-polynomial problem.

Pioneering research [32] shows that maximizing the

element-wise ℓ4-norm enables an interpretative, stable and

robust algorithm for reducing the per-iteration cost. More-

over, the global geometry of the ℓ4-norm over a unit ℓ2-

sphere guarantees a randomly initialized first-order gradi-

ent descent algorithm [33], since each saddle point has neg-

ative curvature. Based on the essence of the ℓ4-penalized

heuristic formulation, i.e. replacing min ‖·‖1 as max ‖·‖
4
4,

we attempt to address the shortcomings of CSC by model-

ing ℓ4 maximization directly as the sparsity penalty within

the objective of CSCℓ4Net, which can be formulated as

min
LMLH,LR

max
S

λ(S(X) + S(Y )) + LR(X) + LR(Y )

+LM(X,Y ) + LH(X,Y ).
(6)

Here, S(X) =
∑S

i=1

∥

∥

∥
Ẑ

x,|l|
i

∥

∥

∥

4

4
and S(Y ) =

∑T

j=1

∥

∥

∥
Ẑ

y,|l|
j

∥

∥

∥

4

4
represent the sparsity cost function for

penalizing Zx and Zy to be sparse. Mathematically,

‖·‖
4
4 is the element-wise ℓ4-norm with an expression

‖Z‖
4
4 =

∑

i,j Z
4
i,j , ∀Z ∈ R. LR(X) denotes the re-

construction loss of X with 1
2

∥

∥

∥
X−

∑S

i=1 F
x,|l|
i ∗ Ẑ

x,|l|
i

∥

∥

∥

2

2
and LR(Y ) is the reconstruction loss of Y having

1
2

∥

∥

∥
Y −

∑T

j=1 F
y,|l|
j ∗ Ẑ

y,|l|
j

∥

∥

∥

2

2
.

Accompanied with the reconstruction procedure and as-

sociated formulation to obtain the target-modality data from

the available source domain, we should solve the two re-

spective problems: Z and F. In this work, to motivate

ℓ4-based formulations, we employ the matching, stretching

and projection (MSP) [32] optimization method to solve our

objective. Simply, the single-layer feature matrix Z is opti-

mized by introducing MSP on an orthogonal matrix Fo ∈ O

with Zx′ = argmax f(X,Ψx), Zy ′ = argmax f(Y,Ψy).
Tackling the problem of a multi-layer CSCℓ4Net, the l-th

layer of Z can be expressed as

Ẑ
x,|l|′

i ← argmax
∥

∥

∥
Ẑ

x,|l|
i

∥

∥

∥

4

4
s.t. X

|l|
i = F

x,|l−1|
i ∗ Ẑ

x,|l|
i ,

Ẑ
y,|l|′

j ← argmax
∥

∥

∥
Ẑ

y,|l|
j

∥

∥

∥

4

4
s.t. Y

|l|
j = F

y,|l−1|
j ∗ Ẑ

y,|l|
j ,

(7)

where X
|l|
i = φ(Ẑ

x,|l|
i ) and Y

|l|
j = φ(Ẑ

y,|l|
j ), and φ(·) de-

notes the concatenation of all i-th features from the previous

layer l − 1. We summarize our CSCℓ4Net in Algorithm 1.

4.4. Synthesis

Once the training stage is complete, we can get two sets

of filters, Fx and Fy , and the associator P. Given a test im-

age Tx with the source modality, the desirable target modal-

ity version of Tx can be treated as Ty =
∑

(ZtxP) ∗ Fy ,

where Ztx = f(Tx,Ψx).
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Algorithm 1 CSCℓ4Net

Input: Training data X, Y, parameter λ

1: Initialize: Zx
0 , Z

y
0 , Fx

0 ∈ O, F
y
0 ∈ O, P0

2: Perform IUN by Eq. (2), Zx
0 → Ẑx

0 , Z
y
0 → Ẑ

y
0

3: for l = 1, ...L do

4: Ẑ
x,|l|′

i ← argmax
∥

∥

∥
Ẑ

x,|l|
i

∥

∥

∥

4

4
s.t.X

|l|
i = F

x,|l−1|
i ∗

Ẑ
x,|l|
i

Ẑ
y,|l|′

j ← argmax
∥

∥

∥
Ẑ

y,|l|
j

∥

∥

∥

4

4
s.t.Y

|l|
j = F

y,|l−1|
j ∗

Ẑ
y,|l|
j

5: Perform MSP, update P

6: end for

Output: Fx, Fy , P

5. Experiments

5.1. Experimental Setup

The proposed CSCℓ4Net is evaluated on three datasets:

IXI, 1 NAMIC Multimodality, 2 and BraTS. 3 IXI dataset

contains 578 healthy subjects, NAMIC dataset includes 10

normal controls and 10 schizophrenic cases, and BraTS

dataset has 220 brain tumor subjects. We conduct extensive

experiments on three scenarios: (1) Proton Density (PD)

⇋ T2 on IXI dataset, (2) T1 ⇋ T2 on NAMIC dataset,

(3) FLAIR ⇋ T1 on BraTS. In each dataset, the existing

well-aligned paired images are removed, with half of them

per a side for a strict unsupervised setting. Specifically,

150 unpaired PD-w and T2-w MRI are selected from IXI

dataset, 6 unpaired T1-w, T2-w acquisitions are picked from

NAMIC dataset, and 70 unpaired T1-w and FLAIR data

are chosen from BraTS dataset for training. The split 50

samples from IXI, 2 samples from NAMIC and 30 samples

from BraTS are used for validation. The remaining data:

100 (IXI), 4 (NAMIC), and 40 (BraTS) are used for test-

ing. It is worth noting that, in our experimental datasets,

IXI only contains healthy images while both NAMIC and

BraTS include pathological data. In other words, the first

setting in our experiments considers healthy cases, the sec-

ond setting involves a mix of healthy and pathological ex-

amples, and the third setting tests our method on common

diseases. We tune the hyper-parameters of our model on

the validation set. To verify whether the synthesized re-

sults can replace the ground truths with diagnostic accept-

ability, we feed both real scans and all generations into a

classic and commonly used segmentation algorithm, FM-

RIB software library (FSL) [15]. We classify cerebrospinal

fluid (CSF), gray matter (GM), white matter (WM) and op-

tional tumor lesions to obtain the average quantification of

1http://brain-development.org/ixi-dataset
2http://insight-journal.org/midas/collection/view/190
3https://www.med.upenn.edu/sbia/brats2018/data.html

PD Input

(PSNR, SSIM)

T2

Ground Truth

MIMECS

(31.10, 0.7510)
V-US

(31.68, 0.8275)

cycleGAN

(32.42, 0.8773)

3D-cGAN

(33.41, 0.8966)

MSGAN

(38.29, 0.9120)

Ours

(39.59, 0.9510)

Figure 2. Visual comparisons of MIMECS, V-US, cycleGAN, 3D-

cGAN, MSGAN and ours for PD→T2 on IXI dataset.

the whole brain volume. FSL4 is a comprehensive library of

analysis, specific for functional and structural brain imaging

data. We obtain the segmented results under the tissue prior

probability templates in a default image space, and therefore

there is no guarantee that our segmentation will exactly fol-

low other methods. For evaluation criteria, we use PSNR,

SSIM and Dice score (which measures segmentation over-

lap, with a higher value meaning a better result) to assess the

performance of different methods. We demonstrate that the

proposed CSCℓ4Net exhibits competitive performance with

fewer layers (and the corresponding parameters) compared

to other deep learning methods.

5.2. Network Architecture

Inspired by ResNet [9], CSCℓ4Net includes seven CSC

layers with layered MMD and RM constraints, where the

spatial subsampling operation is performed with a stride of

2 in the last two bottleneck layers. Batch normalization

is incorporated layer-wise, following each CSC layer, for

faster convergence. The last CSC layer lies on top of a

global spatial average pooling layer. The bottleneck layer in

CSCℓ4Net outputs 64, 128, 256 with 3, 2, 2 times repeated

stacks, respectively. We use a learning rate of 0.0002, a

batch size of 16, a total of 200 epochs, and a sparse regular-

ization parameter of 0.02. We work in 2D slices and employ

the Adam optimizer. For the layered MMD parameters, we

use the Gaussian kernel with bandwidths equipped as me-

dian pairwise squared distances. We use the same network

configurations for all datasets.

5.3. Baseline Methods

We compare our CSCℓ4Net with the most relevant and

state-of-the-art synthesis methods: 1) MIMECS [24]; 2) V-

US [28]; 3) cycleGAN [39]; 4) 3D-cGAN [20]; 5) MS-

GAN [18]. Note that, MIMECS and MSGAN are super-

vised methods, so we input originally paired data for their

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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T1

Ground Truth

T2 Input

(PSNR, SSIM)

MIMECS

(35.46, 0.7521)

V-US

(34.62, 0.7486)

cycleGAN

(33.04, 0.7452)

3D-cGAN

(34.37, 0.8128)

MSGAN

(35.28, 0.8701)

Ours

(37.31, 0.9043)

Figure 3. Visual comparisons of MIMECS, V-US, cycleGAN, 3D-

cGAN, MSGAN and ours for T2→T1 on NAMIC dataset.

Metric(avg.) MIMECS V-US cycleGAN 3D-cGAN MSGAN CSCℓ4Net

IXI: T2-w→ PD-w

PSNR (dB) 30.49 32.53 32.66 32.75 33.11 36.45

SSIM 0.7801 0.8322 0.8345 0.8517 0.8557 0.9065

Dice (in %) 72.59 67.73 68.89 76.87 72.92 80.78

IXI: PD-w→ T2-w

PSNR (dB) 31.64 33.94 34.34 34.97 35.29 38.18

SSIM 0.8170 0.9022 0.9085 0.9035 0.8971 0.9596

Dice (in %) 76.52 69.87 70.26 80.63 79.78 87.90

NAMIC: T1-w→ T2-w

PSNR (dB) 35.97 35.50 36.41 35.44 35.78 37.82

SSIM 0.7690 0.7638 0.8291 0.8846 0.9033 0.9613

Dice (in %) 70.47 69.98 69.23 71.67 71.33 85.21

NAMIC: T2-w→ T1-w

PSNR (dB) 34.50 34.38 34.43 34.34 35.26 37.00

SSIM 0.7389 0.7517 0.8135 0.8673 0.8883 0.9222

Dice (in %) 72.19 70.09 70.07 74.62 72.69 83.64

BraTS: T1-w→ FLAIR

PSNR (dB) 30.50 31.87 31.37 33.74 31.81 37.41

SSIM 0.7944 0.8341 0.8129 0.8763 0.8653 0.9344

Dice (in %) 70.55 69.23 71.96 73.87 73.92 83.98

BraTS: FLAIR→ T1-w

PSNR (dB) 30.04 31.81 31.25 32.87 33.69 36.46

SSIM 0.8125 0.8421 0.8495 0.8798 0.8607 0.9112

Dice (in %) 71.59 69.83 73.21 78.87 76.99 82.63

Table 1. The performance of synthesis and synthesis-based seg-

mentation on IXI, NAMIC and BraTS datasets.

training. V-US, cycleGAN and 3D-cGAN are unsupervised

approaches, so we input the selected unpaired images for

training. For fair comparison, we empirically set all pa-

rameters of the compared methods following their recom-

mended data to reach their best performance. Notably, we

exactly followed the data processing steps implemented by

MIMECS, V-US and 3D-cGAN, where a standard intensity

correction and skull-striping were preformed. Therefore, no

extra data processes are implemented.

5.4. Results

We evaluate the effectiveness of our method by syn-

thesizing images on different datasets. The results of

CSCℓ4Net and the five baseline methods are compared in

Table 1. As further validation, we also apply the synthe-

sized results to segment major tissues in each dataset and

summarize the average performances in Table 1. First, we

compare our CSCℓ4Net against several state-of-the-art syn-

T1 Input

(PSNR, SSIM)

FLAIR

Ground Truth

MIMECS

(34.25, 0.85)

V-US

(34.83, 0.87)

cycleGAN

(32.90, 0.8640)

3D-cGAN

(35.43, 0.8908)

MSGAN

(36.81, 0.9066)

Ours

(39.49, 0.9370)

Figure 4. Visual comparisons of MIMECS, V-US, cycleGAN, 3D-

cGAN, MSGAN and ours for T1→FLAIR on BraTS dataset.

thesis methods on IXI for transforming PD-w MRI to T2-w

MRI and vice versa. For better interpretation, we provide

the visualization results in Fig. 2. From both Table 1 (top)

and Fig. 2, we observe that CSCℓ4Net achieves much better

performance (visually and quantitatively) than the other five

baseline methods in all cases. The average synthesis perfor-

mances of CSCℓ4Net on IXI dataset are {PSNR: 36.45dB,

SSIM: 0.9065} and {PSNR: 38.18dB, SSIM: 0.9596} for

T2-w→ PD-w and PD-w→ T2-w, respectively. CSCℓ4Net

gains a significant {PSNR, SSIM} performance improve-

ment of {3.34dB, 0.0508} and {2.89dB, 0.0625}, respec-

tively, compared to the best baseline MSGAN. In addition,

we report the segmentation accuracy (Dice scores), which

are based on the synthesized results, in Table 1. As we

intuitively expected, if the model can provide results with

data fidelity, the synthesis task is able to deliver practi-

cal usable results for further diagnosis. For medical im-

age synthesis-driven segmentation, our method again out-

performs the other methods, i.e., MIMECS, V-US, cycle-

GAN, 3D-cGAN and MSGAN, by a large margin. Our re-

sults are more representative than those of other state-of-

the-art image synthesis methods on IXI dataset, showing

dice improvements of 3.91% and 7.27% for T2-w→ PD-w

and PD-w→ T2-w respectively, w.r.t the best baseline.

In addition to healthy cases, we also evaluate our algo-

rithm on the pathological datasets (i.e. NAMIC, BraTS).

We adopt the same evaluation criteria as on IXI dataset.

We provide the qualitative results of our method in Figs. 3-

4. These figures demonstrate how BrainGAN can handle

schizophrenic and brain tumor synthesis on NAMIC and

BraTS dataset, respectively. The proposed method consis-

tently obtains the best performance, particularly when the

lesions in the T1-w data appear with much lower contrast

than in the FLAIR brain MRI (shown in Fig. 4). In Ta-

ble 1 (middle and bottom), similarly for PD ⇋ T2 synthe-

sis, CSCℓ4Net outperforms the compared methods with im-

provements of {1.41dB, 0.0580} and {1.74dB, 0.0339} for

T1 ⇋ T2 on NAMIC dataset, and {3.67dB, 0.0582} and

{2.77dB, 0.0314} for T1 ⇋ FLAIR on BraTS dataset, re-

spectively. Using the defined settings (refer to Section 5.1)
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Testing on the IXI dataset

Testing on the IXI dataset

Testing on the NAMIC dataset

Testing on the NAMIC dataset

Testing on the BraTS dataset

Testing on the BraTS dataset

Figure 5. Quantitative evaluations including PSNRs and SSIMs of all methods distributed across IXI, NAMIC and BraTS, respectively.

and all synthesized data from both the forward and back-

ward transformation, Table 1 compares the segmentation

results. As with the Dice scores reported in Table 1 (mid-

dle and bottom), our method again gains significant perfor-

mance enhancements, i.e., increasing by 13.54% for T1 ⇋

T2, 9.02% for T2 ⇋ T1, 9.72% for T1 ⇋ FLAIR, and

3.76% for FLAIR ⇋ T1. For clarity, Fig. 5 provides de-

tailed comparison results of all methods distributed across

different datasets.

5.5. Ablation Studies

Since CSCℓ4Net comprises a combination of several

components, we perform an extensive ablation study to bet-

ter understand why it is able to obtain state-of-the-art re-

sults. Considering the number of experiments in the above

studies, we focus on the case of PD-w → T2-w from IXI

dataset and report our ablation results in Table 2. We

separately adopt {IUN, LH, LM} as the additional mod-

ule under the baseline CSC, and evaluate the effects in

terms of image quality and synthesis-based segmentation

performance. When each of the components is separately

combined with CSC, the PSNR, SSIM, and Dice scores

are improved by {2.42dB, 3.73dB, 3.54dB}, {0.05, 0.07,

0.07}, {0.35%, 2.19%, 7.79%}, respectively. With the as-

sistance of LH and LM, the image quality and synthesis-

based segmentation have the greatest impact. CSC with

different combinations of two modules achieves {7.42dB.

7.05dB, 9.33dB}, {0.16, 0.16, 0.19}, and {13.44%, 17.7%,

26.43%} improvements over the baseline.

CSC IUN LH LM PSNR(dB) SSIM Dice(%)

X 27.54 0.7357 58.73

X X 29.96 0.7864 59.08

X X 31.27 0.8022 60.92

X X 31.08 0.8070 66.52

X X X 34.96 0.8958 72.17

X X X 34.59 0.8996 76.43

X X X 36.87 0.9214 85.16

Table 2. Ablation study showing the effect of our modules/loss

functions in improving the performance for PD-w → T2-w on IXI.

6. Conclusion

We have proposed a novel multivariate canonical

CSCℓ4Net approach for the cross-modal synthesis of med-

ical images. CSCℓ4Net aims at unifying multivariate

datasets across both intra-modal and inter-modal through

layer-wise feature adaptation and manifold transformation.

CSCℓ4Net is robust against both appearance variation and

irregular machines. In addition, the proposed method

extends the general CSC to a multi-layer CSC and im-

poses multivariate canonical feature mapping under the

ℓ4-maximization to account for the high-dimensional and

heterogeneous nature of neuroimaging. Comprehensive

experiments show that CSCℓ4Net is effective for a vari-

ety of cross-modality medical image synthesis problems,

with segmentation quality, and can significantly outperform

state-of-the-art methods even for very difference datasets.

In the future, we plan to extend our CSCℓ4Net to various

image formats to investigate its generality.

Acknowledgment: This work is supported by the Na-

tional Natural Science Foundation of China under Grant

61972188.

85888



References

[1] Peter J Basser, James Mattiello, and Denis LeBihan. Mr dif-

fusion tensor spectroscopy and imaging. Biophysical jour-

nal, 66(1):259–267, 1994. 4

[2] Rajendra Bhatia. Positive definite matrices, volume 24.

Princeton university press, 2009. 5

[3] Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast

convolutional sparse coding. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 391–398, 2013. 3

[4] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-

age style transfer using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2414–2423, 2016. 2

[5] Behnam Gholami, Pritish Sahu, Ognjen Rudovic, Konstanti-

nos Bousmalis, and Vladimir Pavlovic. Unsupervised multi-

target domain adaptation: An information theoretic ap-

proach. IEEE Transactions on Image Processing, 2020. 4

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 2, 4

[7] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivara-

man Balakrishnan, Massimiliano Pontil, Kenji Fukumizu,

and Bharath K Sriperumbudur. Optimal kernel choice for

large-scale two-sample tests. In Advances in neural infor-

mation processing systems, pages 1205–1213, 2012. 4

[8] Shuhang Gu, Wangmeng Zuo, Qi Xie, Deyu Meng, Xi-

angchu Feng, and Lei Zhang. Convolutional sparse coding

for image super-resolution. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1823–1831,

2015. 1, 3

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 6

[10] Felix Heide, Wolfgang Heidrich, and Gordon Wetzstein. Fast

and flexible convolutional sparse coding. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5135–5143, 2015. 1, 3

[11] Yawen Huang, Ling Shao, and Alejandro F Frangi. Cross-

modality image synthesis via weakly coupled and geometry

co-regularized joint dictionary learning. IEEE transactions

on medical imaging, 37(3):815–827, 2017. 1, 2, 4, 5

[12] Yawen Huang, Ling Shao, and Alejandro F Frangi. Dote:

Dual convolutional filter learning for super-resolution and

cross-modality synthesis in mri. In International Conference

on Medical Image Computing and Computer-Assisted Inter-

vention, pages 89–98. Springer, 2017. 1, 2, 3

[13] Yawen Huang, Feng Zheng, Runmin Cong, Weilin Huang,

Matthew R Scott, and Ling Shao. Mcmt-gan: Multi-task co-

herent modality transferable gan for 3d brain image synthe-

sis. IEEE Transactions on Image Processing, 29:8187–8198,

2020. 2

[14] Juan Eugenio Iglesias, Marc Modat, Loı̈c Peter, Allison

Stevens, Roberto Annunziata, Tom Vercauteren, Ed Lein,

Bruce Fischl, Sebastien Ourselin, Alzheimers Disease Neu-

roimaging Initiative, et al. Joint registration and synthesis

using a probabilistic model for alignment of mri and histo-

logical sections. Medical image analysis, 50:127–144, 2018.

3

[15] Mark Jenkinson, Christian F Beckmann, Timothy EJ

Behrens, Mark W Woolrich, and Stephen M Smith. Fsl. Neu-

roimage, 62(2):782–790, 2012. 6

[16] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras,

Timo Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot

unsupervised image-to-image translation. arXiv preprint

arXiv:1905.01723, 2019. 2

[17] Mingsheng Long, Jianmin Wang, Yue Cao, Jiaguang Sun,

and S Yu Philip. Deep learning of transferable representa-

tion for scalable domain adaptation. IEEE Transactions on

Knowledge and Data Engineering, 28(8):2027–2040, 2016.

4

[18] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and

Ming-Hsuan Yang. Mode seeking generative adversarial net-

works for diverse image synthesis. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1429–1437, 2019. 6

[19] Thomas Moreau, Laurent Oudre, and Nicolas Vayatis. Di-

cod: Distributed convolutional coordinate descent for convo-

lutional sparse coding. In International Conference on Ma-

chine Learning, pages 3623–3631, 2018. 3

[20] Yongsheng Pan, Mingxia Liu, Chunfeng Lian, Tao Zhou,

Yong Xia, and Dinggang Shen. Synthesizing missing pet

from mri with cycle-consistent generative adversarial net-

works for alzheimers disease diagnosis. In MICCAI, pages

455–463. Springer, 2018. 6

[21] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate

Saenko, and Bo Wang. Moment matching for multi-source

domain adaptation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1406–1415, 2019. 4

[22] Peter Petersen, S Axler, and KA Ribet. Riemannian geome-

try, volume 171. Springer, 2006. 4

[23] Daniele Ravi, Daniel C Alexander, Neil P Oxtoby,

Alzheimers Disease Neuroimaging Initiative, et al. Degen-

erative adversarial neuroimage nets: Generating images that

mimic disease progression. In International Conference on

Medical Image Computing and Computer-Assisted Interven-

tion, pages 164–172. Springer, 2019. 3

[24] Snehashis Roy, Aaron Carass, and Jerry L Prince. Magnetic

resonance image example-based contrast synthesis. IEEE

transactions on medical imaging, 32(12):2348–2363, 2013.

1, 2, 6

[25] Wei Shao, Tongxin Wang, Zhi Huang, Jun Cheng, Zhi Han,

Daoqiang Zhang, and Kun Huang. Diagnosis-guided multi-

modal feature selection for prognosis prediction of lung

squamous cell carcinoma. In International Conference on

Medical Image Computing and Computer-Assisted Interven-

tion, pages 113–121. Springer, 2019. 3

[26] Bo Sun, Nian-hsuan Tsai, Fangchen Liu, Ronald Yu, and

Hao Su. Adversarial defense by stratified convolutional

sparse coding. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 11447–

11456, 2019. 1, 3

95889



[27] Hristina Uzunova, Jan Ehrhardt, Fabian Jacob, Alex

Frydrychowicz, and Heinz Handels. Multi-scale gans for

memory-efficient generation of high resolution medical im-

ages. In International Conference on Medical Image Com-

puting and Computer-Assisted Intervention, pages 112–120.

Springer, 2019. 3

[28] Raviteja Vemulapalli, Hien Van Nguyen, and Shaohua

Kevin Zhou. Unsupervised cross-modal synthesis of subject-

specific scans. In Proceedings of the IEEE International

Conference on Computer Vision, pages 630–638, 2015. 1,

2, 6

[29] Jiayu Wang, Wengang Zhou, Guo-Jun Qi, Zhongqian Fu, Qi

Tian, and Houqiang Li. Transformation gan for unsupervised

image synthesis and representation learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 472–481, 2020. 2

[30] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image syn-

thesis and semantic manipulation with conditional gans. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 8798–8807, 2018. 1, 2

[31] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and

Rob Fergus. Deconvolutional networks. In 2010 IEEE Com-

puter Society Conference on computer vision and pattern

recognition, pages 2528–2535. IEEE, 2010. 3

[32] Yuexiang Zhai, Zitong Yang, Zhenyu Liao, John Wright,

and Yi Ma. Complete dictionary learning via ℓ4-norm

maximization over the orthogonal group. arXiv preprint

arXiv:1906.02435, 2019. 5

[33] Yuqian Zhang, Han-Wen Kuo, and John Wright. Structured

local optima in sparse blind deconvolution. IEEE Transac-

tions on Information Theory, 66(1):419–452, 2019. 5

[34] Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating

and segmenting multimodal medical volumes with cycle-and

shape-consistency generative adversarial network. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 9242–9251, 2018. 2

[35] Amy Zhao, Guha Balakrishnan, Fredo Durand, John V Gut-

tag, and Adrian V Dalca. Data augmentation using learned

transformations for one-shot medical image segmentation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8543–8553, 2019. 2

[36] Feng Zheng, Cheng Deng, Xing Sun, Xinyang Jiang, Xi-

aowei Guo, Zongqiao Yu, Feiyue Huang, and Rongrong Ji.

Pyramidal person re-identification via multi-loss dynamic

training. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 8514–8522,

2019. 4

[37] Yi Zhou, Xiaodong He, Shanshan Cui, Fan Zhu, Li Liu, and

Ling Shao. High-resolution diabetic retinopathy image syn-

thesis manipulated by grading and lesions. In International

Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 505–513. Springer, 2019. 1, 2

[38] Fan Zhu and Ling Shao. Weakly-supervised cross-domain

dictionary learning for visual recognition. International

Journal of Computer Vision, 109(1-2):42–59, 2014. 4

[39] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

international conference on computer vision, pages 2223–

2232, 2017. 2, 6

[40] Ev Zisselman, Jeremias Sulam, and Michael Elad. A local

block coordinate descent algorithm for the csc model. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8208–8217, 2019. 3

105890


