
DI-Fusion: Online Implicit 3D Reconstruction with Deep Priors

Jiahui Huang Shi-Sheng Huang Haoxuan Song Shi-Min Hu*

BNRist, Department of Computer Science and Technology, Tsinghua University, Beijing

Abstract

Previous online 3D dense reconstruction methods strug-

gle to achieve the balance between memory storage and sur-

face quality, largely due to the usage of stagnant underlying

geometry representation, such as TSDF (truncated signed

distance functions) or surfels, without any knowledge of the

scene priors. In this paper, we present DI-Fusion (Deep

Implicit Fusion), based on a novel 3D representation, i.e.

Probabilistic Local Implicit Voxels (PLIVoxs), for online

3D reconstruction with a commodity RGB-D camera. Our

PLIVox encodes scene priors considering both the local

geometry and uncertainty parameterized by a deep neu-

ral network. With such deep priors, we are able to per-

form online implicit 3D reconstruction achieving state-of-

the-art camera trajectory estimation accuracy and mapping

quality, while achieving better storage efficiency compared

with previous online 3D reconstruction approaches. Our

implementation is available at https://www.github.

com/huangjh-pub/di-fusion.

1. Introduction

Online 3D dense reconstruction has made great progress

in the past ten years [3, 6, 12, 25, 38, 39, 51], enabling

a wide range of applications including augmented reality,

robotic navigation and games. Technically most of the pre-

vious depth fusion approaches focus on the globally con-

sistent 3D reconstruction with bundle adjustment [3, 12]

or loop closure [51] techniques. However, the underlying

representation for the 3D scene itself has seldom changed

ever since the success of VoxelHashing [39] with Signed

Distance Function (SDF) integration on a sparse set of vox-

els [10]. This leads to the drawback of previous depth fusion

systems that often costs a huge amount of memory storage

even for moderate-sized 3D scenes. Besides, the geometric

quality could be unsatisfactory with non-complete regions

or objects [13] due to the uncertainties caused by sensor

noise or scan ambiguities such as view occlusions.

On the other hand, recent efforts from the deep geome-

try learning community have demonstrated the power of im-

*corresponding author.

Tim
e

Textured
reconstruction

Estimated
geometry

uncertainty

Figure 1. DI-Fusion incrementally builds up a continuous 3D

scene from an RGB-D sequence. The tracking and mapping al-

gorithm are fully based on our novel local deep implicit scene rep-

resentation incorporating learned priors, where both the geometry

and its uncertainty are estimated.

plicit geometric representation parameterized by neural net-

works [8, 34, 40]. By representing the geometry as a con-

tinuous implicit function, the underlying shape can be ex-

tracted at arbitrary resolution, which introduces more flexi-

bilities. These methods are also efficient since the network

structure used to regress implicit function only consists of

simple fully connected layers. Another important feature of

such deep implicit representation is the capability to encode

geometric priors, which enables many applications such as

shape interpolation or reconstruction [40]. This capability

can be generalized to scene-level by decomposing and en-

coding the implicit fields in local voxels, leading to high-

quality reconstruction agnostic to semantics [4, 24].

The power of such deep implicit representation moti-

vates us to incorporate it into online 3D dense reconstruc-

tion systems. By encoding meaningful scene priors with a

continuous function, we can achieve improved surface re-

construction as well as accurate camera trajectory. How-

ever, several challenges need to be overcome before this

new representation can be successfully applied in an online

fusion scenario: (1) geometric uncertainty need to be ex-

plicitly modeled against sensor noise or view occlusion, (2)

an accurate camera tracking formulation based on such an

8932

implicit representation, which is essential for depth fusion,

remains unknown yet, and (3) an efficient surface mapping

strategy that incrementally integrates new observations di-

rectly is also missing.

We hence respond with DI-Fusion, the first online 3D

reconstruction system with tracking and mapping modules

fully supported by deep implicit representations. To address

the above challenges, we first extend the original local im-

plicit grids [4, 24] and adapt it into a novel Probabilistic

Local Implicit Voxel (PLIVox), which encodes not only

scene geometry but also the uncertainty with one deep neu-

ral network. We show that such an additional uncertainty

encoding is extremely useful during the online depth fusion.

Based on our PLIVox representation, we devise an approx-

imate gradient for solving the camera tracking problem ef-

ficiently. Moreover, thanks to our tailored encoder-decoder

network design, we are able to perform geometry integra-

tion on the domain of latent vectors, achieving high quality

surface mapping in an efficient way. We evaluated our ap-

proach on public 3D RGB-D benchmark (ICL-NUIM [20],

ScanNet dataset [11]), showing state-of-the-art or improved

tracking and mapping quality compared to previous repre-

sentations. We make our implementation publicly available.

2. Related Works

Online 3D Reconstruction and SLAM. The success of

KinectFusion [38] inspired a lot of works on online 3D re-

construction. Early efforts mainly focus on efficient data

structures to organize discrete voxels or surfels to enable

large-scale 3D reconstruction, such as OctreeFusion [53],

VoxelHashing [39], Scalable-VoxelHashing [6] and Elastic-

Fusion [26, 51]. In order to improve the quality and the

global consistency of the reconstructed model, subsequent

works turn to bundle adjustment [12, 25, 50] or sub-map

multiway registration [9] techniques. Another line of work

couples high-level understanding and geometric modeling

including dynamic perception [37, 23, 22] or structural reg-

ularization [21]. Our work is also relevant to visual SLAM

methods [14, 17, 36, 16], which usually perform camera

tracking using sparse features or direct intensity data. Read-

ers are referred to [54] for a more comprehensive study.

Learned Probabilistic Reconstruction. The advance-

ment of geometry deep learning has recently encour-

aged the community to incorporate deep neural net-

works into reconstruction and tracking techniques for

more accurate representation of either sparse features

(DeepTrack [19]), monocular depth observations (CNN-

SLAM [48], CodeSLAM [2]), or object instances (Fu-

sion++ [33], NodeSLAM [47]). The presence of stochas-

tic sensor noise also motivates many works to consider

the probabilistic distribution of the underlying geometry,

with either hand-crafted models [15, 52] or data-driven

Input: RGB-D
Sequence

𝐓𝑡Camera Tracking
(Sec. 3.2)

Surface
Mapping
(Sec. 3.3)

PLIVox Representation (Sec. 3.1)

Update

Mesh
Extraction

Figure 2. Overview. We represent the reconstructed 3D scene with

PLIVoxs (Sec. 3.1). Given input RGB-D frames, we first estimate

the camera pose T
t by finding the best alignment between the

current depth point cloud and the map (Sec. 3.2), then the depth

observations are integrated (Sec. 3.3) for surface mapping. Scene

mesh can be extracted any time on demand at any resolution. Note

that both the camera tracking and surface mapping are performed

directly on the deep implicit representation.

ones [28, 49], where the latter additionally incorporate

and explicitly model the approximability of the deep net-

works [46].

Implicit Representation. The use of implicit function for

geometric reconstruction can be dated back to [10], where

SDF values are stored in a set of occupied voxels describ-

ing the surface. However, even though the implicit function

is continuous, the simple discretization [6, 39] introduces

drawbacks in surface reconstruction quality and memory

storage. As an effort to overcome such drawbacks, [29, 32]

propose to model the map using Gaussian Process and per-

form Bayesian map updates incrementally. In contrast, the

use of implicit representation has triggered much interest

in deep learning community these years [34, 40]. Typ-

ical applications include: part segmentation [7], render-

ing [30, 35], non-linear fitting [45], meta-learning [44], of-

fline reconstruction [4, 24] etc. Nevertheless, to the best of

our knowledge, our DI-Fusion is among the first efforts to

incorporate such an implicit representation with deep priors

into an online 3D fusion framework.

3. Method

Overview. Given a sequential RGB-D stream, our DI-

Fusion incrementally builds up a 3D scene based on a novel

8933

... ...

𝒚𝑖 𝒏𝑖

M
ea
n

Encoding Decoding

𝜙E
𝜙D𝒍𝑚𝑡 𝒍𝑚 𝜇𝒚

𝜎
Figure 3. The structure of our encoder-decoder neural network Φ.

The encoding and decoding process within one PLIVox is shown.

The arrow between encoding and decoding denotes incremental

latent vector update if the latent vector from last frame is available.

Probabilistic Local Implicit Voxels (PLIVox) representa-

tion. Different from previous approaches using discrete

voxels without any scene priors, our PLIVox is implicitly

parameterized by a neural network and encodes useful local

scene priors effectively (Sec. 3.1). Based on this representa-

tion, we introduce how to robustly perform camera tracking

for each frame (Sec. 3.2) and how to perform efficient incre-

mental surface mapping (Sec. 3.3). As a final step mesh can

be extracted at arbitrary resolution thanks to the continuous

representation, compared to previous approaches which can

only reconstruct at a predefined resolution. This overview

of our DI-Fusion is illustrated in Fig. 2.

3.1. PLIVox Representation

The scene reconstructed is sparsely partitioned into

evenly-spaced voxels (PLIVoxs), denoted as V = {vm =
(cm, lm, wm)}, with cm ∈ R

3 being voxel centroid, lm ∈
R

L being the latent vector encoding the scene priors and

wm ∈ N being the observation weight. For an arbitrary

point measurement x ∈ R3, we can efficiently query its cor-

responding PLIVox index m(x) using simple division and

rounding operations m(x) : R3 7→ N
+. The local coordi-

nate of x in vm(x) is calculated as y = 1
a
(x − cm(x)) ∈

[− 1
2 ,

1
2]

3, with a being the voxel size.

Probabilistic Signed Distance Function. Different from

the previous approaches representing the underlying 3D

surface with signed distance function, we represent it us-

ing a probabilistic signed distance function, where the out-

put at every position y is not a SDF but a SDF distribution

s ∼ p(·|y). In this way, the probabilistic signed distance

function encodes the surface geometry and geometric un-

certainty at the same time. Here we model the SDF distri-

bution as a canonical Gaussian distributionN (µ, σ2) with µ

and σ being the mean and standard deviation respectively.

For a more compact representation, we encode the proba-

bilistic signed distance function with a latent vector lm us-

ing an encoder-decoder deep neural network Φ.

Encoder-Decoder Neural Network. The encoder-decoder

neural network Φ = {φE, φD} consists of encoder sub-

network φE and decoder sub-network φD (Fig. 3) that share

weights with all PLIVoxs.

The target of the encoder φE is to convert the measure-

ments from each depth point observation at frame t to ob-

servation latent vectors ltm. Specifically, for all the RGB-D

point measurements located in a PLIVox, φE takes in the

point measurement’s local coordinate y and normal direc-

tion n, and transforms them to an L-dimensional feature

vector φE(y,n) using only FC (Fully Connected) layers.

Then the feature vectors from multiple points are aggre-

gated to one latent vector ltm using a mean-pooling layer

(Fig. 3). Here the normal direction n is required to elim-

inate the orientation ambiguity within each PLIVox so the

sign of SDF can be inferred by the network.

For the decoder φD, the concatenation of the local coor-

dinate y and the latent vector lm are taken as input and the

output is a 2-tuple {µD, σD}, which represents the Gaus-

sian parameters of the probabilistic signed distance function

distribution p(·|y) ∼ N (µD, σ
2
D) at position y. Note that

the two latent vectors ltm and lm in φE and φD are differ-

ent latent vectors. While the observation latent vector ltm
encodes the RGB-D observations at frame t, the geometry

latent vector lm fuses the previous ltm and is stored in each

PLIVox used for decoding. Both the observation latent vec-

tor and the geometry latent vector have the same dimension,

and the geometry latent vector can be updated by the obser-

vation latent vector as described in Sec. 3.3.

Network Training. We train the φE and φD jointly in an

end-to-end fashion, setting ltm ≡ lm. We adopt the training

strategy similar to Conditional Neural Process (CNP [18])

but extend it to the 3D domain. Specifically, we first build

up two training datasets: (1) S = {Sm} for encoder, which

is a set of tuples Sm = {(yi,ni)} for each PLIVox vm

with points yi and ni sampled from the scene surface;

(2) D = {Dm} for the decoder, which consists of tuples

Dm = {(yi, s
i
gt)} where points yi are randomly sampled

within a PLIVox using a strategy similar to [40] with sigt
being the SDF at point yi. We give more details about how

to build up such two training datasets in Sec. 4. During

training, we feed Sm to the encoder for latent vector lm and

concatenate the latent vector with each yi in Dm to obtain

predicted SDF mean and standard deviation. The goal of

training is to maximize the likelihood of the dataset D for

all training PLIVoxs. Specifically, the loss function Lm for

each PLIVox vm is written as:

Lm = −
∑

(yi,s
i

gt)∈Dm

logN
(

sigt;µD(yi, lm), σ2
D(yi, lm)

)

,

(1)

lm =
1

|Sm|

∑

(yi,ni)∈Sm

φE(yi,ni). (2)

Additionally, we regularize the norm of the latent vector

with a l2-loss which reflects the prior distributions of lm.

8934

0 50 100 200 250 300150
Iterations

0.02

0.04

0.06

R
el

at
iv

e
Tr

an
sl

at
io

n
Er

ro
r

Ours
GD = 2 × 10 5

GD = 4 × 10 5

GD = 6 × 10 5

GD = 8 × 10 5

Figure 4. Comparison of converge between different optimization

strategies for camera tracking. α is the step size. ‘Ours’ represents

the approximate gradient we used in our camera tracking.

The final loss function L we used for training is:

L =
∑

vm∈V

Lm + δ‖lm‖
2. (3)

3.2. Camera Tracking

With our PLIVox encoding of the scene priors includ-

ing both the scene geometry and uncertainty, we propose

a frame-to-model [38] camera tracking method. We claim

that the learned deep priors have enough information of the

3D scene for an accurate camera pose estimation, without

the need for extra sparse features as in [3, 12]. We propose

to formulate the probabilistic signed distance function as

an objective function for camera pose estimation, with an

approximate gradient for the objective function over cam-

era pose, which makes it converge fast enough during the

optimization. Furthermore, our network is efficient in de-

coding the probabilistic signed distance function, leading to

fast online tracking performance.

Tracking. We denote the RGB-D observation at frame t

as Ot = {It,Dt} with It and Dt being the intensity and

depth data. Given camera intrinsic parameters, the depth

measurement Dt can be re-projected to 3D as point mea-

surements Pt = π′(Dt), where π is the projection func-

tion and π′ is its inverse. Our goal is to estimate Ot’s

camera pose T
t ∈ SE(3) by optimizing the relative pose

T (ξt) = exp ((ξt)∧) (ξt ∈ se(3) [1]) between Ot and

Ot−1, i.e. Tt = T
t−1T (ξt). The following objective func-

tion is minimized in our system:

E(ξt) = Esdf(ξ
t) + wEint(ξ

t), (4)

where Esdf(ξ
t) and Eint(ξ

t) are the SDF term and inten-

sity term respectively, and w is a weight parameter. The

objective function E(ξt) can be efficiently optimized using

a Gauss-Newton solver.

SDF Term Esdf(ξ
t). The goal of our SDF term is to per-

form frame-to-model alignment of the point measurements

Pt to the on-surface geometry decoded by V . Different

from traditional point-to-plane Iterative Closest Point (ICP)

methods with projective association, as our map represen-

tation is fully backboned by implicit functions, we choose

to minimize the signed distance value of each point in Pt

when transformed by the optimized camera pose. Thus we

design the objective function as:

Esdf(ξ
t) =

∑

pt∈Pt

ρ
(

r
(

G(ξt,pt)
))

,

G(ξt,pt) = T
t−1T (ξt)pt, r(x) =

µD(x, lm(x))

σD(x, lm(x))
,

(5)

where ρ(·) is the Huber robust function, {µD, σD} repre-

sents the probabilistic signed distance function decoded by

the latent vector lm from the point measurements. Note that

m(x) is a discrete function which may lead to discontinu-

ities across PLIVox boundaries, but we remark that the final

term can be effectively smoothed via the summation of all

the points in Pt.

One important step to optimize the SDF term is the com-

putation of r(·)’s gradient with respect to ξt, i.e. ∂r
∂ξt . Note

that σD and µD are the output for decoder φD, so r(·) is an

highly non-linear composite function of decoder φD, which

will lead to poor local approximation. We instead propose

to treat σD to be constant during the local linearization,

which will efficiently improve convergence during the op-

timization. Another benefit is that we can control the in-

fluence of σD up to the zeroth-order approximation, achiev-

ing robust tracking performance even when σD prediction is

wrong. Specifically, the approximate gradient is computed

by:

∂r

∂ξt
=

1

σD

∂µD(·, lm(x))

∂x
(Rt−1)⊤(T (ξt)pt)⊙, (6)

where R
t−1 is the rotation part of T

t−1, p⊙ :=
[I3,−p

∧] and ∂µD

∂x
can be efficiently computed using back-

propagation through the decoder network. As an empiri-

cal proof of Eq (6), we show in Fig. 4 the comparison of

convergence property between our method and the gradi-

ent decent (GD) method which performs the update step

as ξt ← ξt − α
∂
∑

Lm

∂ξt using the precise gradient. Our

approximation reaches convergence within a few iterations

while achieving comparable estimation accuracy compared

to GD, demonstrating the effectiveness of our formulation.

Intensity Term Eint(ξ
t). We also add a photometric er-

ror term between the corresponding intensity data (called

intensity term) defined as:

Eint(ξ
t) =

∑

u∈Ω

(

It[u]− It−1[π(T (ξt)π′(u,Dt[u]))]
)2

,

(7)

where Ω is the image domain. This intensity term takes ef-

fect when the SDF term fails in areas with fewer geometric

details such as wall or floor.

8935

Time

0.10

0.05

𝜎D
Figure 5. A tiny example demonstrating the effect of incremental

integration. The top row shows ground-truth underlying geometry

and at each time step, we sample point from the region with lighter

color and fuse it into our PLIVox using Eq (8). The bottom row

shows corresponding geometry after each frame is integrated. The

color of the mesh is coded by σD, reflecting the uncertainty on the

surface.

3.3. Surface Mapping

After the camera pose of RGB-D observation Ot is esti-

mated, we need to update the mapping from observationOt

based on the deep implicit representation, by fusing new

scene geometry from new observations with noise, which is

also referred to as geometry integration. Besides, we also

describe an optional mesh extraction step that extracts the

on-surface watertight mesh with textures for visualization.

Geometry Integration. Instead of updating SDF as pre-

vious works [10], we propose to update our deep implicit

representation in the domain of latent vectors. We perform

the geometry integration by updating the geometry latent

vector lm with the observation latent vector ltm encoded

by the point measurements Pt. More specifically, we first

transform Pt according to T
t and then estimate the normal

of each point measurement, obtaining X t = {(xi,ni)}.
In each PLIVox vm, we calculate the point measurements

Yt
m ⊂ X

t located in such PLIVox and compute the obser-

vation latent vector using ltm = 1
wt

m

∑

(y,n)∈Yt
m

φE(y,n).

The geometry latent vector lm within such PLIVox vm is

then updated as:

lm ←
lmwm + ltmwt

m

wm + wt
m

, wm ← wm + wt
m, (8)

where the weight wt
m is set to the number of points within

the PLIVox as |Yt
m|. In this way, our geometry integration

is much more efficient than the previous approaches, since

we only need to update the latent vectors within a PLIVox

but not the SDFs of massive individual voxels as in Voxel-

Hashing [39]. The observation latent vector from the for-

ward pass of φE is also very efficient to compute, which

makes our geometry integration fast enough during the on-

line surface mapping without latent vector initialization and

optimization used in previous auto-decoder methods [4, 40].

Fig. 5 shows a tiny example demonstrating the effect of in-

cremental geometry integration using our method.

In the meantime, thanks to the robust geometry recov-

ered from the learned deep priors, we do not need to per-

form integration for every frame. Instead, we choose to

integrate sparse frames sampled from every N incoming

frames, which improve system efficiency largely while still

maintaining tracking accuracy.

Mesh Extraction. Optionally we can extract the trian-

gle mesh of the scene surface for visualization purposes.

Given a desired resolution during the extraction, we di-

vide each PLIVox into equally-spaced volumetric grids and

query the SDFs for each grid with the decoder φD using

the PLIVox’s latent vector. Then the final on-surface mesh

can be extracted with Marching Cubes [31]. Here, to main-

tain the continuity across PLIVox boundaries, we double

each PLIVox’s domain such that the volumetric grids be-

tween neighboring PLIVoxs overlap with each other. The

final SDF of each volumetric grid is trilinearly interpolated

with the SDFs decoded from the overlapping PLIVoxs [24].

For textures, we simply assign the vertices on the extracted

mesh with texture colors averaged from the nearest point

measurements back-projected from multiple observations.

4. Experiments

4.1. System Implementation

To train an effective encoder-decoder neural network for

descriptive deep priors, we build up two training datasets (S
and D for encoder and decoder, respectively, c.f . Sec. 3.1),

on ShapeNet dataset [5] which contains a large variety of

3D shapes with rich local geometry details. We employ the

6 categories of the 3D shapes from the ShapeNet dataset, i.e.

bookshelf, display, sofa, chair, lamp, and table, and for each

category, we sample 100 3D shapes. Each shape is then

divided into equally-spaced PLIVoxs. For each PLIVox vm,

we randomly sample nd = 4096 (yi, s
i
gt) tuples for Dm,

and the count of (yi,ni) tuple ns for each Sm is randomly

chosen from 16 to 128. We further augment Dm and Sm
by adding random jitter for positions yi and perturbation

for normal direction ni to train the encoder-decoder neural

network with enough robustness against depth observation

noise.

We set the length of the latent vector as L = 29 in both

encoder φE and decoder φD sub-networks. The encoder φE

contains 5 fully connected (FC) layers, with the layer sizes

set as (6,32,64,256,29). The decoder contains 6 FC lay-

ers with the layer sizes set as (32,128,128,128,128,2). We

choose to use the Adam optimizer for training the encoder-

ecoder network with an initial learning rate set as 10−3. For

the regularization on the loss function L, we set δ = 10−2.

We manage the PLIVoxs using a similar mechanism as

[39] and allocate PLIVoxs only when there are enough

8936

Table 1. Comparison of ATE on ICL-NUIM [20] benchmark (mea-

sured in centimeters).

lr kt0 lr kt1 lr kt2 lr kt3

DVO-SLAM [27] 10.4 2.9 19.1 15.2

Surfel Tracking [26] 1.7 1.0 2.2 43.2

TSDF Tracking [42] 4.5 2.1 1.3 12.5

Ours (w/o Prob) 1.3 1.8 2.6 15.2

Ours (max) 1.4 2.0 2.4 7.1

Ours 1.1 1.4 2.6 6.2

Table 2. Comparison of surface error on ICL-NUIM [20] bench-

mark (measured in centimeters). σD is thresholded to 0.06.

lr kt0 lr kt1 lr kt2 lr kt3

DVO-SLAM [27] 3.2 6.1 11.9 5.3

Surfel Tracking [26] 1.1 0.7 1.0 22.5

TSDF Tracking [42] 0.6 1.0 0.8 11.7

Ours (w/o Prob) 0.7 2.0 1.2 4.8

Ours (max) 0.8 1.8 1.2 4.8

Ours 0.6 1.5 1.1 4.5

point measurements gathered (16 in our experiments). Our

DI-Fusion system is implemented using PyTorch frame-

work [41]: The jacobian matrix of our tracking term Eq (6)

can be efficiently computed with its auto-differentiation.

4.2. Quantitative Evaluations

Dataset and Metrics. In this subsection, we demonstrate

the effectiveness of DI-Fusion and its core component,

i.e. the PLIVox representation, on ICL-NUIM dataset [20],

which contains both the ground-truth camera trajectory and

the 3D scene geometry to evaluate the accuracy of depth fu-

sion approaches. We adopt the Absolute Trajectory Error

(ATE) metric for camera pose estimation and the surface

error [51] for 3D surface quality evaluation.

Baselines. Since our algorithm does not contain loop clo-

sure component, for a fair comparison we choose to com-

pare with previous depth fusion approaches using TSDF

or surfel representation with loop closure turned off. For

TSDF-based camera tracking, we adopt the frame-to-model

ICP tracker implemented in [42], denoted as ‘TSDF track-

ing’. For surfel-based camera tracking, we adopt the

method in [51], denoted as ‘surfel tracking’. Additionally,

we compare to DVO-SLAM [27], which performs frame-

to-frame camera tracking directly without the aid of any 3D

scene representations. Note that both the depth and inten-

sity information are used in all the baselines.

Results. As shown in Tab. 1, our approach achieves lower

or comparable ATE compared to the baselines. This is

mainly due to two reasons: (1) The deep priors learned in

our PLIVox provide a continuous underlying surface pre-

diction than TSDF or surfel, which provides smoother gra-

dient estimation for camera tracking, and (2) the uncer-

tainty estimated by our network also effectively filters out

noisy RGB-D observations, thus being less prone to large

tracking failure. We find it challenging for our method to

fit extremely small structures with the current voxel size

(a = 10cm) primarily due to the size limitation of the prior

space. Nevertheless, our method is found to be stable and

much more memory-efficient than our counterparts. The

surface error comparison shown in Tab. 2 verifies the analy-

sis above. Thanks to the learned deep priors provided by our

PLIVox representation, our approach reaches state-of-the-

art surface error compared to TSDF or surfel-based repre-

sentations, with much fewer parameters required as shown

in the bottom-left inset of Fig. 6.

4.3. Qualitative Results

We compare the visual quality of the reconstructed 3D

surfaces between our approach and the other two camera

tracking approaches (TSDF tracking and surfel tracking).

We implement TSDF tracking with two configurations: (1)

‘TSDF Low-res’ (low resolution) which allocates larger

voxels, so that the number of parameters used to represent

the geometry roughly matches the storage cost of our ap-

proach; (2) ‘TSDF High-res’ (high resolution, also used

in the quantitative comparisons in Sec. 4.2) with a much

smaller voxel size for a higher quality 3D surface recon-

struction. Fig. 6 shows the visual effect comparison on

a scan in [20] among different tracking approaches. Our

method can achieve a more complete 3D surface reconstruc-

tion while using 91.3% and 95.8% fewer parameters than

‘TSDF High-res’ and surfel tracking respectively to repre-

sent the entire scene. If the same amount of memory is used

as ours, both the camera tracking and the reconstruction

quality would be severely hampered for TSDF approaches

as shown in ‘TSDF Low-res’ results.

Additionally, we compare the qualitative results between

the different approaches on ScanNet [11], which contains

large-scale real-world 3D indoor scans captured with a com-

modity RGB-D camera. As shown in Fig. 7, our approach

can output more preferable 3D reconstructions than the

other two baselines due to our PLIVox’s learned encoding of

scene priors such that the 3D surface can be accurately re-

covered at the position even without enough observations.

Note that we only use the trained weights on ShapeNet

dataset for the encoder-decoder network without any subse-

quent fine-tuning on ScanNet dataset, showing that our rep-

resentation has a good generalization performance across

different scene types. Fig. 8 shows more illustrations of our

approach on ScanNet dataset. Please refer to our supple-

mentary video for further demonstrations.

4.4. System Ablations and Analysis

Probabilistic Modeling. To evaluate the effect of us-

ing probabilistic SDF for tracking, we ignore the decoder

8937

TSDF Low-res Surfel TSDF High-res Ours

TSDF Low-res Surfel TSDF High-res Ours

(a)

(b)

Figure 6. Qualitative comparisons and memory analysis on the lr kt0 sequence of ICL-NUIM [20] dataset. On the top row we show a

global view of the reconstructed 3D scene, where the colors represent the normal directions. Close-up looks at the details are visualized at

the bottom-right inset (a) (b). We show the evolution of the number of parameters used in each approach at the bottom-left inset.

Ours (Textured) Ours TSDF High-res Surfel Ours (Textured) Ours TSDF High-res Surfel

Figure 7. Qualitative comparisons on ScanNet [11] dataset. The 1st column of every scene shows a global view of our reconstruction

with textures applied while detailed close-up comparisons with other baselines are shown in other columns. The close-up views’ camera

positions are plotted on the textured reconstruction.

Figure 8. Other qualitative textured results on ScanNet [11] recon-

structed online with our method.

branch outputting σD and perform camera tracking by as-

suming the standard deviation as a constant 1.0 (denoted

as ‘Ours w/o Prob’). As demonstrated by the consistent

0 2 4 6

1.2

1.4

A
TE

 (c
m
)

6020 40
Integration Interval N

1.00

1.25

1.50

1.75

2.00

A
TE

 (c
m
)

Intensity Weight (×103)

Figure 9. Influence of different parameters on ATE benchmark of

ICL-NUIM [20].

worse results than ‘Ours’ for both camera trajectory esti-

mation (Tab. 1) and surface error (Tab. 2), we remark that

the way we encode the scene priors in a probabilistic man-

ner is beneficial because erroneous fitting is properly down-

weighted.

8938

Frame 0 Frame 20 Frame 40 Frame 60

M
a
x

M
e
a
n

Figure 10. Comparison with alternative integration method using

the max operator. Each column shows the actual frames we per-

form the integration.

Intensity Term. The intensity term used in our camera

tracking (Sec. 3.2) also influences the camera pose estima-

tion accuracy. Here we modify our camera tracking with

different weights of the intensity term in the objective func-

tion (Eq. 4). The ATE curve on the ICL-NUIM sequence

with respect to different intensity weights is illustrated in

Fig. 9 (left), showing the complementary effect between the

two terms we used: Pure SDF tracking (e.g. w = 0) tends

to fail in places with few geometric features and too large

intensity weights (e.g. w > 4000) will ignore the recon-

structed scene representation, causing increased drift. In

practice, setting the weight of the intensity term between

500 and 2000 leads to the best result, in which case the ab-

solute scale of the SDF term Esdf and intensity term Eint

for accurate camera pose estimation is roughly balanced.

Latent Vector Update. One alternative way for the geom-

etry integration is to update the latent vector using the max

operator as in [43] instead of what we propose in Eq (8), i.e.

lm ← max(lm, ltm) and we call this baseline ‘Ours (max)’.

Tab. 1 and 2 show the average ATE and surface error of

this approach, which are consistently worse than using the

mean operator. One possible reason would be that the max

operator is sensitive to sensor noise, thus leading to spuri-

ous reconstructions, while our averaging update could pro-

vide smoother reconstructions against sensor noise. Fig. 10

shows a comparison between the two integration schemes.

Geometry Integration. The way we perform the geometry

integration at sparse frames sampled from every N frames

would also influence the surface mapping quality. Fig. 9

(right) shows the average ATE curve for the camera pose

estimation along with different frame integration intervals.

The average ATE becomes larger along with the increase

of integration interval. In contrast, too frequent integration

will introduce excessive sensor noise, which confuses the

network and deteriorates the mapping quality.

Voxel Size. We show one reconstructed scene using dif-

ferent PLIVox sizes in Fig. 11. By shrinking the PLIVox

size a, the reconstruction quality is boosted with more de-

sirable details. However, the running time and the memory

requirement will also increase accordingly. An engineered

implementation with a double-layer PLIVox representation

a = 8cm a = 5cm a = 3cm

Figure 11. Reconstruction results with different PLIVox sizes a.

Meshing (Asynchronous)

Pre-processing Integration

sdf int

Tracking

Figure 12. Timing analysis. The bar length represents the relative

time cost of each component in our system. ‘sdf’ and ‘int’ mean

the computation related to Esdf and Eint, respectively.

can be employed where large voxels are used for real-time

tracking and small voxels are for final mapping.

Timing. Overall, our system can run online at 10-12Hz on

most modern GPU platforms we test. The cost of each com-

ponent in our system is reported in Fig. 12. Further code op-

timizations are possible with parallelization, caching, etc.,

which we remark as future works. The post-processing time

for texturing is ∼50ms per integrated frame, with the near-

est neighbor search accelerated by a k-d tree.

5. Conclusions

Limitations. Our approach has three main limitations: (1)

The learned prior could not provide an omnipotent fitting of

all possible local geometries especially in the case of over-

complicated objects. (2) Each PLIVox is independent and

the relationships between neighboring PLIVoxs are not con-

sidered; therefore the spatial continuity of the reconstructed

scene is not guaranteed. (3) No loop closure component has

been incorporated to enforce global consistency. We hope

to investigate deeply into both the limitations in the future.

In this paper, we present DI-Fusion, which performs on-

line implicit 3D reconstruction with deep priors. With a

novel PLIVox representation, our approach effectively in-

corporates scene priors of both geometry and uncertainty

into joint camera tracking and surface mapping, achieving

more accurate camera pose estimation and higher-quality

3D reconstruction. We hope that our method can inspire

more future efforts for advanced online 3D reconstruction.

Acknowledgements. We thank anonymous reviewers for the valuable dis-

cussions. This work was supported by the Natural Science Foundation of

China (Project No. 61521002), the Joint NSFC-DFG Research Program

(Project No. 61761136018), Research Grant of Tsinghua-Tencent Joint

Laboratory for Internet Innovation Technology, and grants from the China

Postdoctoral Science Foundation (Grant No.: 2019M660646).

8939

References

[1] Timothy D Barfoot. State estimation for robotics. Cambridge

University Press, 2017.

[2] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan

Leutenegger, and Andrew J. Davison. Codeslam - learning a

compact, optimisable representation for dense visual SLAM.

In IEEE CVPR, pages 2560–2568, 2018.

[3] Yan-Pei Cao, Leif Kobbelt, and Shi-Min Hu. Real-time high-

accuracy three-dimensional reconstruction with consumer

RGB-D cameras. ACM Trans. Graph., 37(5):171:1–171:16,

2018.

[4] Rohan Chabra, Jan Eric Lenssen, Eddy Ilg, Tanner Schmidt,

Julian Straub, Steven Lovegrove, and Richard A. New-

combe. Deep local shapes: Learning local SDF priors for de-

tailed 3d reconstruction. In Andrea Vedaldi, Horst Bischof,

Thomas Brox, and Jan-Michael Frahm, editors, ECCV, vol-

ume 12374, pages 608–625, 2020.

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[6] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scal-

able real-time volumetric surface reconstruction. ACM

Trans. Graph., 32(4):113:1–113:16, 2013.

[7] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha

Chaudhuri, and Hao Zhang. Bae-net: Branched autoencoder

for shape co-segmentation. In IEEE ICCV, pages 8490–

8499, 2019.

[8] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. In IEEE CVPR, pages 5939–

5948, 2019.

[9] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust

reconstruction of indoor scenes. In IEEE CVPR, pages 5556–

5565, 2015.

[10] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In ACM SIG-

GRAPH, pages 303–312, 1996.

[11] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

IEEE CVPR, 2017.

[12] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram

Izadi, and Christian Theobalt. Bundlefusion: Real-time

globally consistent 3d reconstruction using on-the-fly surface

reintegration. ACM Trans. Graph., 36(3):24:1–24:18, 2017.

[13] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,

Jürgen Sturm, and Matthias Nießner. Scancomplete: Large-

scale scene completion and semantic segmentation for 3d

scans. In IEEE CVPR, pages 4578–4587, 2018.

[14] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.

Monoslam: Real-time single camera slam. IEEE TPAMI,

29(6):1052–1067, 2007.

[15] Wei Dong, Qiuyuan Wang, Xin Wang, and Hongbin Zha.

Psdf fusion: Probabilistic signed distance function for on-

the-fly 3d data fusion and scene reconstruction. In ECCV,

pages 701–717, 2018.

[16] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

IEEE TPAMI, 40(3):611–625, 2018.

[17] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-

SLAM: large-scale direct monocular SLAM. In ECCV,

pages 834–849, 2014.

[18] Marta Garnelo, Dan Rosenbaum, Christopher Maddison,

Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye

Teh, Danilo Jimenez Rezende, and S. M. Ali Eslami. Con-

ditional neural processes. In Jennifer G. Dy and Andreas

Krause, editors, ICML, volume 80, pages 1690–1699, 2018.

[19] M. Garon and J. Lalonde. Deep 6-dof tracking. IEEE TVCG,

23(11):2410–2418, 2017.

[20] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A

benchmark for RGB-D visual odometry, 3D reconstruction

and SLAM. In IEEE ICRA, Hong Kong, China, May 2014.

[21] Jiahui Huang, Zheng-Fei Kuang, Fang-Lue Zhang, and Tai-

Jiang Mu. Wallnet: Reconstructing general room layouts

from rgb images. Graphical Models, 111:101076, 2020.

[22] Jiahui Huang, Sheng Yang, Tai-Jiang Mu, and Shi-Min Hu.

Clustervo: Clustering moving instances and estimating vi-

sual odometry for self and surroundings. In IEEE CVPR,

pages 2168–2177, 2020.

[23] Jiahui Huang, Sheng Yang, Zishuo Zhao, Yu-Kun Lai, and

Shi-Min Hu. Clusterslam: A slam backend for simultaneous

rigid body clustering and motion estimation. In IEEE ICCV,

pages 5875–5884, 2019.

[24] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei

Huang, Matthias Nießner, and Thomas Funkhouser. Local

implicit grid representations for 3d scenes. In IEEE CVPR,

pages 6001–6010, 2020.

[25] Olaf Kähler, Victor Adrian Prisacariu, Carl Yuheng Ren, Xin

Sun, Philip H. S. Torr, and David William Murray. Very high

frame rate volumetric integration of depth images on mobile

devices. IEEE TVCG., 21(11):1241–1250, 2015.

[26] Maik Keller, Damien Lefloch, Martin Lambers, Shahram

Izadi, Tim Weyrich, and Andreas Kolb. Real-time 3d re-

construction in dynamic scenes using point-based fusion. In

3DV, pages 1–8. IEEE, 2013.

[27] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense

visual SLAM for RGB-D cameras. In IEEE IROS, pages

2100–2106, 2013.

[28] Tristan Laidlow, Jan Czarnowski, and Stefan Leutenegger.

Deepfusion: real-time dense 3d reconstruction for monocu-

lar slam using single-view depth and gradient predictions. In

IEEE ICRA, pages 4068–4074, 2019.

[29] Bhoram Lee, Clark Zhang, Zonghao Huang, and Daniel D

Lee. Online continuous mapping using gaussian process im-

plicit surfaces. In IEEE ICRA, pages 6884–6890, 2019.

[30] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc

Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit

signed distance function with differentiable sphere tracing.

In IEEE CVPR, pages 2019–2028, 2020.

[31] William E Lorensen and Harvey E Cline. Marching cubes:

A high resolution 3d surface construction algorithm. ACM

siggraph computer graphics, 21(4):163–169, 1987.

[32] Wolfram Martens, Yannick Poffet, Pablo Ramon Soria,

Robert Fitch, and Salah Sukkarieh. Geometric priors for

8940

gaussian process implicit surfaces. IEEE Robotics Autom.

Lett., 2(2):373–380, 2017.

[33] John McCormac, Ronald Clark, Michael Bloesch, Andrew J.

Davison, and Stefan Leutenegger. Fusion++: Volumetric

object-level SLAM. In 3DV, pages 32–41, 2018.

[34] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy net-

works: Learning 3d reconstruction in function space. In

IEEE CVPR, pages 4460–4470, 2019.

[35] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, pages 405–421. Springer, 2020.

[36] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source

slam system for monocular, stereo, and rgb-d cameras. IEEE

Transactions on Robotics (TRO), 33(5):1255–1262, 2017.

[37] Richard A Newcombe, Dieter Fox, and Steven M Seitz.

Dynamicfusion: Reconstruction and tracking of non-rigid

scenes in real-time. In IEEE CVPR, pages 343–352, 2015.

[38] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J. Davison, Push-

meet Kohli, Jamie Shotton, Steve Hodges, and Andrew W.

Fitzgibbon. Kinectfusion: Real-time dense surface mapping

and tracking. In IEEE ISMAR, pages 127–136, 2011.

[39] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and

Marc Stamminger. Real-time 3d reconstruction at scale us-

ing voxel hashing. ACM Trans. Graph., 32(6):169:1–169:11,

2013.

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning con-

tinuous signed distance functions for shape representation.

In IEEE CVPR, pages 165–174, 2019.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché Buc, E.

Fox, and R. Garnett, editors, Advances in Neural Informa-

tion Processing Systems 32, pages 8024–8035. Curran Asso-

ciates, Inc., 2019.

[42] Victor Adrian Prisacariu, Olaf Kähler, Stuart Golodetz,

Michael Sapienza, Tommaso Cavallari, Philip HS Torr, and

David W Murray. Infinitam v3: A framework for large-

scale 3d reconstruction with loop closure. arXiv preprint

arXiv:1708.00783, 2017.

[43] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In IEEE CVPR, pages 652–660, 2017.

[44] Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah

Snavely, and Gordon Wetzstein. Metasdf: Meta-learning

signed distance functions. In NeurIPS, 2020.

[45] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-

tions with periodic activation functions. NeurIPS, 33, 2020.

[46] David Stutz and Andreas Geiger. Learning 3d shape comple-

tion under weak supervision. International Journal of Com-

puter Vision, 128(5):1162–1181, 2020.

[47] Edgar Sucar, Kentaro Wada, and Andrew Davison.

NodeSLAM: Neural object descriptors for multi-view shape

reconstruction. In 3DV, 2020.

[48] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir

Navab. CNN-SLAM: real-time dense monocular SLAM

with learned depth prediction. In IEEE CVPR, pages 6565–

6574, 2017.

[49] Silvan Weder, Johannes Schonberger, Marc Pollefeys, and

Martin R Oswald. Routedfusion: Learning real-time depth

map fusion. In IEEE CVPR, pages 4887–4897, 2020.

[50] Thomas Whelan, Michael Kaess, Hordur Johannsson, Mau-

rice F. Fallon, John J. Leonard, and John McDonald. Real-

time large-scale dense RGB-D SLAM with volumetric fu-

sion. I. J. Robotics Res., 34(4-5):598–626, 2015.

[51] Thomas Whelan, Stefan Leutenegger, Renato F. Salas-

Moreno, Ben Glocker, and Andrew J. Davison. Elasticfu-

sion: Dense SLAM without A pose graph. In Robotics: Sci-

ence and Systems, 2015.

[52] Sheng Yang, Beichen Li, Yan-Pei Cao, Hongbo Fu, Yu-Kun

Lai, Leif Kobbelt, and Shi-Min Hu. Noise-resilient recon-

struction of panoramas and 3d scenes using robot-mounted

unsynchronized commodity rgb-d cameras. ACM Trans.

Graph., 39(5):1–15, 2020.

[53] Ming Zeng, Fukai Zhao, Jiaxiang Zheng, and Xinguo Liu.

Octree-based fusion for realtime 3d reconstruction. Graph.

Model., 75(3):126–136, 2013.

[54] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Chris-

tian Theobalt, Matthias Nießner, Reinhard Klein, and An-

dreas Kolb. State of the art on 3d reconstruction with rgb-d

cameras. In Computer graphics forum, pages 625–652. Wi-

ley Online Library, 2018.

8941

