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Abstract

Panoptic segmentation unifies semantic segmentation

and instance segmentation which has been attracting in-

creasing attention in recent years. However, most existing

research was conducted under a supervised learning setup

whereas unsupervised domain adaptive panoptic segmenta-

tion which is critical in different tasks and applications is

largely neglected. We design a domain adaptive panoptic

segmentation network that exploits inter-style consistency

and inter-task regularization for optimal domain adaptive

panoptic segmentation. The inter-style consistency lever-

ages semantic invariance across the same image of the dif-

ferent styles which ‘ fabricates’ certain self-supervisions

to guide the network to learn domain-invariant features.

The inter-task regularization exploits the complementary

nature of instance segmentation and semantic segmenta-

tion and uses it as a constraint for better feature alignment

across domains. Extensive experiments over multiple do-

main adaptive panoptic segmentation tasks (e.g. synthetic-

to-real and real-to-real) show that our proposed network

achieves superior segmentation performance as compared

with the state-of-the-art.

1. Introduction

Panoptic segmentation unifies semantic segmentation

and instance segmentation which aims to assign a seman-

tic class and an instance ID to each image pixel concur-

rently. With a large amount of annotated training images,

panoptic segmentation has recently made rapid progress un-

der a supervised setup [32, 31, 39, 52, 41, 68, 37, 25, 38].

Unfortunately, collecting large-scale training images with

pixel-level annotations is prohibitively expensive and time-

consuming [10, 46]. One way to mitigate this constraint

is to leverage synthetic images [53] that can be automat-

ically annotated by graphic software. However, synthetic

and natural images have clear domain gaps and panoptic

segmentation models trained using synthetic images usually
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Figure 1. Our proposed cross-view regularization network

(CVRN) tackles domain adaptive panoptic segmentation by ex-

ploring an inter-task regularization (ITR) and an inter-style reg-

ularization (ISR). As shown in the bottom part, ITR exploits the

complementary nature of instance segmentation and semantic seg-

mentation to regularize each other. ISR employs online image styl-

ization to augments multiple views of the same image for regular-

ization. Panoptic segmentations with and without our cross-view

regularization are shown in the top part (the black dash lines high-

light two close-up views). Best viewed in color.

experience sharp performance drop while applied to natural

images, as shown in Figure 1.

One strategy that could better leverage synthetic im-

ages is domain adaptive panoptic segmentation that adopts

certain unsupervised domain adaptation (UDA) techniques

for adaptation from synthetic images to natural images.

However, domain adaptive panoptic segmentation is largely

neglected though domain adaptive semantic segmentation

[76, 22, 59, 34, 24, 77, 67, 26, 70, 33] and domain adaptive

instance detection/segmentation [3, 65, 72, 21, 79, 69, 17]

have been investigated extensively. This could be due to a

misconception that domain adaptive panoptic segmentation
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can be simply achieved by integrating domain adaptive se-

mantic segmentation and domain adaptive instance segmen-

tation. Nevertheless, semantic segmentation and instance

segmentation are guided by different objectives which usu-

ally learn different feature representations from different

perspectives. Learning the two tasks separately and then in-

tegrating the learned models is thus sub-optimal as it simply

ignores the complementary nature of the two tasks.

We design CVRN, an innovative cross-view regulariza-

tion network that addresses the challenge of domain adap-

tive panoptic segmentation through the regularization from

different perspectives, as illustrated in Figure 1. Instead of

treating semantic segmentation and instance segmentation

as two independent tasks in training, we designed an inter-

task regularizer that guides the two tasks to complement and

regularize each other to compensate the lack of annotations

(for target-domain data) in domain adaptive panoptic seg-

mentation. This design is inspired by our observations that

semantic segmentation usually performs clearly better for

amorphous regions called ”stuff” as compared with count-

able objects called ”things” whereas instance segmentation

usually performs in an opposite manner. In addition, we de-

signed an inter-style regularizer that formulates the seman-

tic consistency of the same image across different styles (in

illumination, weather conditions, contrast, etc.) as super-

vision to regularize domain adaptation and mitigate miss-

ing annotations in target domain. The inter-style regularizer

treats different styles as different views of the same image

which regularizes the domain adaptation within each single

image. For both inter-task and inter-style regularization, we

predict pseudo labels for target-domain samples by adapting

self-training ideas that have been widely adopted in many

other domain adaptive computer vision tasks [81, 40, 80].

The contributions of this work can be summarized in

three aspects. First, we designed a cross-view regulariza-

tion network that addresses the challenge of domain adap-

tive panoptic segmentation effectively. To the best of our

knowledge, this is the first work that tackles the challeng-

ing domain adaptive panoptic segmentation task. Second,

we designed a novel inter-task regularizer that exploits the

complementary nature of semantic segmentation and in-

stance segmentation for optimal domain adaptive panoptic

segmentation. In addition, we designed an inter-style reg-

ularizer that formulates consistency of the same image of

different styles as supervision for better feature alignment

across domains. Third, extensive experiments over multi-

ple domain adaptive panoptic segmentation tasks show that

our network achieves superior segmentation performance as

compared with the state-of-the-art.

2. Related Works

The concept of Panoptic segmentation was introduced

in [32] which handles the problem by fusing the predic-

tions of instance segmentation and semantic segmentation

heuristically. Quite a number of relevant works have been

reported since then. For example, [31] extends an instance

segmentation model with a semantic segmentation branch

and takes a shared feature pyramid network as backbone.

[39] employs instance-level attention to transfer knowledge

from an instance segmentation branch to a semantic seg-

mentation branch. [41] presents a spatial ranking mod-

ule to address occlusions between the predicted instances.

[68] introduces a non-parametric panoptic head for resolv-

ing the conflicts between instance and semantic segmen-

tation. [9] presents a bottom-up approach that employs a

class-agnostic instance segmentation branch with center re-

gression. Though panoptic segmentation has been studied

extensively recently, most existing research was conducted

under a supervised setup where all training data are fully

annotated. We instead focus on a more challenging domain

adaptive panoptic segmentation task that aims to adapt from

an annotated source domain to an unlabelled target domain.

Multi-view learning trains a learner over two or more

different views by incorporating confident predictions of

target data iteratively [1, 11, 75, 15, 49]. In unsupervised

domain adaptation, it generates pseudo labels for unlabelled

target data for measuring and minimizing various task loss

[44, 6, 4, 18]. In recent years, multi-view learning diversi-

fies the learned parameters (e.g., kernel weights) to enforce

multiple classifiers via adversarial dropout [55, 36], classi-

fier discrepancy maximization [57, 35], parameter diversifi-

cation [73, 45], asymmetric classifier tri-training [54, 21],

etc. Different from existed multi-view learning that em-

ploys multiple classifiers to create multiple views in the fea-

ture space, we exploit the complementary nature of seman-

tic segmentation and instance segmentation and use their

predictions as two views in panoptic segmentation. In addi-

tion, we adopt online image stylization to construct multiple

views in the input space which enhances domain adaptation

by enforcing semantic consistency across image styles.

Unsupervised domain adaptation aims to adapt a

model from a labelled source domain to an unlabelled tar-

get domain. One typical domain adaptation approach lever-

ages adversarial learning that employs a domain classifier

to learn domain invariant features [13, 23, 42, 43, 64, 8,

62, 65, 16, 71, 27, 30]. Another typical approach ex-

ploits self-training that predicts pseudo labels for target-

domain data and includes confident predictions in network

training [81, 58, 78, 14, 18, 74]. The self-training ap-

proach has attracted increasing attention in recent years,

and different strategies have been designed for predicting

high-quality pseudo labels by incorporating class-balance

thresholding [81], confidence-regularization [80], voting-

based densification [48] or scale-invariance example explo-

ration [61]. We adopt the self-training idea in the imple-

mentation of our proposed cross-view regularization over
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Figure 2. Overview of our proposed cross-view regularization network (CVRN): CVRN predicts multi-view co-regularized panoptic pseudo

labels (PL) for learning from unlabelled target data. A target image and its stylized transformation are first fed to a panoptic segmentation

model F to generate predictions (in gray boxes) and four sets of primary pseudo labels (in red boxes). With the four sets of primary

pseudo labels, inter-task regularization (ITR) exploits the complementary nature of instance segmentation and semantic segmentation to

co-regularize their pseudo labels, e.g. the confident predictions in instance segmentation can guide the unconfident predictions in semantic

segmentation (e.g., the rider), and vice versa. The inter-task regularized pseudo labels are shown in the blue boxes. Similarly, inter-style

regularization (ISR) exploits the complementary property of images of the same scene but different styles for regularization, where green

box shows ISR regularized pseudo labels. Finally, the cross-view regularized instance and semantic segmentation pseudo labels are fused

into panoptic segmentation pseudo labels to train unsupervised domain adaptive panoptic segmentation model with unlabeled target data.

different tasks and image styles. More specifically, we in-

troduce multi-view learning (across tasks and image styles)

into the self-training framework for unifying instance seg-

mentation and semantic segmentation under the context of

domain adaptive panoptic segmentation.

3. Method

This section presents the proposed cross-view regular-

ization network (CVRN) as illustrated in Figure 2. Lever-

aging multi-task self-training (MTST), CVRN aims to adapt

towards a domain-specific panoptic segmentation model by

using unlabelled target images. It tackles cross-view regu-

larization from two perspectives including inter-task regu-

larization (ITR) and inter-style regularization (ISR), more

details to be described in the ensuing subsections.

3.1. Multi­Task Self­Training

Our proposed cross-view regularization is implemented

over a multi-task self-training (MTST) network. Self-

training has been widely investigated to exploit unlabeled

target-domain data in semi-supervised and unsupervised

learning. It predicts pseudo labels for target-domain data

and incorporates confident prediction for training stronger

models iteratively. For the task of domain adaptive panoptic

segmentation under study, we extend self-training to multi-

task self-training and use it as a base to implement our pro-

posed inter-task regularization between semantic segmenta-

tion and instance segmentation.

The problem setting is as follows. We have source-

domain images Xs and the corresponding pixel-level se-

mantic labels Ys where C denotes the class number and N

denotes the ID index of things i.e., countable objects. We

also have unlabelled target-domain images Xt. The target

is to learn a panoptic segmentation model F that performs

well in the unlabeled target domain. With Xs and Ys in the

source domain, F can be optimized by a supervised panop-

tic segmentation loss Lpan that consists of a semantic seg-

mentation loss Lseg and an instance segmentation loss Lins.

During training, Ys are converted to semantic segmentation

labels Y e
s and instance segmentation labels Y d

s for comput-

ing Lseg and Lins concurrently.

For xt in the target domain, F will generate panoptic

segmentation predictions which are a heuristic combination

of semantic segmentation predictions pet and instance seg-

mentation predictions pdt . Based on generated predictions

pet and pdt , pseudo labels can be determined by a selection

function S (confidence thresholding) that is defined as fol-
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lows:

S(pt) = argmax
c∈C

✶
[p

(c)
t

>exp(−kc)]
(p

(c)
t ) (1)

where pt refers to either pet or pdt , ✶ is a function that re-

turns the input if the condition is true or an empty output

otherwise, and kc is the class-balanced weights [81]. The

panoptic segmentation model F can be retained with target-

domain images Xt and the predicted pseudo labels S(P e
t )

and S(P d
t ) via self-training.

Supervised loss: Given the panoptic segmentation

model F , a source-domain image xs ⊂ Xs and its corre-

sponding semantic segmentation and instance segmentation

labels {yes , y
d
s} ⊂ {Y e

s , Y
d
s }, the supervised panoptic seg-

mentation loss Lpan can be defined as follows:

Lpan(xs, ys;F ) = Lseg(p
e
s, y

e
s) + Lins(p

d
s , y

d
s ), (2)

where Lseg is cross-entropy loss, Lins is instance segmen-

tation loss as defined in [19], pes and pds represent source-

domain semantic segmentation and instance segmentation

predictions, respectively.

Multi-task self-training loss: Given the panoptic seg-

mentation model F and a target image xt ⊂ Xt, the multi-

task self-training loss Lmtst can be defined by:

Lmtst(xt;F ) = Lseg(p
e
t ,S(p

e
t )) + Lins(p

d
t ,S(p

d
t )), (3)

where pet and pdt represent target-domain semantic segmen-

tation and instance segmentation predictions, respectively.

3.2. Inter­Task Regularization

Semantic segmentation and instance segmentation learn

from different perspectives which often produce comple-

mentary predictions under the context of panoptic segmen-

tation. Under the framework of multi-task self-training, we

observe that pseudo labels predicted by the two tasks often

complement each other. As illustrated in Figure 2, seman-

tic segmentation tends to predict high-quality pseudo labels

(i.e., diverse and accurate) for amorphous regions called

“stuff” but low-quality pseudo labels (i.e., sparse and inac-

curate) for countable objects called “things”. On the con-

trary, instance segmentation tends to generate high-/low-

quality pseudo labels for things/stuff.

Based on this observation, we design an inter-task reg-

ularization (ITR) method that mutually regularize self-

training in between the semantic segmentation and instance

segmentation tasks in the target domain. Specifically, ITR

employs high-certainty (i.e., low entropy) pseudo label pre-

dictions of one task to regularize pseudo label predictions

of the other task and vice versa. In this way, ITR is capable

of predicting higher quality pseudo labels as compared with

those predicted by each single task alone.

In the unannotated target domain, pseudo labels of se-

mantic segmentation and instance segmentation (i.e., S(pet )
and S(pdt )) can be determined based on the predictions (i.e.,

pet and pdt ) as described in the last subsection. S(pdt ) can

then be regularized by S(pet ). This instance segmentation

pseudo-label regularization function Rd that is defined as

follows:

Rd(p
d
t , p

e
t ) =✶[E(pd

t
)<E(pe

t
)](S(p

d
t ))+

argmax
c∈C

✶[J (pd

t
,S(pe

t
))](p

d(c)
t ),

(4)

where J is a function to judge if the instance segmentation

prediction pdt is highly consistent with the semantic segmen-

tation pseudo label S(pet ) in the same image location. Se-

mantic segmentation refines instance segmentation by the

instance segmentation pseudo-label regularization function

defined in Eq. (4). Semantic pseudo labels (PLs) can re-

move false positive from instance PLs via the first term in

Eq. (4), and add false negative into instance PLs via the sec-

ond term in Eq. (4). Thus, semantic PLs can refine instance

PLs. Although instance PLs cover ’things’ labels only, the

class-agnostic ’stuff’ mask can be easily got as it is a bi-

nary issue, i.e., ’non-things’ regions must be class-agnostic

’stuff’. Thus, more accurate Instance PL can improve learn-

ing both ’things’ and class-agnostic ’stuff’ by training on

both positive/negative region-of-interests (ROIs) [19] se-

lected from instance PLs. For the function J in Eq. (4),

it re-identifies one prediction as an instance PLs, if its in-

tersection with semantic PLs over itself is larger than the

threshold (i.e., 0.5).

Similarly, S(pet ) can be regularized by S(pdt ). This se-

mantic segmentation pseudo-label regularization function

Re is defined by:

Re(p
e
t , p

d
t ) =✶[E(pe

t
)<E(pd

t
)](S(p

e
t ))+

T (✶[E(pd

t
)<E(pe

t
)](S(p

d
t ))),

(5)

where E is the entropy function as defined in [60]. T is

a label transformation function from instance segmentation

to semantic segmentation, i.e., ignoring ID indexes of in-

stances of the same category.

Inter-task regularization loss: Given the panoptic seg-

mentation model F and a target-domain image xt ⊂ Xt,

the inter-task regularization loss Litr can be defined by:

Litr(xt;F ) =Lseg(p
e
t ,Re(p

e
t , p

d
t ))+

Lins(p
d
t ,Rd((p

d
t , p

e
t )),

(6)

where pet and pdt represent target-domain semantic segmen-

tation and instance segmentation predictions, respectively.

3.3. Inter­Style Regularization

Besides inter-task regularization, we also design an inter-

style regularization (ISR) method that further improves the
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quality of pseudo labels by fusing confident (pseudo label)

predictions of images of the same scene but different styles.

The idea is that images of the same scene should share per-

fectly the same pixel-level semantics when they are cap-

tured under different conditions with different image styles

(e.g. in different illumination, weather, etc.). A pixel with

more confident pseudo-level prediction in one image view

with one specific style can therefore be exploited to regular-

ize the less confident prediction of the corresponding pixel

in another image view with a different style.

We implement ISR based on online image stylization

that generates images with new styles/views with histogram

matching [51]. Specifically, the online image stylization

first transfers a training image xt to x̃t based on another

randomly selected target-domain image. It then forwards

xt and its style transformation x̃t to the panoptic segmen-

tation model F to predict semantic segmentation (i.e., pet
and p̃et ) and instance segmentation (i.e., pdt and p̃dt ). Finally,

we generate the pseudo labels by an inter-style pseudo-label

unification function that is defined as follows:

U(pt, p̃t) =✶[E(pt)<E(p̃t)](S(pt))+

✶[E(p̃t)<E(pt))](S(p̃t)).
(7)

ISR thus enforces semantic consistency across images of

the same contents but different styles by retraining the

model F with unified pseudo labels in different style views.

Inter-style regularization loss: Given the panoptic seg-

mentation model F and a target-domain image xt ⊂ Xt

and its style transformation x̃t, the inter-style regularization

loss Lisr can be formulated as follows:

Lisr(xt, x̃t;F ) =Lseg(p̃et ,Ue(pt, p̃t))+

Lins(p̃
d
t ,Ud(pt, p̃t))+

Lseg(p
e
t ,Ue(pt, p̃t))+

Lins(p
d
t ,Ud(pt, p̃t)),

(8)

where p̃et and p̃dt represent semantic segmentation and

instance segmentation predictions generated from style-

transformed images, respectively.

Training objective: The overall objective function of

the proposed cross-view regularization network (CVRN)

can thus be formulated by summing up the four training

losses as follows:

Lcvrn = Lpan + λmtLmtst + λitLitr + λisLisr, (9)

where λmt, λit and λis are the balancing weights.

4. Experiment

4.1. Datasets and Evaluation Metrics

We evaluated our proposed cross-view regularization

technique over three widely used datasets, i.e., SYNTHIA

SYNTHIA → Cityscapes

Method Lsup Lmtst Litr Lisr mSQ mRQ PQ

Source only X 59.0 27.8 20.1

MTST X X 59.5 32.9 24.8

MTST + ITR X X X 61.1 36.4 28.0

MTST + ISR X X X 62.3 36.9 28.9

CVRN X X X X 66.6 40.9 32.1

Table 1. Ablation study of CVRN over domain adaptive panoptic

segmentation task SYNTHIA → Cityscapes: The proposed inter-

task regularization (ITR) and inter-style regularization (ISR) both

outperforms the base network MTST (multi-task self-training)

greatly. ITR and ISR complement with each other clearly.

[53], Cityscapes [10] and Mapillary Vistas [46]. Please

refer to the appendix for dataset details. We evaluate panop-

tic segmentation by three widely used metrics including se-

mantic quality (SQ), recognition quality (RQ), and panoptic

quality (PQ) [32].

4.2. Implementation Details

We adopted PSN [32] as the panoptic segmentation ar-

chitecture that consists of a semantic segmentation branch

(i.e., Deeplab-V2 [5]) and an instance segmentation branch

(i.e., Mask R-CNN [19]). All the networks in the experi-

ments use ResNet-101 [20] pre-trained on ImageNet [12] as

backbone. We implemented CVRN by using PyTorch [50]

and trained it with a single NVIDIA 2080TI GPU with

11GB memory. The networks are trained with a standard

Stochastic Gradient Descent optimizer [2] with learning

rate 2.5× 10−4, momentum 0.9, and weight decay 10−4.

4.3. Ablation studies

We performed extensive ablation studies to investigate

how our designs contribute to domain adaptive panoptic

segmentation. The ablation studies were conducted over the

task SYNTHIA → Cityscapes as shown in Table 1. It can

be seen that MTST outperforms Source only clearly as it

exploits target-domain knowledge via self-training. In ad-

dition, MTST+ITR outperforms MTST by a clear margin,

demonstrating the effectiveness of the proposed inter-task

regularization in between instance segmentation and se-

mantic segmentation. At the same time, MTST+ISR outper-

forms MTST significantly as well which is largely attributed

to the proposed inter-style regularization design that ag-

gregates rich and complementary knowledge from different

image views. Further, CVRN produces the best panoptic

segmentation, which shows that the proposed inter-task reg-

ularization and inter-style regularization are orthogonal and

complementary to each other.
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SYNTHIA → Cityscapes Panoptic Segmentation

Methods road side. buil. wall fence pole light sign vege. sky pers. rider car bus mot. bike mSQ mRQ mPQ

Source only 32.3 5.1 58.5 0.9 0.0 0.9 0.0 4.6 61.7 61.3 27.6 9.5 32.8 22.6 1.0 2.7 59.0 27.8 20.1

FDA [71] 79.0 22.0 61.8 1.1 0.0 5.6 5.5 9.5 51.6 70.7 23.4 16.3 34.1 31.0 5.2 8.8 65.0 35.5 26.6

CRST [80] 75.4 19.0 70.8 1.4 0.0 7.3 0.0 5.2 74.1 69.2 23.7 19.9 33.4 26.6 2.4 4.8 60.3 35.6 27.1

SVMin [16] 82.6 39.5 76.5 5.9 0.0 34.0 7.5 11.5 81.1 82.8 56.5 12.2 80.3 35.7 18.9 20.3 64.8 35.9 27.8

AdvEnt [65] 87.1 32.4 69.7 1.1 0.0 3.8 0.7 2.3 71.7 72.0 28.2 17.7 31.0 21.1 6.3 4.9 65.6 36.3 28.1

CrCDA [28] 84.4 21.9 69.6 3.1 0.0 3.5 5.3 6.0 75.3 68.7 34.4 17.8 32.8 27.6 2.3 4.9 64.8 37.1 28.6

CVRN (Ours) 86.6 33.8 74.6 3.4 0.0 10.0 5.7 13.5 80.3 76.3 26.0 18.0 34.1 37.4 7.3 6.2 66.6 40.9 32.1

Oracle 96.0 60.7 83.0 17.9 19.0 16.9 15.6 38.1 83.4 83.8 44.0 41.3 57.9 39.0 33.3 32.8 75.5 60.2 47.7

SYNTHIA → Mapillary Panoptic Segmentation

Methods road side. buil. wall fence pole light sign vege. sky pers. rider car bus mot. bike mSQ mRQ mPQ

Source only 22.1 5.5 34.5 0.2 0.0 2.8 0.0 1.5 40.3 79.5 18.9 9.2 35.6 3.9 0.9 0.5 59.4 21.3 16.0

AdvEnt [65] 27.7 6.1 28.1 0.3 0.0 3.4 1.6 5.2 48.1 66.5 28.4 13.4 40.5 14.6 5.2 3.3 63.6 24.7 18.3

CRST [80] 36.0 6.4 29.1 0.2 0.0 2.8 0.5 4.6 47.7 68.9 28.3 13.0 42.4 13.6 5.1 2.0 63.9 25.2 18.8

FDA [71] 44.1 7.1 26.6 1.3 0.0 3.2 0.2 5.5 45.2 61.3 30.1 13.9 39.4 12.1 8.5 7.0 63.8 26.1 19.1

CrCDA [28] 50.5 7.6 32.5 0.7 0.0 2.9 1.8 1.9 44.1 66.8 28.3 13.0 42.4 13.6 5.1 2.0 64.4 26.1 19.6

SVMin [17] 21.9 5.6 35.0 1.0 0.0 3.5 0.3 6.1 47.9 79.9 29.2 15.5 41.8 19.8 5.5 5.7 64.5 26.4 19.9

CVRN (Ours) 33.4 7.4 32.9 1.6 0.0 4.3 0.4 6.5 50.8 76.8 30.6 15.2 44.8 18.8 7.9 9.5 65.3 28.1 21.3

Oracle 80.4 37.6 57.0 13.4 20.3 15.7 24.1 33.5 66.2 90.5 30.1 15.7 54.9 28.7 10.8 9.3 73.5 46.9 36.8

Cityscapes → Mapillary Panoptic Segmentation

Methods road side. buil. wall fence pole light sign vege. sky pers. rider car bus mot. bike mSQ mRQ mPQ

Source only 75.6 15.8 40.4 5.1 8.9 3.2 2.1 13.4 55.2 81.8 24.4 15.1 51.4 4.4 12.8 13.6 71.2 34.3 26.4

CRST [80] 77.0 22.6 40.2 7.8 10.5 5.5 11.3 21.8 56.5 77.6 29.4 18.4 56.0 27.7 11.9 18.4 72.4 39.9 30.8

FDA [71] 74.3 23.4 42.3 9.6 11.2 6.4 15.4 23.5 60.4 78.5 33.9 19.9 52.9 8.4 17.5 16.0 72.3 40.3 30.9

SVMin [17] 70.5 18.9 41.4 5.5 9.6 4.3 2.9 15.7 56.4 79.3 38.4 25.5 57.1 29.2 19.3 19.6 72.6 39.8 30.9

CrCDA [28] 76.8 22.2 43.3 6.7 11.4 6.9 7.7 19.8 60.1 79.2 29.4 18.4 56.0 27.7 11.9 18.4 72.9 39.8 31.0

AdvEnt [65] 76.2 20.5 42.6 6.8 9.4 4.6 12.7 24.1 59.9 83.1 34.1 22.9 54.1 16.0 13.5 18.6 72.7 40.3 31.2

CVRN (Ours) 77.3 21.0 47.8 10.5 13.4 7.5 14.1 25.1 62.1 86.4 37.7 20.4 55.0 21.7 14.3 21.4 73.8 42.8 33.5

Oracle 80.4 37.6 57.0 13.4 20.3 15.7 24.1 33.5 66.2 90.5 30.1 15.7 54.9 28.7 10.8 9.3 73.5 46.9 36.8

Table 2. Comparing CVRN with state-of-the-art domain adaptive panoptic segmentation: CVRN outperforms the state-of-the-art across

three tasks. PQ is computed for each category. Mean SQ (mSQ), mean RQ (mSQ), mean PQ (mPQ) are computed over all categories.

4.4. Comparison with state­of­art

Since there is little domain adaptive panoptic segmenta-

tion work, we compare our method with a number of do-

main adaptation methods [65, 80, 28, 16, 71] that achieved

state-of-the-art performance in both semantic segmenta-

tion and instance detection/segmentation. These methods

can be easily applied to the panoptic segmentation task by

heuristically combining predictions from semantic and in-

stance segmentation [32] The comparisons were conducted

over three domain adaptive panoptic segmentation tasks as

shown in Table 2. We can observe that CVRN achieves

the best panoptic segmentation across all three evaluation

metrics for the task “SYNTHIA → Cityscapes” (synthetic-

to-real). The superior panoptic segmentation is largely

attributed to the proposed cross-view regularization that

guides to exploit more confident samples which leads to

more true positives. For another two tasks “SYNTHIA

→ Mapillary Vistas” (synthetic-to-real) and “SYNTHIA

→ Mapillary Vistas” (real-to-real), CVRN outperforms the

state-of-the-art consistently due to similar reasons.

We also compare CVRN with state-of-the-art domain

adaptive semantic segmentation methods [62, 63, 45, 65,

47, 29, 28, 80, 40, 66, 71] and domain adaptive instance

detection/segmentation methods [7, 65, 56, 80, 16, 71] that

are dedicated to the two specific tasks, respectively. We

compare with the two categories of methods because there

is little domain adaptive panoptic segmentation work but

panoptic segmentation actually consists of semantic seg-

mentation and instance detection/segmentation. Tables 3

and 4 show experimetal results over the task “SYNTHIA →
Cityscapes”. As Table 3 shows, CVRN outperforms state-

10138



Ground Truth Source only Advent CVRN (Ours)

Figure 3. Qualitative comparison of CVRN with Source only (with no adaptation) and state-of-the-art method AdvEnt [65] for domain

adaptive semantic segmentation, instance segmentation and panoptic segmentation as shown in Rows 1-3, respectively. The comparison

was conducted over the task “SYNTHIA → Cityscapes”. Best viewed in color.

SYNTHIA → Cityscapes Semantic Segmentation

Methods road side. buil. wall fence pole light sign vege. sky pers. rider car bus mot. bike mIoU mIoU*

Source only 56.8 26.2 68.6 6.3 0.4 23.9 3.6 11.9 76.5 75.7 37.4 14.4 50.5 12.7 8.2 33.0 31.6 36.6

PatAlign [63] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

AdaptSeg [62] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

CLAN [45] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8

AdvEnt [65] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

IDA [47] 84.3 37.7 79.5 5.3 0.4 24.9 9.2 8.4 80.0 84.1 57.2 23.0 78.0 38.1 20.3 36.5 41.7 48.9

TIR [29] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3

CrCDA [28] 86.2 44.9 79.5 8.3 0.7 27.8 9.4 11.8 78.6 86.5 57.2 26.1 76.8 39.9 21.5 32.1 42.9 50.0

CRST [80] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1

BDL [40] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

SIM [66] 83.0 44.0 80.3 - - - 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 - 52.1

FDA [71] 79.3 35.0 73.2 9.1 0.3 33.5 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 45.3 52.5

CVRN (Ours) 87.5 45.5 83.5 12.2 0.5 37.4 25.1 29.6 85.9 86.0 61.1 25.9 80.9 34.7 33.8 53.5 49.0 56.6

Oracle 96.5 76.7 88.7 47.0 46.4 44.6 43.9 58.9 89.8 92.9 65.8 49.8 89.8 77.6 48.1 60.6 67.3 72.2

Table 3. Comparisons of CVRN with state-of-the-art domain adaptive semantic segmentation: CVRN outperforms the state-of-the-art by

large margins. IoU is evaluated for each of 16 pixel categories, mIoU* is evaluated for 13 pixel classes following [62, 45, 40, 29, 66].

of-the-art domain adaptive semantic segmentation methods

by a large margin (over 3.7 in mIoU). For domain adap-

tive instance detection and segmentation task, CVRN out-

performs the state-of-the-art with a mAP of 2.7 for instance

detection and a mAP of 5.4 for instance segmentation, re-

spectively, as shown in Table 4.

The qualitative segmentation is well aligned with the

quantitative experimental results as illustrated in Figure 3.

We compared CVRN with the baseline Source only and

state-of-the-art method Advent [65] qualitatively over the

domain adaptation task “SYNTHIA → Cityscapes”. As

Figure 3 shows, CVRN identifies and detects more cor-

rect “thing” instances and segments more accurate “stuff”

regions across semantic segmentation, instance detec-

tion/segmentation and panoptic segmentation consistently.

The superior segmentation performance is largely attributed

to the proposed cross-view regularization that guides to

learn rich and complementary semantic information from

multiple views.

4.5. Discussion

We studied whether the proposed CVRN is comple-

mentary with state-of-the-art UDA methods for the task

of domain adaptive panoptic segmentation. In the ex-

periments, we incorporated our designed cross-view regu-

larizers into each studied domain adaptation method and
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SYNTHIA → Cityscapes Instance Detection

Methods pers. rider car bus mot. bike mAP

Source only 42.9 23.4 38.4 20.4 3.5 17.1 24.3

DA [7] 43.2 44.0 39.9 22.8 7.6 23.6 30.2

SWDA [56] 43.9 35.4 42.1 28.5 11.3 26.4 31.3

AdvEnt [65] 43.9 39.6 44.0 22.2 11.2 26.8 31.3

SVMin [16] 42.7 37.9 44.7 28.1 7.3 27.2 31.3

UaDAN [17] 45.6 34.6 44.9 27.5 12.3 28.0 32.1

CRST [80] 40.3 48.6 34.8 29.7 10.7 28.6 32.1

FDA [71] 42.6 43.9 42.5 24.9 10.6 30.1 32.4

CRDA [69] 45.5 37.9 45.6 28.2 9.1 29.1 32.6

CVRN (Ours) 43.5 41.9 45.2 39.3 14.8 27.1 35.3

Oracle 60.1 66.2 76.4 52.4 49.8 57.4 60.4

SYNTHIA → Cityscapes Instance Segmentation

Methods pers. rider car bus mot. bike mAP

Source only 30.4 9.2 32.5 20.4 3.1 1.3 16.2

DA [7] 30.4 25.9 28.4 13.6 4.3 1.0 17.3

SWDA [56] 30.3 16.8 31.8 25.6 4.1 0.7 18.2

AdvEnt [65] 30.8 19.9 32.0 19.6 7.0 4.2 18.9

SVMin [16] 32.6 15.1 36.6 27.3 4.1 2.2 19.6

FDA [71] 27.7 24.6 33.9 22.5 5.5 5.4 19.9

CRDA [69] 33.9 16.7 34.3 27.7 3.8 3.0 19.9

UaDAN [17] 34.0 19.4 35.9 26.9 1.5 3.3 20.2

CRST [80] 26.4 20.3 31.5 27.9 8.4 8.6 20.5

CVRN (Ours) 34.4 25.3 38.7 38.1 10.1 8.7 25.9

Oracle 51.2 54.9 65.8 50.9 33.4 38.0 49.0

Table 4. Quantitative comparison of CVRN with state-of-the-art

domain adaptive instance detection and instance segmentation

methods: Class-wise AP (%) and mAP (%) over all classes are

computed with an IoU threshold of 0.5 following [7, 56, 69].

train panoptic segmentation models over the task SYN-

THIA → Cityscapes. Table 5 shows experimental results.

We can observe that the incorporation of CVRN improves

segmentation consistently across all studied UDA meth-

ods [65, 80, 71] and evaluation metrics. For metric mPQ

that is more relevant to panoptic segmentation, the perfor-

mance gains are above 3.3 for all three UDA methods. Such

experimental results show that CVRN is complementary

to existing UDA methods that work by image translation

(e.g., FDA [71]), adversarial learning (e.g., AdvEnt [65])

and single-view self-training (e.g., CRST [80]).

We also investigate whether CVRN performs stably with

different panoptic segmentation architectures. We evaluated

over two network architectures PFPN [31] and UPSNet [68]

that have been widely adopted in supervised panoptic seg-

mentation. For each architecture, we trained 3 models in-

cluding Source only, MTST and CVRN, where MTST is the

base network that our proposed cross-view regularization is

built upon. Table 6 shown experimental results. It can be

SYNTHIA → Cityscapes Panoptic Segmentation

Method Base + CVRN Gain

mSQ mRQ mPQ mSQ mRQ mPQ mSQ mRQ mPQ

FDA [71] 65.0 35.5 26.6 66.0 39.5 30.9 +1.0 +4.0 +3.3

AdvEnt [65] 65.6 36.3 28.1 66.6 40.5 32.0 +1.0 +4.2 +3.9

CRST [80] 60.3 35.6 27.1 66.6 41.5 32.4 +6.3 +5.9 +5.3

Table 5. CVRN complements with existing UDA methods: CVRN

can be easily incorporated into state-of-the-art representative UDA

methods [65, 80, 71] with consistent performance improvement

(evaluated over domain adaptive panoptic segmentation task SYN-

THIA → Cityscapes).

PFPN UPSNet

Method mSQ mRQ mPQ Method mSQ mRQ mPQ

Source only 54.3 29.0 21.5 Source only 58.7 31.5 23.3

MTST 64.8 36.1 26.8 MTST 66.2 36.1 27.5

CVRN 66.4 40.0 31.4 CVRN 68.2 43.4 34.0

Table 6. CVRN works with different panoptic segmentation archi-

tectures well: CVRN can work with different panoptic segmenta-

tion architectures (e.g. PFPN [31] and UPSNet [68]) with consis-

tent performance improvement as compared with Source only and

the baseline network MTST (evaluated on domain adaptive panop-

tic segmentation task SYNTHIA → Cityscapes).

seen that CVRN outperforms Source only and MTST with a

large margin (over 4.6 in mPQ) in both panoptic segmenta-

tion architectures. Such experimental results show that our

proposed cross-view regularization can work well with dif-

ferent panoptic segmentation architectures.

5. Conclusion

This paper presents a cross-view regularization network

that tackles domain adaptive panoptic segmentation by ex-

ploring an inter-task regularization (ITR) and an inter-style

regularization (ISR). Specifically, ITR exploits the comple-

mentary nature of instance segmentation and semantic seg-

mentation to regularize their self-training. ISR employs on-

line image stylization to augments multiple views of the

same image for self-training regularization. The proposed

method have been evaluated extensively over multiple do-

main adaptive panoptic segmentation settings and experi-

ments demonstrate its superior performance as compared

with state-of-the-art.
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