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Abstract

We propose a novel approach for large-scale nonlin-

ear least squares problems based on deep learning frame-

works. Nonlinear least squares are commonly solved with

the Levenberg-Marquardt (LM) algorithm for fast conver-

gence. We implement a general and efficient LM solver on

a deep learning framework by designing a new backward

jacobian network to enable automatic sparse jacobian ma-

trix computation. Furthermore, we introduce a stochastic

domain decomposition approach that enables batched op-

timization and preserves convergence for large problems.

We evaluate our method by solving bundle adjustment as

a fundamental problem. Experiments show that our op-

timizer significantly outperforms the state-of-the-art solu-

tions and existing deep learning solvers considering quality,

efficiency, and memory. Our stochastic domain decomposi-

tion enables distributed optimization, consumes little mem-

ory and time, and achieves similar quality compared to a

global solver. As a result, our solver effectively solves non-

linear least squares on an extremely large scale. Our code

will be available based on Pytorch1 and Mindspore2.

1. Introduction

Numerical optimization is an important stage in differ-

ent problems across science and engineering. In computer

vision and graphics, many problems are related to model

fitting and can be formulated as nonlinear least squares in-

cluding mesh processing [16, 43, 40, 34], motion and model

reconstruction [46, 61, 47, 25, 19], and bundle adjust-

ment [49, 36, 3, 54, 35, 57, 58] as a fundamental problem

in 3D reconstruction. Nonlinear least squares are widely

solved using Levenberg-Marquardt (LM) algorithm [30, 33]

for its robustness and fast convergence. General solvers

have been developed for academia and industry use like

1https://github.com/hjwdzh/DeepLM
2https://gitee.com/mindspore/mindspore/tree/

master/model_zoo/research/3d/DeepLM

Figure 1. Large-scale bundle adjustment on a deep learning frame-

work using stochastic domain decomposition. We solve problems

on a very large scale with high convergence quality.

G2o [21] and Ceres [2]. However, they do not fit the in-

creasing demand to efficiently handle extremely large prob-

lems with the availability of advanced hardware like GPUs.

Typical algorithms are specifically designed for effi-

ciency or scalability. PBA [54] uses GPUs to accelerate

the optimization for bundle adjustment. [19] proposes lo-

cal schur complement for facial performance capture. [57]

segments the graph and achieves camera consensus with

ADMM [7]. STBA [58] accelerates the step computation

by solving smaller problems with a correction stage. How-

ever, these methods cannot handle problems with billions

of residuals, potentially sacrifice quality, or do not handle

general nonlinear least squares problems.

Recently, deep learning frameworks like Tensorflow [1]

and Pytorch [37] opens the potential to efficiently solve

large-scale problems. It makes full use of computation re-

sources like GPUs, provides an automatic backpropagation

system to ease the user programming for general problems,

and implements effective solvers for stochastic optimiza-

tion. Unfortunately, they are not ideal for solving nonlin-

ear least squares since gradient descent based optimizers
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converge much slower than commonly used LM algorithm.

Therefore, we target at developing a stochastic LM opti-

mizer inside deep learning frameworks to solve general and

large nonlinear least squares with dramatic improvement in

efficiency and scalability. Specifically, we mainly address

two challenges for developing such an optimizer.

First, backpropagation cannot be directly used to com-

pute sparse jacobians required by the LM algorithm. While

backpropagation provides the partial derivative of a scalar

function to each variable, jacobian matrix require deriva-

tives of all residuals to related variables. It is impractical to

call backpropagation for each residual since it yields a dense

jacobian matrix and consumes a huge amount of memory

and time. We find that indices of variables for residuals

specify an one-to-one correspondence between nonzero en-

tries of the jacobian and the derivatives of a scalar function.

Based on it, We design a novel backward jacobian network

to compute this scalar function, call a single backpropaga-

tion to collect derivatives and recover the jacobian.

Second, while batch-based stochastic optimization han-

dles large problems, it easily causes LM solver to diverge

since LM steps are usually large and require accurate ja-

cobians computation from all data. We find that domain

decomposition [9] can avoid the divergence. This approach

segments variables into different domains and alternatively

optimizes each domain by fixing variables inside other do-

mains. From the training perspective, we view domains as

batches and alternative optimization as batched optimiza-

tion with multiple epochs. However, such an approach re-

duces convergence quality especially for boundary variables

between different domains. To achieve high convergence

quality, we propose a novel stochastic domain decomposi-

tion approach. Different from traditional domain decompo-

sition, we derive different segmentation of domains using

stochastic clustering so that variables at the boundaries of

domains are changing for each epoch. This dramatically

enhances the convergence quality for the optimization. We

further provide an optional global reinitialization step at the

beginning of each epoch. We abstract each domain with

a descriptor preserving intra-domain residuals and globally

optimize all descriptors for different domains.

In our experiments, we mainly study a fundamental

problem as bundle adjustment. Figure 1 shows a large-scale

bundle adjustment problem solved using our stochastic do-

main decomposition. Our LM solver significantly outper-

forms existing solutions considering quality, efficiency, and

memory. Experiments show that our stochastic approach

converges as fast as a global LM solver, and significantly

reduces the consumption of memory and time. Ablation

studies show that the key contribution to quality comes from

stochastic decomposition. We provide a general, efficient,

and scalable stochastic LM solver on deep learning frame-

works for large-scale nonlinear least squares.

2. Related Works

Nonlinear Least Squares Many problems [16, 43, 11,

24] in computer vision and graphics require solving nonlin-

ear least squares. Since these problems are usually consid-

ered sparse where each residual function takes a small num-

ber of variables, jacobian matrices can be efficiently evalu-

ated and Levenberg-Marquardt (LM) algorithm [30, 33] is

practically one of the best solution. Here, the core challenge

is to save time and memory to handle large-scale problems

efficiently. Fast and dedicated LM solvers can be imple-

mented in GPUs [54] for specific problems or on regular do-

mains created by a domain-specific language like Opt [14].

Fast and simple relaxation methods are used to further ac-

celerate the speed [50, 51] sacrificing convergence quality.

Local Schur complement [19] can further accelerate prob-

lems that can be decomposed into clusters with a small

number of boundary variables. To save memory, matrix-

free approaches [55, 61] are proposed by deferring the eval-

uation of residual derivatives. However, these methods are

still not suitable for handling extremely large scale prob-

lems [57] with limited memory. Our deep solver not only

utilizes GPU acceleration but also incorporates a stochastic

batch-optimization approach to handle a large scale.

Stochastic Solvers Deep learning frameworks are pop-

ularly used for training deep neural networks. They pro-

vide powerful stochastic solvers with automatic differenti-

ation [32] so that users can focus on network function de-

sign. For example, Tensorflow [1] and Pytorch [37] sup-

ports first-order gradient-based solvers including SGD [6],

RMSProp [23], AdaGrad [15] and Adam [27]. Besides,

these gradient-based solvers are perfect candidates to han-

dle extremely large data via stochastic optimization. How-

ever, available deep solvers are not as good as the LM al-

gorithm for nonlinear least squares problems considering

convergence speed. We design a backward jacobian com-

putation network and enable the LM solver in deep learning

frameworks to optimize nonlinear least squares.

Domain Decomposition Domain decomposition [9, 44,

48] solves partial differential equations by iteratively solv-

ing subproblems in subdomains. Therefore, it reduces com-

putation complexity and enhances parallelism and is a good

candidate for large scale problems. Several recent meth-

ods tackle uncertainty across different domains by solving

stochastic differential equations [39, 5, 56]. Different from

their scenarios, our problem is nonlinear least squares with-

out randomness but we introduce a stochastic clustering

process during each epoch for high convergence quality.

Bundle Adjustment Bundle adjustment (BA) [49] is a

fundamental problem in structure from motion [53, 41] that
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requires solving nonlinear least squares. Recent works for

this specific problem aim to achieve efficiency or a large

scale. SBA [31] reduced the problem as pure a camera sys-

tem using Schur complement. Sparse cholesky factoriza-

tion approach is applied to the camera system with vari-

able ordering [4, 13, 38]. Inexact solvers based on Con-

jugate Gradient (CG) [22] save memory and achieve bet-

ter efficiency with the support of several different precon-

ditioners [3, 26, 29]. SSBA [28] and PBA [54] designed

efficient parallelized algorithms to accelerate the bundle ad-

justment. To handle a large scale, the problem is decom-

posed into clusters and solved in a divide-and-conquer fash-

ion. [59, 60, 18] optimizes intra-cluster variables and merge

clusters globally. [36, 35] optimizes global separators and

base nodes followed by intra-cluster optimization. Motion

averaging [10] can deliver suboptimal results for extremely

large-scale problems that do not require subpixel accuracy.

Recent methods [17, 57] exploits global optimization with

distributed system using ADMM [7]. However, it requires

careful hyper-parameter tuning and its inner iterations are

time-consuming according to [58]. STBA [58] addressed

point consensus inside the linear solver via constraint re-

laxation and correction. However, the correction step can

still be inaccurate and prevent perfect convergence. Our

solver exploits parallelism using deep learning frameworks

and addresses the large scale with robustness and accuracy

using novel stochastic domain decomposition.

3. Approach

We begin by discussing some background knowledge

in Section 3.1. We show our backward jacobian network

in Section 3.2 and introduce our formulation of nonlin-

ear least squares using stochastic domain decomposition in

Section 3.3 and Figure 2. In Section 3.4, we describe the

details for stochastic variable graph clustering.

3.1. Background

Nonlinear Least squares problems can be formulated as

energy minimization in Equation 1:

E(x) =
1

2

n
∑

i

ri(xsi,1 , ..., xsi,k)
2. (1)

x = (x1, ..., xm) is an m-dimensional variable to be opti-

mized. r = (r1, ...rn) is an n-dimensional residual function

depending on x. 1 ≤ si,j ≤ m is the index of variable

for the j-th argument of i-th residual term ri. Additional

requirements is made that si,j is unique for each residual.

Our goal is to minimize the squared norm of r. Newton

step locally linearizes the residual function at x and find the

optimal solution via

min
x∗

||r(x) + Jr(x)(x
∗ − x)||22.

As a result, x is updated at each step as

x∗ = x−Hr(x)
−1JT

r (x)r(x).

Since hessian matrix Hr(x) is expensive to compute, it is

approximated with JT
r (x)Jr(x) in Gauss-Newton method,

which converges when final residual is small or nearly affine

around the optimal location.

However, the linear approximation is inaccurate when a

step size is big, and Gauss-Newton update does not guar-

antee to reduce the residual norm. Levenberg-Marquardt

(LM) method adjusts the step size using a damping factor

similar to Tikhonov regularization:

min
x∗

||r(x) + Jr(x)(x
∗ − x)||22 + λ||D(x∗ − x)||22.

As a result, a LM step can be computed by solving

(JT
r (x)Jr(x) + λDTD)∆x = −JT

r (x)r(x) (2)

where D =
√

diag(JT
r (x)Jr(x)). λ is used to control

the step size and can be adjusted using the trust-region

method [8].

3.2. Backward Jacobian Network

Solving Equation 2 with a general solver requires an au-

tomatic evaluation of the jacobian matrix. A common solu-

tion is forward differentiation with multi-dimensional dual

numbers [20]. However, it requires users to explicitly spec-

ify variable dimensions and is non-trivial to integrate into

a standard deep learning framework. On the other hand,

automatic differentiation with backpropagation cannot di-

rectly apply to jacobian. While it computes derivatives of a

scalar function. we require the derivatives of each residual

term to related variables. Therefore, the number of required

backpropagation equals the residual dimension n. Addi-

tionally, backpropagation stores gradients for all variables

and a dense jacobian matrix with dimension n ×m will be

created. This is impractical considering time and memory.

Our intuition is that derivatives of different residuals to

non-overlapping variables can be evaluated with a single

backpropagation from the sum of residuals. However, it

is still challenging to segment residuals to non-overlapping

groups and collect derivatives as a compact linked-list rep-

resentation [19].

We define a new variable y such that yi,j = xsi,j . We

call y as “indexed variables” since it represents x indexed

by si,j in Equation 1. Our key idea is to collect derivatives

of residuals to y instead of x to avoid overlapping issues.

Since si,j are unique for each residual ri, jacobians to the

original variables can be computed as shown in Equation 3.

Jr(x)(i,si,j) = Jr(y)(i,j) = ∇y(
∑

i

ri(y))(i,j) (3)

10310



Backward Jacobian 

Network
Tensor Operations

(a) Variable Graph (b) Stochastic Cluster

(c) Separator Solver (d) Block Solver

(e) LM on Deep Learning Framework (f) Optimized Result

Iterations < N

Iterations = N

Levenberg-Marquardt Algorithm

Figure 2. In each epoch, we stochastically recluster the variables into C − 1 blocks and one separators cluster. We optimize separators and

then variables in different blocks in parallel. With our backward jacobian network, we develop a LM solver and solve each optimization in

a deep learning framework. We run multiple epochs to solve the problem.
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Figure 3. We treat the indexed variables as independent variables

and collect derivatives of residual sums to these variables with a

single backpropagation. Derivatives and variable indices form a

triplet representation of the sparse jacobian.

We treat y as independent variables, and evaluate

∇y(
∑

i ri(y)) with a single backpropagation. Afterwards,

we use < i, si,j ,∇Y(
∑

i ri(Y))(i,j) > to form a triplet rep-

resentation for jacobian matrix.

Detailed mathematical derivation is shown in Fig-

ure 3(a). Based on it, we design a backward jacobian net-

work in Figure 3 (b). The input to the network is original

variables x. We reindex the variables based on s to form in-

dexed variables y. y are sent to residual functions provided

by users to evaluate residuals r. Final loss L is computed

as
∑

i ri. During backpropagation, we follow Figure 3(c)

and propagate derivatives to y. Since each dimension of x

corresponds to multiple ri with multiple derivatives, our de-

sign allows to store them at multiple locations y duplicated

from x, and use (i, j) → (i, si,j) to map derivatives at y

to the jacobian. Our method computes the jacobian with

a single backpropagation. Assuming residual dimension is

n and each residual is related to k variables, our time and

space complexity as O(nk), while complexity of dual num-

bers [20] used by Ceres [2] is O(nk2). Rather than a neural

network for training, our jacobian network is an architec-

ture for structuring derivatives as a jacobian. Supplemental

material provides implementation details for the LM solver.

3.3. Stochastic Domain Decomposition

For large scale problems, memory cannot afford the

storage of jacobian or even all residuals. While batched-

optimization can handle it via stochastic solvers, it eas-

ily causes the LM algorithm to diverge. We incorporate

the idea of domain decomposition [9] to handle large-scale

problems.

First, we build a variable graph G =< V,E > where

V = {x1, ...xm} and E contains all pairs of variables that

appear in at least one common residual. Such a graph is

shown in Figure 2(a). In Figure 2(b), we segment the vari-

ables into C clusters and assign a cluster label li ≤ C for

each variable xi. We additionally ensure that variables with

different labels won’t appear in the same residual function

unless either of them belongs to the first cluster. We call the

first cluster the separators and other clusters the blocks. In-

stead of solving the global problem (Equation 1), we adopt

the domain decomposition approach. We treat each cluster

as a domain and solve variables in the same clusters alter-

natively by enumerating c from 1 to C in Equation 4.

min
{xi|li=c}

1

2

n
∑

i

ri(xsi,1 , ..., xsi,k)
2 (4)

Since separators ensures that different blocks do not share

residuals, it enables us to optimize separators (Figure 2(c))

followed by other blocks (Figure 2(d)) in parallel. We run

multiple epochs to optimize the whole problem shown in

Figure 2(b-d). For each optimization, we use our backward

jacobian network to compute jacobian and run the LM algo-

rithm with tensor operations on a deep learning framework.

One limitation in domain decomposition is that separa-

tor variables converges slowly. Therefore, we recluster the

variables stochastically (details discussed in Section 3.4) so

that the separators cluster is changing for each epoch.
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Figure 4. Stochastic segmentation from an example of a bundle

adjustment problem. We segment cameras into different clusters,

each labeled with a different color. Three different segmentation

results are obtained by our algorithm for different epochs.

In addition, we optionally support user-specified global

descriptors operated on blocks as a whole, requiring that

such operations do not change intra-block residuals. We

jointly optimize global descriptors together with separators

in Figure 2(b), following Equation 5.

min
{xi,tj |li=1}

1

2

∑

i

ri(tlsi,1 ◦ xsi,1 , ..., tlsi,1 ◦ xsi,k)
2 (5)

tj is the global descriptor for cluster j that operates on all

variables in j-th cluster, and ◦ is an operator invariant to

intra-block residuals specified by the user. For example, in

bundle adjustment or as rigid as possible deformation prob-

lems, ◦ can be defined as a rigid transformation operator and

tj represents rigid transformation with six parameters. Such

global descriptors optimization leads to an effective global

reinitialization over the whole graph structure. If such a

global descriptor is not clear, we fix tj◦ as identity opera-

tions so that the problem is reduced to Equation 4.

The concepts of separators, blocks, and global descriptor

optimizations are extended from HyperSFM [35] for gen-

eral nonlinear least squares with a general graph structure.

Different from HyperSFM [35] who executes a global de-

scriptor optimization followed by internal block optimiza-

tion with a single epoch, we view it as a domain decom-

position problem, execute multiple epochs, and rebuild do-

mains by stochastic clustering every iteration. Furthermore,

we only execute a single LM step for Equation 4 or 5 to

save computation time for inner loops. Such a simplifica-

tion achieves much better convergence than HyperSFM [35]

with our stochastic domain decomposition.

3.4. Stochastic Variable Graph

For clustering, we aim at segmenting the variables

evenly to achieve maximum parallelism. Second, we want

to minimize the size of separators. Finally, we hope to

recluster the problem stochastically so that the separators

are changing for each epoch. The graph clustering problem

has standard solutions including normalized cuts [42] used

by [36] or spectral clustering [45] used by [19]. However,

these methods produce fixed clusters and are inefficient for

handling very large data.

Dataset Method # Cameras # Blocks # Separator

Ladybug
STBA 106 18 131209

Ours-B 106 16 60898

Final
STBA 427 37 4156614

Ours-B 427 32 3177896
Table 1. Stochastic clustering statistics. Using different modular-

ity, we produce less separators and blocks than STBA [58] under

the same constraint of maximum block size.

We adopt the solution provided by [58] for stochastic

graph clustering. Specifically, each variable is initialized

as a cluster, and clusters are greedily merged to maximize

modularity with certain probabilistic distribution [12]. Dif-

ferent from [58], we minimize the size of separators to en-

sure fast convergence. Therefore, we prioritize to merge

pairs of clusters with the maximum number of edges con-

necting them so that the number of edges accross different

clusters are minimized. Accordingly, we define modularity

as the number of edges in our variable graph internal to the

same clusters. Clusters are merged following [58] (Equa-

tion 16) where Q is redefined using our modularity. We

stop merging pairs if the number of variables in the merged

cluster is larger than a threshold. After this step, we build

the separator cluster so that blocks do not share residuals.

In detail, for any edge in the variable graph that connects

different blocks, we randomly pick one vertex of the edge

and move it to the separator cluster.

Figure 4 illustrates segmentation in an example of a bun-

dle adjustment problem. We segment cameras into different

clusters, each labeled with a different color. Three differ-

ent segmentation results are obtained by our algorithm for

different epochs. According to the statistics in Table 1, the

number of blocks and elements in the separator set from

our formulation is less than the original formulation in [58]

under the same constraint of maximum block size.

4. Evaluation

4.1. Results

Based on our backward jacobian network, we imple-

ment the LM solver on Pytorch where the linear equa-

tion is solved with preconditioned conjugate gradient [29].

We perform experiments on the bundle adjustment prob-

lems provided by datasets including 1DSFM [52] and

BAL [3]. We use initialized bundle adjustment problems

from BAL [3], and obtain the initialized problems for

1DSFM using Colmap [41]. We run experiments on ma-

chines with a Quadro P5000 GPU and a 16-core 3.7GHz

CPU. We compare our methods with Ceres [2] using ex-

act sparse linear solver (Ceres-S) and conjugate gradient

(Ceres-CG). We additionally compare our methods with

PBA [54] known as one of the most efficient solvers for

bundle adjustment, and H-SFM [35] and STBA [58] as two

state-of-the-art block-wise solvers for large-scale problems.
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Dubrovnik

Roman Forum

Ladybug

Piccadily

Venice

Tower of London

Final

Trafalgar
Figure 5. Visualization of problems from BAL [3] (first row) and 1DSFM [52] (second row) solved using our full pipeline “Ours-BG”.

Green frames represent cameras poses and point colors represent their 3D coordinates.

Dataset # Cameras # Points # Projections Ceres-S Ceres-CG PBA H-SFM STBA Ours-G Ours-BG Ours-B

Trafalgar 257 65132 225911 0.855 0.862 1.913 3.423 1.020 0.858 0.861 0.892

Ladybug 1723 156502 678718 1.143 1.223 2.229 2.372 1.307 1.121 1.102 1.135

Dubrovnik 356 226730 1255268 0.787 0.788 1.899 2.325 0.963 0.787 0.788 0.813

Venice 1778 993923 5001946 0.660 0.664 - 2.158 0.775 0.662 0.664 0.701

Final 13682 4456117 28987644 - 1.587 3.004 3.394 - 1.501 1.505 1.524

Union Square 647 13368 108083 3.000 1.015 1.781 2.635 3.268 0.826 0.827 0.831

P. del Popolo 404 14128 128940 0.957 0.959 1.863 3.541 1.072 0.959 0.960 0.963

Ellis Island 367 20355 137450 0.942 0.942 2.300 3.338 1.105 0.942 0.944 0.949

NYC Library 491 21396 149720 1.007 1.010 2.363 3.902 - 1.009 1.011 1.013

M. N. Dame 547 33830 272575 1.058 1.057 2.553 4.001 1.176 1.058 1.059 1.065

Gen. markt 905 43620 280971 0.881 0.883 2.192 3.102 1.017 0.880 0.883 0.886

Alamo 741 31203 308147 0.971 0.970 2.138 3.081 1.025 0.968 0.971 0.972

Yorkminster 910 50947 333902 0.856 0.861 1.782 3.269 0.988 0.840 0.843 0.848

Roman Forum 1368 61008 435531 0.909 0.906 1.952 3.065 1.042 0.906 0.906 0.907

V. Cathedral 1016 56266 459014 0.913 0.895 2.168 3.043 1.033 0.893 0.895 0.899

M. Metropolis 524 86364 594848 0.459 0.436 0.981 1.331 0.523 0.438 0.438 0.440

Piccadily 2918 104027 823221 0.963 0.951 2.224 3.842 7.896 0.950 0.950 0.954

T. of London 814 185579 1512167 0.321 0.335 0.670 1.079 0.443 0.305 0.303 0.308

Trafalgar 7792 216650 1924901 1.377 1.392 3.267 5.192 1.641 1.368 1.370 1.374

Table 2. Statistics and mean squared errors produced by different methods for scenes in BAL [3] and 1DSFM [52] dataset.

For our methods, we report “Ours-G” as our Pytorch-based

LM solver that optimizes the problem globally as a whole.

“Ours-BG” and “Ours-B” represent stochastic domain com-

position using our whole pipeline with and without global

reinitialization (Equation 5). For all scenes, we segment the

global problem into 17 clusters and report a single run with

20 epochs. Problems solved by “Ours-BG” are visualized in

Figure 5, where green frames represent cameras poses and

point colors represent their 3D coordinates.

Quality We report mean squared error (MSE) after op-

timization to measure the optimization quality of different

methods. We list the statistics of problems and MSE ob-

tained from different methods in Table 2. Cells marked as

“-” if optimization fails or running time is over 2 hours.

Ceres-S is global optimization with an exact linear solver

and usually delivers the best quality. Compared with other

inexact solvers or blocked solvers, our global solver (Ours-

G) achieves the best quality (marked in bold). It yields quite

close or even better results compared to Ceres-S for several

problems. Our stochastic solver “Ours-BG” and “Ours-B”

achieves quite close quality compared to “Ours-G”, and out-

performs other state-of-the-art block solvers including H-

SFM [35] and STBA [58].

Efficiency and Memory We report the time (second) and

memory (GB) usage in Table 3 and Table 4 for BAL [3]

dataset. Additional statistics for 1DSFM [52] are pro-
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Dataset Ceres-CG PBA STBA Ours-G Ours-BG Ours-B

Trafalgar 65.1 16.8 59.6 3.44 2.14 1.81

Ladybug 46.7 12.3 89.4 5.87 5.53 5.00

Dubrovnik 320 25.5 213 13.1 3.97 3.14

Venice 1992 - 835 53.0 16.5 14.2

Final 3897 340 - 243 33.9 25.4

Table 3. Time (second) takes for different methods to optimize the

problems in BAL [3] dataset.

Dataset Ceres-CG PBA STBA Ours-G Ours-BG Ours-B

Trafalgar 0.19 0.09 0.25 0.08 0.03 0.01

Ladybug 0.52 0.32 0.64 0.24 0.06 0.03

Dubrovnik 0.90 0.54 1.68 0.43 0.13 0.04

Venice 3.68 - 5.67 1.74 0.65 0.24

Final 16.8 11.9 - 9.73 3.52 1.24

Table 4. Memory (GB) used by different methods to optimize the

problems in BAL [3] dataset.
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Figure 6. Convergence curves for different scenes in 1DSFM [52]

and BAL [3].

vided in the supplemental material. Among existing global

solvers, PBA [54] on GPU is faster than other algorithms

run in multicore CPU implementation. Ours-G is even

faster than PBA. We find that the major difference comes

from accumulative summation inside JT r. We directly call

an efficient “index add ” in Pytorch while PBA assign a

thread to each variable xi to collect
∑

k Jk,irk, which is

less efficient due to additional memory loading and uneven

distribution of number of residuals related to different vari-

ables. As a result, our implementation can be more than

2x faster than PBA’s kernel. Figure 6 plots the convergence

curve for several problems in BAL [3] and 1DSFM [52]

datasets. “Ours-G” is our solver shown in blue, which con-

verges faster than other state-of-the-art methods.

With careful implementation, “Ours-G” uses less mem-

ory than other existing solvers. Typically, we use less

memory to compute jacobians with our backward jacobian

network. By solving subproblems in parallel for “Ours-

Figure 7. Visualization of city-scale bundle adjustment results pro-

cessed using “Ours-B”. Colors encode the z-values of 3D points.

# Points # Cameras # Projections # Blocks

334.8M 0.28M 1236M 36

Memory Time Initial MSE Final MSE

12.4G 403s 3.41 0.05
Table 5. City-scale dataset. We are able to process more than one

billion residual terms by segmenting the data to 36 blocks and fi-

nalize the optimization with around 6 minutes.

BG” and “Ours-B”, we significantly reduce the computation

time and maximum memory usage for each sub-problem.

Therefore, our stochastic solver supports the optimization

of problems on a very large scale. “Ours-B” is more effi-

cient than “Ours-BG” considering time and memory since

it does not perform global reinitialization by slightly sacri-

ficing the quality. In practice, either of them can be used de-

pending on whether the application prefers quality or speed.

Large Scale Figure 7 shows a large bundle adjustment

problem with over one hundred thousand images solved

with “Ours-B”. Detailed statistics are reported in Table 5.

We are able to process more than one billion residual terms

in our self-collected dataset by segmenting the data to 36

blocks and finalize the optimization with around 6 minutes.

Deep Learning Solvers We compare our LM solver with

other gradient-based optimizers in deep learning frame-

works as shown in Figure 8. LM solvers converge much

faster with better quality compared to SGD [6], RM-

SProp [23], and Adam [27].

4.2. Ablation Study

Ball Experiment To illustrate our intuition of why

stochastic domain decomposition helps optimization, we

consider a simple ball experiment in Equation 6 with its

physical meaning illustrated in Figure 9(a) and (b). We have
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Figure 8. Convergence curve on Trafalgar dataset provided by

BAL [3] using our method and deep learning solvers including

SGD [6], RMSProp [23], and Adam [27].

Figure 9. Illustration of the ball experiment. (a) We have N balls

whose heights to the ground are xi. (b) We optimize their heights

so that each ball is close to both the ground and the mid point of the

neighboring balls. (c) is the convergence curve of the loss to the

number of iterations. (d)-(f) are shapes from the first 7 iterations

over the optimization by different methods.

N = 100 balls whose heights to the ground are xi. We op-

timize their heights so that each ball is close to both the

ground and the mid point of its two neighbors.

E(x) =

n−1
∑

i=2

x2
i + (xi −

xi−1 + xi+1

2
)2 (6)

For traditional domain decomposition, we separate vari-

ables into two domains by cutting them in the middle and

optimize both domains alternatively. The loss over itera-

tions is shown as the red curve in Figure 9(c). We addition-

ally visualize the results at the first seven iterations in Fig-

ure 9(d) (opaque value increases with the number of itera-

tions). The convergence is slow especially for the separator

in the middle. To change the separator, we split the domain

at 25×(i mod 3+1) for the i-th iteration. The convergence

curve and optimization states for the first seven iterations

are shown in Figure 9(c) and (e) as the blue line. As a re-

sult, optimization converges much faster when we change

the separator every epoch. By randomly pick the separator
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Figure 10. (a) Convergence curves of different variants of our

methods for Bundle adjustment. Stochastic solvers (“Ours-

BG” and “Ours-B”) outperform fixed domain decomposition and

achieve quite similar quality comparing to our global optimization.

(b) Error ratio to the global solver using “Ours-B” with different

numbers of blocks.

for each iteration, we derive the green curves in Figure 9(c)

and (f), which shows similar convergence quality. Finally,

with our global reinitialization as shown in the purple curve

in Figure 9(c), convergence can be further enhanced.

Bundle Adjustment We plot the convergence curve for

different variants of our methods in Figure 10(a) for the La-

dybug scene in BAL [3] dataset. “Ours-G”, “Ours-BG” and

“Ours-B” are discussed in Section 4.1 as the global opti-

mization, stochastic domain decomposition with and with-

out global reinitialization. “Ours-BG-Fixed” and “Ours-B-

Fixed” represent traditional domain decomposition where

clusters are fixed over epochs with and without global reini-

tialization. “Ours-BG” and “Ours-B” converge quite close

to our global optimization, while convergence is worse with

traditional domain decomposition.

We plot the ratio of loss to the global optimization us-

ing “Ours-B” with different numbers of clusters for several

bundle adjustment problems in Figure 10(b). The optimiza-

tion quality is not sensitive to the number of clusters. We

observe that for “Ladybug” and “Dubrovnik”, optimization

loss increases when the number of blocks is set to be 128

and 256. We believe the reason is due to too few cameras

inside each cluster. For example, by segmenting the graph

into 256 blocks, each block contains at most 2 cameras for

the Dubrovnik scene. Therefore, the loss increase does not

appear in larger scenes like “Final” and “Trafalgar”.

5. Conclusion

We develop an efficient solution for large-scale nonlinear

least squares problems based on deep learning frameworks.

Our backward jacobian network enables our implementa-

tion of LM solver in Pytorch, and our stochastic domain

decomposition method helps us robustly solve very large-

scale problems with fast convergence.
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