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Abstract

In coded aperture snapshot spectral imaging (CASSI)

system, the real-world hyperspectral image (HSI) can be re-

constructed from the captured compressive image in a snap-

shot. Model-based HSI reconstruction methods employed

hand-crafted priors to solve the reconstruction problem, but

most of which achieved limited success due to the poor rep-

resentation capability of these hand-crafted priors. Deep

learning based methods learning the mappings between the

compressive images and the HSIs directly achieved much

better results. Yet, it is nontrivial to design a powerful deep

network heuristically for achieving satisfied results. In this

paper, we propose a novel HSI reconstruction method based

on the Maximum a Posterior (MAP) estimation framework

using learned Gaussian Scale Mixture (GSM) prior. Dif-

ferent from existing GSM models using hand-crafted scale

priors (e.g., the Jeffrey’s prior), we propose to learn the

scale prior through a deep convolutional neural network

(DCNN). Furthermore, we also propose to estimate the lo-

cal means of the GSM models by the DCNN. All the pa-

rameters of the MAP estimation algorithm and the DCNN

parameters are jointly optimized through end-to-end train-

ing. Extensive experimental results on both synthetic and

real datasets demonstrate that the proposed method outper-

forms existing state-of-the-art methods. The code is avail-

able at https://see.xidian.edu.cn/faculty/

wsdong/Projects/DGSM-SCI.htm.

1. Introduction

Compared with traditional RGB images, hyperspectral

images (HSIs) have more spectral bands and can describe

the characteristics of material in the imaged scene more ac-

curately. Relying on its rich spectral information, HSIs are

beneficial to many computer vision tasks, e.g., object recog-

nition [33], detection [40] and tracking [34]. The conven-
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Figure 1. A single shot measurement captured by [22] and 28 re-

constructed spectral channels using our proposed method.

tional imaging systems with single 1D or 2D sensor require

a long time to scan the scene, failing to capture dynamic

objects. Recently, many coded aperture snapshot spectral

imaging (CASSI) systems [8, 22, 23, 35] have been pro-

posed to capture the 3D HSIs at video rate. CASSI utilizes

a physical mask and a disperser to modulate different wave-

length signals, and mixes all modulated signals to generate

a single 2D compressive image. Then a reconstruction al-

gorithm is employed to reconstruct the 3D HSI from the 2D

compressive image. As shown in Fig. 1, 28 spectral band-

s have been reconstructed from a 2D compressive image

(measurement) captured by a real CASSI system [22].

Therefore, reconstruction algorithms play a pivot role in

CASSI. To solve this ill-posed inverse problem, previous

model-based methods adopted hand-crafted priors to regu-

larize the reconstruction process. In GAP-TV [43], the total

variation prior was introduced to solve the HSI reconstruc-

tion problem. Based on the assumption that HSIs have s-

parse representations with respective to some dictionaries,

sparse-based methods [14, 17, 35] exploited the ℓ1 sparsi-

ty to regularize the solution. Considering that the pixels of
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HSIs have strong long-range dependence, non-local based

methods [18, 38, 48] have also been proposed. However,

the model-based methods have to tweak parameters manu-

ally, resulting in limited reconstruction quality in addition

to the slow reconstruction speed. Inspired by the successes

of deep convolutional neural networks (DCNNs) for natu-

ral image restoration [16, 47], deep learning based HSI re-

construction methods [3, 36, 37] have also been proposed.

In [36], an iterative HSI reconstruction algorithm was un-

folded into a DCNN, where two sub-networks were used to

exploit the spatial-spectral priors. In [37] the nonlocal self-

similarity prior has also been incorporated to further im-

prove the results. In addition to the optimization-inspired

methods, DCNN-based methods [22, 24, 41] that learned

the mapping functions between the 2D measurements and

the 3D HSIs directly have also been proposed. λ-net [24]

reconstructed the HSIs from the inputs of 2D measurements

and the mask through a two-stage DCNN. TSA-Net [22] in-

tegrated three spatial-spectral self-attention modules in the

backbone U-Net [31] and achieved state-of-the-art result-

s. Although promising HSI reconstruction performance has

been achieved, it is non-trivial to design a powerful DCNN

heuristically.

Bearing the above concerns in mind, in this paper, we

propose an interpretable HSI reconstruction method with

learned Gaussian Scale Mixture (GSM) prior. The contri-

butions of this paper are listed as follows.

• Learned GSM models are proposed to exploit the

spatial-spectral correlations of HSIs. Unlike the exist-

ing GSM models with hand-crafted scale priors (e.g.,

Jeffrey’s prior), we propose to learn the scale prior by

a DCNN.

• The local means of the GSM models are estimated as

a weighted average of the spatial-spectral neighboring

pixels. The spatial-spectral similarity weights are also

estimated by the DCNN.

• The HSI reconstruction problem is formulated as a

Maximum a Posteriori (MAP) estimation problem

with the learned GSM models. All the parameters in

the MAP estimator are jointly optimized in an end-to-

end manner.

• Extensive experimental results on both synthetic and

real datasets show that the proposed method out-

performs existing state-of-the-art HSI reconstruction

methods.

2. Related Work

Hereby, we briefly review the conventional model-based

HSI reconstruction methods, the recently proposed deep

learning-based HSI reconstruction methods and the GSM

models for signal modeling.

2.1. Conventional modelbased HSI reconstruction
methods

Reconstructing the 3D HSI from the 2D compressive im-

age is the core of CASSI system and usually with the help

of various hand-crafted priors. In [7] gradient projection

algorithms were proposed to solve the sparse HSI recon-

struction problems. In [17] dictionary learning based sparse

regularizers have been employed for HSI reconstruction. In

[1, 14, 43] total variation (TV) regularizers have also been

adopted to suppress the noise and artifacts. In [18], the

nonlocal self-similarity and the low-rank property of HSIs

have been exploited, leading to superior HSI reconstruction

performance. The major drawbacks of these model-based

methods are that they are time-consuming and need to se-

lect the parameters manually.

2.2. Deep learningbased HSI reconstruction

Due to the powerful learning ability, deep neural net-

works treating the HSI reconstruction as a nonlinear map-

ping problem have achieved much better results than model-

based methods. In [41] initial estimates of the HSIs were

first obtained by the method of [1] and were further refined

by a DCNN. λ-net [24] reconstructed the HSIs through a

two-stage procedure, where the HSIs were first initially re-

constructed by a Generative Adversarial Network (GAN)

with self-attention, followed by a refinement stage for fur-

ther improvements. In [22], DCNN with spatial-spectral

self-attention modules was proposed to exploit the spatial-

spectral correlation, leading to state-of-the-art performance.

Instead of designing the DCNN heuristically, DCNNs based

on unfolding optimization-based HSI reconstruction algo-

rithms have also been proposed [21]. In [36] a HSI recon-

struction algorithm with a denoising prior was unfolded into

a deep neural network. Since the spatial-spectral prior has

not been fully exploited, the method of [36] achieved limit-

ed success. To exploit the nonlocal self-similarity of HSIs,

the nonlocal sub-network has also been integrated into the

deep network proposed in [37], leading to further improve-

ments. The other line of work is to apply deep denoiser

into the optimization algorithm, leading to a plug-and-play

framework [49].

2.3. GSM models for signal modeling

As a classical probability model, the Gaussian Scale

Mixture (GSM) model has been used for various image

restoration tasks. In [27] the GSM model was utilized to

characterize the distributions of the wavelet coefficients for

image denoising. In [5] the GSM model has been proposed

to model the sparse codes for simultaneous sparse coding

with applications to image restoration. In [26, 32] the GSM

models have also been used to model the moving objects

of videos for foreground estimation, achieving state-of-the-

art performance. In this paper, we propose to character-
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ize distributions of the HSIs with the GSM models for HSI

reconstruction. Different from existing GSM models with

manually selected scale priors, we propose to learn both the

scale prior and local means of the GSM models with DC-

NNs. Through end-to-end training, all the parameters are

learned jointly.

Figure 2. The imaging schematic of CASSI system.

3. The CASSI Observation Model

As shown in Fig. 2, the 3D HSI is encoded into the 2D

compressive image by the CASSI system. In the CASSI

system, the 3D spectral data cube is first modulated spa-

tially by a coded aperture (i.e., a physical mask). Then,

the following dispersive prism disperses each wavelength

of the modulated data. A 2D imaging sensor captures the

dispersed data and outputs a 2D measurement which mixes

the information of all wavelengths.

Let X ∈ R
H×W×L denote the 3D spectral data cube and

C ∈ R
H×W denote the physical mask. The lth wavelength

of the modulated image can thus be represented as

X
′

l = C ⊙ Xl, (1)

where X
′

∈ R
H×W×L is the 3D modulated image and ⊙

denotes the element-wise product. In CASSI system, the

modulated image is dispersed by the dispersive prism. In

other words, each channel of the tensor X
′

will be shifted

spatially and the shifted tensor X
′′

∈ R
H×(W+L−1)×L can

be written as

X
′′

(r, c, l) = X
′

(r, c+ dl, l), (2)

where dl denotes the shifed distance of the lth channel, 1 ≤
r ≤ H , 1 ≤ c ≤ W and 1 ≤ l ≤ L. At last, the 2D imaging

sensor captures the shifted image into a 2D measurement

(by compressing the spectral domain), as

Y =
∑L

l=1 X
′′

l , (3)

where Y ∈ R
H×(W+L−1) represents the 2D measurement.

As such, the matrix-vector form of Eq. (3) can be formulat-

ed as

y = Ax, (4)

where x ∈ R
N and y ∈ R

M denote the vectorized form

of X and Y respectively, N = HWL and M = H(W +

L−1), and A ∈ R
M×N denotes the measurement matrix of

the CASSI system, implemented by the coded aperture and

disperser. Considering the measurement noise n ∈ R
M , the

forward model of CASSI is now

y = Ax+ n. (5)

The theoretical performance bounds of CASSI have been

derived in [12].

4. The Proposed Method

4.1. GSM models for CASSI

We formulate the HSI reconstruction as a maximum a

posteriori (MAP) estimation problem. Given the observed

measurement y, the desired 3D HSI x can be estimated by

maximizing the posterior

log p(x|y) ∝ log p(y|x) + log p(x), (6)

where p(y|x) is the likelihood term and p(x) is the (to be

determined) prior distribution of x. The likelihood term is

generally modeled with a Gaussian function as

p(y|x) = 1√
2πσ

exp
(

−
||y−Ax||2

2

2σ2

)

. (7)

For the prior term p(x), we propose to characterize each

pixel xi of the HSI with a nonzero-mean Gaussian distribu-

tion of standard deviation θi. With a scale prior p(θi) and

the assumption that θi and xi are independent, we can mod-

el x with the following GSM model

p(x) =
∏

i p(xi), p(xi) =
∫∞
0

p(xi|θi)p(θi)dθi, (8)

where p(xi|θi) is a nonzero-mean Gaussian distribution

with variance θ2i and mean ui, i.e.,

p(xi|θi) =
1√
2πθi

exp(− (xi−ui)
2

2θ2

i

). (9)

With different scale priors, the GSM model can well express

many distributions.

Regarding the scale prior p(θi), instead of modeling

p(θi) with an exact prior (e.g., the Jeffrey’s prior p(θi) =
1
θi

), we introduce a general form as

p(θi) ∝ exp(−J(θi)), (10)

where the J(θi) is an energy function. Instead of computing

an analytical expression of p(xi) that is often intractable, we

propose to jointly estimate x and θ by replacing p(x) with

p(x,θ) in the MAP estimator. This is

(x,θ) = argmaxx,θ log p(y|x) + log p(x,θ)

= argmax
x,θ

log p(y|x) + log p(x|θ) + log p(θ).

(11)
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By substituting the Gaussian likelihood term of Eq. (7) and

the prior terms of p(xi|θi) and p(θi) into the above MAP

estimator, we can obtain the following objective function

(x,θ) = argmin
x,θ

||y − Ax||22 + σ2
N
∑

i=1

1

θ2i
(xi − ui)

2

+ 2σ2
∑N

i=1 log θi + 2σ2J(θ)

= argmin
x,θ

||y − Ax||22 + σ2
N
∑

i=1

1

θ2i
(xi − ui)

2

+R(θ), (12)

where R(θ) = 2σ2
∑N

i=1 log θi + 2σ2J(θ). Thereby, the

HSI reconstruction problem can be solved by alternating

optimizing x and θ.

For the x-subproblem, with fixed θ, we can solve x by

solving

x = argminx ||y − Ax||22 +
∑N

i=1 wi(xi − ui)
2, (13)

where wi =
σ2

θ2

i

and the mean ui keeps updating with x. In-

spired by the auto-regressive (AR) model [6], we can calcu-

late the weighted average of the local spatial-spectral neigh-

boring pixels as the estimation of the mean ui, i.e.,

ui = k⊤
i xi, (14)

where ki ∈ R
q3 denotes the vectorized 3D filter of size

q × q × q for xi and xi ∈ R
q3 represents the local spatial-

spectral neighboring pixels of xi. For the 3D filters, some

existing methods (e.g., the guided filtering [9, 15], the non-

local means methods [2, 4] or the deep learning based

method [25]) can be used to estimate the spatially-variant

filters.

To solve Eq. (13), we employ gradient descent as

x(t+1) = x(t) − 2δ{A⊤(Ax(t) − y) +w(t)(x(t) − u(t))},
(15)

where u(t) = [ut
1, · · · , u

t
N ]⊤ ∈ R

N , w(t) =
[wt

1, · · · , w
t
N ]⊤ ∈ R

N and δ is the step size.

The θ-subproblem can be changed to estimate w. With

fixed x, w can be estimated by

w = argminw
∑N

i=1 wi(xi − ui)
2 +R(w). (16)

The solution of w depends on R(w) being used. For some

priors, a closed-form solution can be achieved [26]; for oth-

ers, iterative algorithms might be used. However, each of

them has their pros and cons. To cope with this challenge,

hereby instead of using a manually designed proximal op-

erator, we propose to estimate w(t+1) from x(t+1) using a

DCNN as will be described in the next subsection.

4.2. Deep GSM for CASSI

In general, alternating computing x and w requires nu-

merous iterations to converge and it is necessary to impose a

hand-crafted prior of p(θ). Moreover, all the algorithm pa-

rameters and the 3D filters cannot be jointly optimized. To

address these issues, we propose to optimize x and w joint-

ly by a DCNN. For network design purpose, we re-bridge

the x and w-subproblems via a united framework

x
(t+1) = x

(t) − 2δ{A
⊤(Ax

(t) − y) + S(x(t))(x(t) − u
(t))},

(17)

where S(·) represents the function of the DCNN for esti-

mating w, i.e., the solution of (16). As shown in Fig. 3(a),

we construct the end-to-end network with T stages corre-

sponding to T iterations for iteratively optimizing x and w.

The proposed network consists of the following main mod-

ules.

• The measurement y is split into a 3D data cube of size

H ×W × L to initialize x.

• We use two sub-networks to learn the measurement

matrix A and its transposed version A⊤.

• For estimating w, we develop a lightweight variant

of U-Net and a weight generator to learn the function

S(·).

• Instead of using a manually designed method to learn

the 3D filters, we utilize the same lightweight U-Net

and a 3D filter generator to generate the spatially-

variant filters. According to Eq. (14), we filter the

current x by the generated 3D filters for updating the

means u.

4.3. Network Architecture

Considering that the real system has large spatial size of

the mask and measurements (e.g., the mask and measure-

ments of [22] are 660 × 660 and 660 × 714), the network

training with explicitly constructed A and A⊤ requires a

large amount GPU memory and computational complexi-

ty. To address this issue, we propose to learn these two

operations with two sub-networks.

The modules for learning the measurement matrix A

and A⊤. Learning A and A⊤ with sub-networks allows

one to train them on small patches (e.g., 64×64 or 96×96)

that can greatly reduce memory consumption and computa-

tional complexity. Furthermore, we can train a sub-network

to learn multiple masks such that the trained network can

work well on multiple imaging systems. The measurement

matrix A represents a hybrid operator of modulation, i.e.,

shifting and summation, which can be implemented by two

Conv layers and four ResBlocks followed by shifting and
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Figure 3. Architecture of the proposed network for hyperspectral image reconstruction. The architectures of (a) the overall network, (b)

the measurement matrix, (c) the transposed version of the measurement matrix, (d) the weight generator, and (e) the filter generator.

summation operations. As shown in Fig. 3(b), x is fed in-

to the sub-network to generate modulated feature maps that

are further shifted and summed along the spectral dimen-

sion to generate the measurements y = Ax. Each ResBlock

[11] consists of 2 Conv layers with a ReLU nonlinearity

function plus a skip connection. Regarding A⊤, as shown

in Fig. 3(c), we first slide a H ×W extraction window on

the input y of size H × (W + L − 1) with the slide step

one pixel and split the input into L-channel image of size

H × W . Then the split sub-images are fed into two Conv

layers and four ResBlocks to generate the estimate A⊤y.

The module for estimating the regularization param-

eters w. As shown in the Fig. 3 (a), we propose a

lightweight U-Net consisting of five encoding blocks (EB-

s) and four decoding blocks (DBs) to estimate the weight-

s w(t) from the current estimate x(t). Each EB and DB

contains two Conv layers with ReLU nonlinearity function.

The average pooling layer with a stride of 2 is inserted be-

tween every two neighboring EBs to downsample the fea-

ture maps and a bilinear interpolation layer with a scaling

factor 2 is adopted ahead of every DB to increase the spatial

resolutions of the feature maps. We have noticed that the

average pooling works better than max pooling in our prob-

lem and the bilinear interpolation plays an important role in

DBs. 3× 3 Conv filters are used in all the Conv layers. The

channel numbers of the output features of the 5 EBs and 4

DBs are set to 32, 64, 64, 128, 128, 128, 64, 64 and 32,

respectively. To alleviate the gradient vanishing problem,

the feature maps of the first EB are connected to first EB

of the U-net of the subsequent stages. The feature maps of

the last DB are fed into a weight generator that contains 2

3 × 3 Conv layers to generate the weights w as shown in

Fig. 3 (d). Some weight maps w of two HSIs estimated in

the fourth stage are visualized (with normalization) in Fig.

4. From Fig. 4, we can see that w vary spatially and are

consistent with the image edges and textures. Aided by this

well-learned w, the proposed method will pay attentions to

the edges and textures.

Figure 4. The visualization of the regularization parameters w es-

timated in the 4-th stage. Left: the corresponding RGB image;

right: the w images associated with the four spectral bands.

The module for estimating the local means u. We es-

timate the means of GSM models following Eq. (14). To

estimate the spatial-variant 3D filters, we add a filter gen-

erator with the input of the feature maps generated by the

U-net, as shown in Fig. 3(a). Estimating the spatially adap-

tive 3D filters has advantages in adapting to local HSI edges

and texture structures. However, directly generating these

3D filters will cost a large amount of GPU memory that is

unaffordable. To reduce the GPU memory consumption,

we propose to factorize each 3D filter into three 1D filters,

expressed as

Ki = ri ⊗ ci ⊗ si, (18)
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where Ki ∈ R
q×q×q denotes the 3D filter, ri ∈ R

q , ci ∈ R
q

and si ∈ R
q denote the three 1D filters corresponding to

the three dimensions, respectively, and ⊗ denotes the ten-

sor product. In this way, filtering the local neighbors Xi

with the 3D filter Ki can be transformed into convoluting

the local neighbors with the three 1D filters along three di-

mensions in sequence. By factorizing each 3D filter into

three 1D filters we can reduce the number of filter coeffi-

cients from N · q3 to 3 ·N · q, and thus significantly reduce

the GPU memory cost and the computational complexity.

As shown in Fig. 3(e), the filter generator contains three

branches to learn the 1D filters, respectively. After generat-

ing the filters, we can compute the means of GSM models

following Eq. (14).

4.4. Network training

We jointly learn the network parameters Θ through end-

to-end training. Except the step size δ, all the network pa-

rameters of each stage are shared. All the parameters are

optimized by minimizing the following loss function

Θ̂ = argminΘ
1
D

∑D

d=1 ‖F(yd;Θ)− xd‖1, (19)

where D denotes the total number of the training samples,

F(yd;Θ) represents the output of the proposed network

given dth measurement yd and the network parameters Θ,

and xd is the ground-truth HSI. The ADAM optimizer [13]

with setting β1 = 0.9, β2 = 0.999 and ǫ = 10−8 is exploit-

ed to train the proposed network. We set the learning rate

as 10−4. The parameters of the convolutional layers are ini-

tialized by the Xavier initialization [10]. We implement the

proposed method in PyTorch and train the network using a

single Nvidia Titan XP GPU. Instead of using the ℓ2 norm

in the loss function, here we use the ℓ1 norm that has been

proved to be better in preserving image edges and textures.

5. Simulation Results

5.1. Experimental Setup

To verify the effectiveness of the proposed HSI recon-

struction method for CASSI, we conduct simulations on t-

wo public HSI datasets CAVE [42] and KAIST [3]. The

CAVE dataset consists of 32 HSIs of spatial size 512× 512
with 31 spectral bands. The KAIST dataset has 30 HSIs

of spatial size 2704 × 3376 also with 31 spectral bands.

Similar to TSA-Net [22], we employ the real mask of size

256× 256 for simulation. Following the procedure in TSA-

Net [22], the CAVE dataset is used for network training, and

10 scenes of spatial size 256× 256 from the KAIST dataset

are extracted for testing. To be consistent with the wave-

length of the real system [22], we unify the wavelength of

the training and testing data by spectral interpolation. Thus,

the modified training and testing data have 28 spectral bands

ranging from 450nm to 650nm.

During training, to simulate the measurements, we first

randomly extract 96 × 96 × 28 patches from the training

dataset as training labels (ground truth HSI) and random-

ly extract 96 × 96 patches from the real mask to generate

the modulated data. Then the modulated data is shifted in

spatial at an interval of two pixels. The spectral dimen-

sion of the shifted data is summed up to generate the 2D

measurements of size 96 × 150 as the network inputs. We

use Random flipping and rotation for data argumentation.

The peak-signal-to-noise (PSNR) and the structural simi-

larity index (SSIM) [39] are both employed to evaluate the

performance of the HSI reconstruction methods.

5.2. Comparison with StateoftheArt Methods

We compare the proposed HSI reconstruction method

with several state-of-the-art methods, including three

model-based methods (i.e., TwIST [1], GAP-TV [43] and

DeSCI [18]) and four deep learning based methods (i.e., λ-

net [24], HSSP [36], DNU [37] and TSA-Net [22]). As the

source codes are unavailable, we re-implemented HSSP and

DNU by ourselves. For other competing methods, we use

the source codes released by their authors. For the sake of

fair comparison, all deep learning methods were re-trained

on the same training dataset. Table 1 shows the reconstruc-

tion results of these testing methods on the 10 scenes, where

we can see that the deep learning-based methods outperfor-

m the model-based methods. The proposed method outper-

forms other deep learning-based methods by a large mar-

gin. Specifically, our method outperforms the second best

method TSA-Net by 1.17dB in average PSNR and 0.0227

in average SSIM. Compared with the two deep unfolding

methods HSSP and DNU, the improvements by the pro-

posed method over HSSP [36] and DNU [37] are 2.28 dB

and 1.89 dB in average, respectively. The HSSP and DNU

methods also tried to learn the spatial-spectral correlation-

s of HSIs by two sub-networks without emphasizing im-

age edges and textures. By contrast, we propose to learn

the spatial-spectral prior of HSIs by the spatially-adaptive

GSM models characterized by the learned local means and

variances. The learned GSM models have advantages in

adapting to various HSI edges and textures. Fig. 5 plots se-

lected frames and spectral curves of the reconstructed HSIs

by the five deep learning-based methods. We can see that

the HSIs reconstructed by the proposed method have more

edge details and less undesirable visual artifacts than the

other methods. The RGB images of the 10 scenes and more

visual comparison results are shown in the supplementary

material (SM).

5.3. Multiple Mask Results

As mentioned before, our proposed network is robust to

mask due to the learning of A and A⊤. To verify this, we

conducted experiments on compound training and testing
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Table 1. The PSNR in dB (left entry in each cell) and SSIM (right entry in each cell) results of the test methods on 10 scenes.

Method TwIST [1] GAP-TV [43] DeSCI [18] λ-net [24] HSSP [36] DNU [37] TSA-Net [22] Ours

Scene1 25.16, 0.6996 26.82, 0.7544 27.13, 0.7479 30.10, 0.8492 31.48, 0.8577 31.72, 0.8634 32.03, 0.8920 33.26, 0.9152

Scene2 23.02, 0.6038 22.89, 0.6103 23.04, 0.6198 28.49, 0.8054 31.09, 0.8422 31.13, 0.8464 31.00, 0.8583 32.09, 0.8977

Scene3 21.40, 0.7105 26.31, 0.8024 26.62, 0.8182 27.73, 0.8696 28.96, 0.8231 29.99, 0.8447 32.25, 0.9145 33.06, 0.9251

Scene4 30.19, 0.8508 30.65, 0.8522 34.96, 0.8966 37.01, 0.9338 34.56, 0.9018 35.34, 0.9084 39.19, 0.9528 40.54, 0.9636

Scene5 21.41, 0.6351 23.64, 0.7033 23.94, 0.7057 26.19, 0.8166 28.53, 0.8084 29.03, 0.8326 29.39, 0.8835 28.86, 0.8820

Scene6 20.95, 0.6435 21.85, 0.6625 22.38, 0.6834 28.64, 0.8527 30.83, 0.8766 30.87, 0.8868 31.44, 0.9076 33.08, 0.9372

Scene7 22.20, 0.6427 23.76, 0.6881 24.45, 0.7433 26.47, 0.8062 28.71, 0.8236 28.99, 0.8386 30.32, 0.8782 30.74, 0.8860

Scene8 21.82, 0.6495 21.98, 0.6547 22.03, 0.6725 26.09, 0.8307 30.09, 0.8811 30.13, 0.8845 29.35, 0.8884 31.55, 0.9234

Scene9 22.42, 0.6902 22.63, 0.6815 24.56, 0.7320 27.50, 0.8258 30.43, 0.8676 31.03, 0.8760 30.01, 0.8901 31.66, 0.9110

Scene10 22.67, 0.5687 23.10, 0.5839 23.59, 0.5874 27.13, 0.8163 28.78, 0.8416 29.14, 0.8494 29.59, 0.8740 31.44, 0.9247

Average 23.12, 0.6694 24.36, 0.6993 25.27, 0.7207 28.53, 0.8406 30.35, 0.8524 30.74, 0.8631 31.46, 0.8939 32.63, 0.9166

Figure 5. Reconstructed images of Scene 2 (left) and Scene 9 (right) with 4 out of 28 spectral channels by the five deep learning-based

methods. Two regions in each scene are selected for analysing the spectra of the reconstructed results. Zoom in for better view.

Table 2. The average PSNR (left) and SSIM (right) results with

five masks by the competing methods.

Method DNU [37] TSA-Net [22] Ours

mask1 30.29, 0.8588 30.96, 0.8804 31.38, 0.8979

mask2 30.46, 0.8516 31.23, 0.8875 31.73, 0.9034

mask3 30.80, 0.8663 31.43, 0.8904 31.81, 0.9055

mask4 30.65, 0.8610 31.15, 0.8863 31.58, 0.9038

mask5 30.74, 0.8631 31.46, 0.8939 31.70, 0.9018

datasets that were simulated by applying 5 different masks.

The 5 masks of size 256×256 were extracted at the four cor-

ners and the center of the real captured mask [22]. We only

trained a single model by the proposed network on the com-

pound training dataset to deal with multiple masks, whereas

we trained five different models associated with each mask

by the DNU [37] and TSA-Net [22] methods on the dataset-

s generated by the corresponding mask, respectively. Table

2 shows the average PSNR and SSIM results by these test-

ing methods on the 10 scenes. We can see that the pro-

posed method (only trained once on the compound training

dataset) still outperforms the other two competing methods

that were trained specifically for each mask, verifying the

advantages of learning the measurement matrix A and A⊤.

Figure 7. Ablation study on the effects of (a) the filter size; (b) the

number of stage.

5.4. Ablation Study

We conduct several ablation studies to verify the impacts

of different modules of the proposed network, including the

choices of the filter sizes, number of stages and the use of

dense connections.

Fig. 7 (a) shows the results with different filter sizes,

where we can see that larger filter size can improve the HSI

reconstruction quality. The improvement flattens out after

q = 7 and thus we set q = 7 in our implementation. The
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Figure 6. Reconstructed images of the real scene (Scene 4) with 28 spectral channels by the proposed method. Zoom in for better view.

results with different number of stages are shown in Fig. 7

(b), from which we observe that increasing the stage num-

ber T leads to better performance. We set T = 4 in our im-

plementation for achieving a good trade-off between recon-

struction performance and computational complexity. We

have also conducted a comparison between the proposed

network without and with dense connections. The compar-

ison demonstrates that using dense connections can boost

PSNR from 30.52dB to 32.63dB and SSIM from 0.8802 to

0.9166.

6. Real Data Results

We now apply the proposed method on the real SD-

CASSI system [22] which captures the real scenes with 28

wavelengths ranging from 450nm to 650nm and has 54-

pixel dispersion in the column dimension. Thus, the mea-

surements captured by the real system have a spatial size of

660× 714. Similar to TSA-Net [22], we re-trained the pro-

posed method on all scenes of CAVE dataset and KAIST

dataset. To simulate the real measurements, we injected 11-

bit shot noise during training. We compare the proposed

method with TwIST [1], GAP-TV [43], DeSCI [18] and

TSA-Net [22]. Visual comparison results of the compet-

ing methods are shown in Fig. 8. It can be observed that the

proposed method can recover more details of the textures

and suppress more noise. Fig. 1 and 6 show reconstruct-

ed images of two real scenes (Scene 3 and Scene 4) with

28 spectral channels by the proposed method. More visual

results are shown in the SM.

7. Conclusions

We have proposed an interpretable hyperspectral image

reconstruction method for coded aperture snapshot spectral

imaging. Different from existing works, our network is in-

spired by the Gaussian scale mixture prior. Specifically,

the desired hyperspectral images were characterized by the

GSM models and then the reconstruction problem was for-

mulated as a MAP estimation problem. Instead of using a

manually designed prior, we have proposed to learn the s-

Figure 8. Reconstructed images of two real scenes (Scene 1 and

Scene 3) with 2 out of 28 spectral channels by the competing meth-

ods. Zoom in for better view.

cale prior of GSM by a DCNN. Furthermore, motivated by

the auto-regressive model, the means of the GSM models

have been estimated as a weighted average of the spatial-

spectral neighboring pixels, and these filter coefficients are

estimated by a DCNN as well aiming to learn sufficient

spatial-spectral correlations of HSIs. Extensive experimen-

tal results on both synthetic and real datasets demonstrate

that the proposed method outperforms existing state-of-the-

art algorithms.

Our proposed network is not limited to the spectral

compressive imaging such as CASSI and similar system-

s [46, 20], it can also be used in the video snapshot compres-

sive imaging systems [28, 30, 29, 45]. Our work is paving

the way of real applications of snapshot compressive imag-

ing [19, 44].
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