
Group Whitening: Balancing Learning Efficiency and Representational Capacity

Lei Huang1,3 Yi Zhou2 Li Liu3 Fan Zhu3 Ling Shao3

1SKLSDE, Institute of Artificial Intelligence, Beihang University, Beijing, China
2MOE Key Laboratory of Computer Network and Information Integration, Southeast University, China

3Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE

Abstract

Batch normalization (BN) is an important technique com-

monly incorporated into deep learning models to perform

standardization within mini-batches. The merits of BN in

improving a model’s learning efficiency can be further am-

plified by applying whitening, while its drawbacks in esti-

mating population statistics for inference can be avoided

through group normalization (GN). This paper proposes

group whitening (GW), which exploits the advantages of the

whitening operation and avoids the disadvantages of nor-

malization within mini-batches. In addition, we analyze the

constraints imposed on features by normalization, and show

how the batch size (group number) affects the performance

of batch (group) normalized networks, from the perspective

of model’s representational capacity. This analysis provides

theoretical guidance for applying GW in practice. Finally,

we apply the proposed GW to ResNet and ResNeXt architec-

tures and conduct experiments on the ImageNet and COCO

benchmarks. Results show that GW consistently improves

the performance of different architectures, with absolute

gains of 1.02% ⇠ 1.49% in top-1 accuracy on ImageNet

and 1.82% ⇠ 3.21% in bounding box AP on COCO.

1. Introduction

Batch normalization (BN) [24] represents a milestone

technique in deep learning [15, 52, 59], and has been exten-

sively used in various network architectures [15, 52, 66, 51,

18]. BN standardizes the activations within a mini-batch of

data, which improves the conditioning of optimization and

accelerates training [24, 4, 46]. Further, the stochasticity

of normalization introduced along the batch dimension is

believed to benefit generalization [59, 48, 22]. However, this

stochasticity also results in differences between the training

distribution (using mini-batch statistics) and the test distri-

bution (using estimated population statistics) [23], which

is believed to be the main cause of BN’s small-batch-size

problem — BN’s error increases rapidly as the batch size

becomes smaller [59]. To address this issue, a number of ap-

proaches have been proposed [59, 43, 37, 23, 56, 50, 7]. One

representative method is group normalization (GN), which

divides the neurons into groups and then applies the standard-

ization operation over the neurons of each group, for each

sample, independently. GN provides a flexible solution to

avoid normalization along the batch dimension, and benefits

visual tasks limited to small-batch-size training [59, 29].

As a widely used operation in data pre-processing, whiten-

ing not only standardizes but also decorrelates the data [31],

which further improves the conditioning of the optimization

problem [31, 58, 12, 20]. A whitened input has also been

shown to make the gradient descent updates similar to the

Newton updates for linear models [31, 58, 20]. Motivated

by this, Huang et al. [20] proposed batch whitening (BW)

for deep models, which performs whitening on the activa-

tions of each layer within a mini-batch. BW has been shown

to achieve better optimization efficiency and generalization

than BN [20, 22, 41]. However, BW further amplifies the

disadvantage of BN in estimating the population statistics,

where the number of parameters to be estimated with BW

is quadratic to the number of neurons/channels. Thus, BW

requires a sufficiently large batch size to work well.

To exploit whitening’s advantage in optimization, while

avoiding its disadvantage in normalization along the batch

dimension, this paper proposes group whitening (GW). GW

divides the neurons of a sample into groups for standardiza-

tion over the neurons in each group, and then decorrelates

the groups. Unlike BW, GW has stable performance for a

wide range of batch sizes, like GN, and thus can be applied

to a variety of tasks. GW further improves the conditioning

of optimization of GN with its whitening operation.

One important hyperparameter of GW is the group num-

ber. We observe that GW/GN has a significantly degener-

ated training performance when the group number is large,

which is similar to the small-batch-size problem of BW/BN.

We attribute this to the constraints on the output imposed

by the normalization operation, which affect the model’s

representational capacity. As such, this paper defines the

constraint number of normalization (as will be discussed

in Section 4) to quantitatively measure the magnitude of

the constraints provided by normalization methods. With

the support of the constraint number, we analyze how the

9512



batch size (group number) affects the model’s representa-

tional capacity for batch (group) normalized networks. Our

analysis also presents a new viewpoint for understanding the

small-batch-size problem of BN.

We apply the proposed GW to two representative deep

network architectures (ResNet [15] and ResNeXt [60]) for

ImageNet classification [45] and COCO object detection and

instance segmentation [35]. GW consistently improves the

performance for both architectures, with absolute gains of

1.02% ˜1.49% in top-1 accuracy for ImageNet and 1.82%
˜3.21% in bounding box AP for COCO.

2. Preliminaries

For simplicity, we first consider the d-dimensional input

vector x, which will be generalized to a convolutional input

in the subsequent section. Let X 2 R
d×m be a data matrix

denoting the mini-batch input of size m in a given layer.

Standardization. During training, batch normalization (B-

N) [24] standardizes the layer input within a mini-batch, for

each neuron, as1:

bX = �BN (X) = Λ
− 1

2

d (X� µd1
T ). (1)

Here, µd = 1
m
X1 and Λd = diag(�2

1 , . . . ,�
2
d) + ✏I, where

�2
i is the variance over mini-batches for the i-th neuron, 1

is a column vector of all ones, and ✏ > 0 is a small number
to prevent numerical instability. During inference, the pop-

ulation statistics {bΛ− 1

2

d , µ̂d} are required for deterministic
inference, and they are usually calculated by running average
over the training iterations, as follows:

(
µ̂d = (1− λ)µ̂d + λµd,

bΛ�
1

2

d = (1− λ)bΛ�
1

2

d + λΛ
�

1

2

d .
(2)

Such an estimation process can limit the usage of BN in

recurrent neural networks [30, 10], or harm the performance

for small-batch-size training [23, 59].

To avoid the estimation of population statistics shown

in Eqn. 2, Ba et al. proposed layer normalization (LN) [4]

to standardize the layer input within the neurons for each

training sample, as:

bX = �LN (X) = (X� 1µT
m)Λ

− 1

2

m . (3)

Here, µm = 1
d
X

T
1 and Λm = diag(�2

1 , . . . ,�
2
m) + ✏I,

where �2
i is the variance over the neurons for the i-th sam-

ple. LN has the same formulation during training and infer-

ence, and is extensively used in natural language processing

tasks [55, 65, 62].

Group normalization (GN) [59] further generalizes LN,

dividing the neurons into groups and performing the stan-

dardization within the neurons of each group independently,

for each sample. Specifically, defining the group division

operation as Π : Rd×m 7! R
c×gm, where g is the group

1BN and other normalization methods discussed in this paper all use

extra learnable scale and shift parameters [24]. We omit this for simplicity.

2
1

2
3

2
5

2
7

2
9

Batch size

20

40

60

80

100

120

A
c
c
u
ra

c
y
 (

%
)

BN BW BW-C16 GW

(a)

2
0

2
2

2
4

2
6

Group number

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

GN

GW

(b)

Figure 1. Effects of batch size (group number) for batch (group)

normalized networks. We train a four-layer multilayer perceptron

(MLP) with 256 neurons in each layer, for MNIST classification.

We evaluate the training (thick ‘plus’ with solid line) and validation

(thin ‘plus’ with dashed line) accuracies at the end of 50 training

epochs. Note that ‘BW-C16’ indicates group-based BW with 16

neurons in each group. We vary the batch size and group number

in (a) and (b), respectively. These results are obtained using a

learning rate of 0.1, but we also obtain similar observations for

other learning rates. Please see the supplementary materials (SM)

for details.

number and d = gc, GN can be represented as follows:

bX = �GN (X; g) = Π
−1(�LN (Π(X))), (4)

where Π
−1 : Rc×gm 7! R

d×m is the inverse operation of

Π. It is clear from Eqn. 4 that LN is a special case of GN

with g = 1. By changing the group number g, GN is more

flexible than LN, enabling it to achieve good performance on

visual tasks limited to small-batch-size training (e.g., object

detection and segmentation [59]).

Whitening. To exploit the advantage of whitening over
standardization in improving the conditioning of optimiza-
tion, Huang et al. proposed decorrelated BN [20], which
performs zero-phase component analysis (ZCA) whitening
to normalize the layer input within a mini-batch, as:

φ
W
ZCA(X) = Σ

�
1

2

d (X−µd1
T ) = DΛ

�
1

2D
T (X−µd1

T ), (5)

where Λ = diag(�̃1, . . . , �̃d) and D = [d1, ...,dd] are the
eigenvalues and associated eigenvectors of Σ, i.e. Σ =
DΛD

T , and Σ = 1
m
(X � µd1

T )(X � µd1
T )T + ✏I is

the covariance matrix of the centered input. One crucial
problem in Eqn. 5 is the eigen-decomposition, which is com-
putationally expensive on a GPU and numerically instable.
To address this issue, iterative normalization (‘ItN’) [22] was

proposed to approximate the ZCA whitening matrix Σ
− 1

2

d
using Newton’s iteration [5]:

φ
W
ItN (X) = Σ

�
1

2

d (X− µd1
T ) =

PTp
tr(Σd)

(X− µd1
T ), (6)

where tr(Σd) indicates the trace of Σd and PT is calculated
iteratively as:

(
P0 = I

Pk = 1

2
(3Pk�1 −P

3
k�1Σ

N
d ), k = 1, 2, ..., T.

(7)

Here, ΣN
d = Σd

tr(Σd)
. Other BW methods also exist for

calculating the whitening matrix [20, 49]; please refer to [27,

21] for more details.

9513



It is necessary for BW to estimate the population statistics

of the whitening matrix bΣ− 1

2

d during inference, like BN.

However, the number of independent parameters in bΣ− 1

2

d of

BW is
d(d+1)

2 , while bΛ− 1

2

d of BN is d. This amplifies the

difficulty in estimation and requires a sufficiently large batch

size for BW to work well (Figure 1). Although group-based

BW [20] — where neurons are divided into groups and BW

is performed within each one — can relieve this issue, it is

still sensitive to the batch size (Figure 1) due to its inherent

drawback of normalizing along the batch dimension.

3. Group Whitening

We propose group whitening (GW). Given a sample x 2
R

d, GW performs normalization as:

Group division : XG = Π(x; g) 2 R
g×c, (8)

Whitening : bXG = Σ
− 1

2

g (XG � µg1
T ), (9)

Inverse group division : x̂ = Π
−1(bXG) 2 R

d, (10)

where Π : R
d 7! R

g×c and its inverse transform Π
−1 :

R
g×c 7! R

d. We can use different whitening operations [20,

49, 27] in Eqn. 9. Here, we use ZCA whitening (Eqn. 5)

and its efficient approximation ‘ItN’ (Eqn 6), since they

work well on discriminative tasks [20, 22, 41, 47, 64]. We

provide the full algorithms (forward and backward passes)

and PyTorch [42] implementations in the SM.

GW avoids normalization along the batch dimension, and

it works stably across a wide range of batch sizes (Figure 1).

GW also ensures that the normalized activation for each

sample has the properties: bXG1 = 0 and 1
c
bXG

bXT
G = I,

which should improve the conditioning, like BW, and benefit

training. We conduct several experiments to validate this,

and the results in Figure 2 show that the group whitened

output (by GW) has significantly better conditioning than

the group standardized one (by GN), which is similar to

normalization along the batch dimension [20]. Note that the

condition number of BW is 1. We also find that GN/GW has

better conditioning with increasing group number. Besides,

we find that BN has better conditioning than GN/GW, which

suggests that normalizing along the batch dimension is better

for decorrelating the data than normalizing along the channel

dimension.

Convolutional layer. For the convolutional input X 2
R

d×m×H×W , where H and W are the height and width of

the feature maps, BN and BW consider each spatial position

in a feature map as a sample [24] and normalize over the

unrolled input X 2 R
d×mHW . In contrast, LN and GN view

each spatial position in a feature map as a neuron [59] and

normalize over the unrolled input X 2 R
dHW×m. Follow-

ing GN, GW also views each spatial position as a neuron,

i.e., GW operations (Eqns. 8, 9 and 10) are performed for

each sample with unrolled input x 2 R
dHW .

2
0

2
2

2
4

Group number

10
2

10
3

10
4

9
0
%

Base BN GN GW

(a)

2
0

2
2

2
4

Group number

10
2

10
3

10
4

9
0
%

Base BN GN GW

(b)

Figure 2. Conditioning analysis on the normalized output. We simu-

late the activations X = f(X0) ∈ R
256⇥1024 using a network f(·),

where X0 is sampled from a Gaussian distribution. We evaluate

the more general condition number with respect to the percentage:

κp = λmax

λp
, where λp is the pd-th eigenvalue (in descending or-

der) and d is the total number of eigenvalues. We show the κ90% of

the covariance matrix of bX normalized by GN/GW, while varying

the group number. ‘Base’ and ‘BN’ indicate the condition number

for X and the batch normalized output, respectively. We use a

one-layer and two-layer MLP as f(·), in (a) and (b), respectively.

Please refer to SM for more results.

Computational complexity. For a convolutional mini-

batch input X 2 R
d×m×H×W , GW using ZCA whitening

(Eqn. 5) costs 2mHWdg +mO(g3). Using the more effi-

cient ‘ItN’ operation (Eqn. 6), GW costs 2mHWdg+mTg3,

where T is the iteration number. The 3 ⇥ 3 convolu-

tion with the same input and output feature maps costs

9mHWd2. The relative cost of GW for a 3⇥ 3 convolution

is 2g
9d + Tg3

9HWd2 .

Difference from group-based BW. Our method is signifi-

cantly different from the group-based BW [20], in which the

whitening operation is also applied within mini-batch data.

Specifically, group-based BW has difficulty in estimating

the population statistics, as discussed in Section 2. Note that

group-based BW is reduced to BN if the channel number in

each group c = 1, while GW is reduced to GN if the group

number g = 1.

4. Revisiting the Constraint of Normalization

The normalization operation ensures that the normalized

output bX = �(X) 2 R
d×m has a stable distribution. This

stability of distribution can be implicitly viewed as the con-

straints imposed on bX, which can be represented as a system

of equations Υφ(bX). For example, BN provides the con-

straints ΥφBN
(bX) as:

mX

j=1

bXij = 0 and
mX

j=1

bX2
ij �m = 0, for i = 1, ..., d. (11)

Here, we define the constraint number of normalization

to quantitatively measure the magnitude of the constraints

provided by the normalization method.

Definition 1 Given the input data X 2 R
d×m, the con-

straint number of a normalization operation �(·), referred

to as ⇣(�;X), is the number of independent equations in

Υφ(bX).

9514



(a) c=2 (b) c=3 (c) c=4 (d) c=8 (e) c=16

(f) m=2 (g) m=3 (h) m=4 (i) m=8 (j) m=16

Figure 3. Illustration of the normalized output of GN/BN. We perform normalization over 1,680 examples sampled from a Gaussian

distribution, varying the channel number for each group c of GN (the upper subfigures) and the batch size m of BN (the lower subfigures).

We plot the bivariate histogram (using hexagonal bins) of the normalized output in the two-dimensional subspace, and marginal histograms

(using rectangular bins) in the one-dimensional subspace.

Normalization along a batch Normalization along a group of neurons

BN BW GN GW

⇣(�;X) 2d d(d+3)
2 2gm mg(g+3)

2

⇣(�;D) 2Nd
m

Nd(d+3)
2m 2gN Ng(g+3)

2

Ranges of m/g m � 2 m � d+3
2 g  d

2 g 
√
8d+9−3

2

Table 1. Summary of ζ(φ;X), ζ(φ;D) and ranges of m/g for normalization methods. The analysis can be naturally extended to CNN,

following how BN (GN) extents from MLP to CNN shown in Section 3. For examples, the number of neurons to be normalized for GN/GW

is d = d0HW , and the number of samples to be normalized for BN/BW is m = m0HW , given the input X ∈ R
d0⇥m0

⇥H⇥W for CNN.

As an example, we have ⇣(�BN ;X) = 2d from Eqn. 11.

Furthermore, given training data D of size N , we consider

the optimization algorithm with batch size m (we assume

N is divisible by m). We calculate the constraint number

of normalization over the entire training data ⇣(�;D). Table

1 summarizes the constraint numbers of the main normal-

ization methods discussed in this paper (please refer to the

SM for derivation details). We can see that the whitening

operation provides significantly stronger constraints than

the standardization operation. Besides, the constrains get

stronger for BN (GN), when reducing (increasing) the batch

size (group number).

4.1. Constraint on Feature Representation

BN’s benefits in accelerating the training of DNNs are

mainly attributed to two reasons: 1) The distribution is more

stable when fixing the first and second momentum of the

activations, which reduces the internal covariant shifts [24];

2) The landscape of the optimization objective is better con-

ditioned [20, 46], by improving the conditioning of the acti-

vation matrix with normalization. Based on these arguments,

GW/GN should have better performance when increasing

the group number, due to the stronger constraints and bet-

ter conditioning. However, we experimentally observe that

GN/GW has significantly degenerated performance when

the group number is too large (Figure 1 (b)), which is similar

to the small-batch-size problem of BN/BW. We investigate

the reason behind this phenomenon.

We first show that the batch size/group number has a
value range, which can be mathematically derived. The
normalization operation can be regarded as a way to find a

solution bX satisfying the constraints Υφ(bX). To ensure the
solution is feasible, it must satisfy the following condition:

ζ(φ;X) ≤ χ(bX), (12)

where �(bX) = md is the number of variables in bX. Based

on Eqn. 12, we have m >= 2 for BN to ensure a feasible

solution. We also provide the ranges of batch size/group

number for other normalization methods in Table 1. Note

that the batch size m should be larger than or equal to d to

achieve a numerically stable solution for BW when using

ZCA whitening in practice [20]. This also applies to GW,

where g should be less than or equal to
p
d.

We then demonstrate that normalization eventually affects

the feature representation in a certain layer. Figure 3 shows

9515



the histogram of normalized output bX, by varying c of GN2

and m of BN. We observe that: 1) the values of bX are heavily

constrained if c or m is too small, e.g., the value of bX is

constrained to be {�1,+1} if c = 2; 2) bX is not Gaussian

if c or m is too small, while BN/GN aims to produce a

normalized output with a Gaussian distribution. We believe

that the constrained feature representation caused by GN/GW

with a large group number is the main factor leading to the

degenerated performance of a network. Besides, we also

observe that the normalized output of GN is more correlated

than that of BN, which supports the claim that BN is more

capable of improving the conditioning of activations than

GN, as shown in Section 3.
We also seek to quantitatively measure the representation

of a feature space. Given a set of features eD 2 R
d×N extract-

ed by a network, we assume the examples of eD belong in a
d-dimensional hypercube V = [�1, 1]d (we can ensure that
this assumption holds by dividing the maximum absolute
value of each dimension). Intuitively, a powerful feature

representation implies that the examples from eD spread over
V with large diversity, while a weak representation indi-
cates that they are limited to certain values without diversity.

We thus define the diversity of eD based on the information
entropy as follows, which can empirically indicate the repre-
sentation ability of the feature space to some degree:

Γd,T (eD) =
TdX

i=1

pi log pi. (13)

Here, V is evenly divided into T d bins, and pi denotes the

probability of an example belonging to the i-th bin. We can

thus calculate Γd,T (eD) by sampling enough examples. How-

ever, calculating Γd,T (eD) with reasonable accuracy requires

O(T d) examples to be sampled from a d-dimensional space.

We thus only calculate Γ2,T (eD) in practice by sampling two

dimensions, and average the results. We show the diversity

of group (batch) normalized features by varying the channels

of each group (batch size) in Figure 4, from which we can

obtain similar conclusions as in Figure 3.

In summary, our qualitative and quantitative analyses

show that group/batch based normalizations have low di-

versity of feature representations when c/m is small. We

believe these constrained feature representations affect the

performance of a network, and can lead to significantly dete-

riorated results when the representation is over-constrained.

4.2. Effect on Representational Capacity of Model

The constraints introduced by normalization are believed

to affect the representational capacity of neural network-

s [24], and thus the learnable scale and shift parameters are

used to recover the representations [24, 4, 20, 59]. However,

such an argument is seldom validated by either theoretical or

2Note that the channel number in each group c =
d
g

. We vary c, rather

than g, for simplifying the discussion.

2 4 8 16

#Channels per group / Batch size

0

5

10

15

D
iv

e
rs

it
y

Base

BN

GN

(a)

2 4 8 16

#Channels per group / Batch size

0

5

10

15

D
iv

e
rs

it
y

Base

BN

GN

(b)

Figure 4. Diversity of group (batch) normalized features when

varying the channels per group (batch size). We sample N =
1, 680, 000 examples and use 1, 0002 bins. We use the sampled

Gaussian data as features in (a) and the output of a one-layer MLP

in (b). Here, ‘Base’ indicates the diversity of unnormalized features.

empirical analysis. Theoretically analyzing the complexity

measure (e.g., VC dimensions [54] or the number of linear

regions [40, 61]) of the representational capacity of neural

networks with normalization is a challenging task, because

normalized networks do not follow the assumptions for cal-

culating linear regions or VC dimensions. Here, we conduct

preliminary experiments, seeking to empirically show how

normalization affects the representational capacity of a net-

work, by varying the constraints imposed on the feature.

We follow the non-parametric randomization tests fitting

random labels [67] to empirically compare the representa-

tional capacity of neural networks. To rule out the optimiza-

tion benefits introduced by normalization, we first conduct

experiments using a linear classifier, where normalization is

also inserted after the linear module. We train over 1, 000
epochs using stochastic gradient descent (SGD) with a batch

size of 16, and report the best training accuracy among the

learning rates in {0.001, 0.005, 0.01, 0.05, 0.1} in Figure 5

(a). We observe that GN and GW have lower training accura-

cy than when normalization is not used, which suggests that

normalization does indeed reduce the model’s representa-

tional capacity in this case. Besides, the accuracy of GN/GW

decreases as the group number increases. This suggests that

the model may have weaker representational ability when in-

creasing the constraints on the feature. Note that we have the

same observations regardless of whether or not the learnable

scale and shift parameters of GN/GW are used.

To further consider the trade-off between the benefits of

normalization on optimization and its constraints on rep-

resentation, we conduct experiments on the one-layer and

four-layer MLPs. The results are shown in Figure 5 (b) and

(c), respectively. We observe that the model with GN/GW

has significantly degenerated training accuracy when g is

too large, which means that a large group number heavily

limits the model’s representational capacity by constraining

the feature representation, as discussed in Section 4.2. We

note that GW is more sensitive to the group number than

GN. The main reason is that ⇣(�GW ;D) is quadratic to g,

while ⇣(�GN ;D) is linear to it, from Table 1. Besides, we

observe that GN and GW still have lower training accuracy

than ‘Base’ on the one-layer MLP, but higher accuracy on

9516



1 2 5

Group number

10

12

14

16

T
ra

in
in

g
 a

c
c
u
ra

c
y
 (

%
)

Base

GN

GW

(a) Linear classifier

2
0

2
2

2
4

2
6

Group number

20

40

60

80

T
ra

in
in

g
 a

c
c
u

ra
c
y
 (

%
)

Base

GN

GW

(b) One-layer MLP

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

Group number

85

90

95

100

T
ra

in
in

g
 a

c
c
u

ra
c
y
 (

%
)

Base

GN

GW

(c) Four-layer MLP

Figure 5. Comparison of model representational capacity when fitting random labels [67] on MNIST dataset using different architectures.

We vary the group number of GN/GW and evaluate the training accuracy. ‘Base’ indicates the model without normalization. (a) Linear

classifier; (b) One-layer MLP with 256 neurons in each layer; (c) Four-layer MLP with 1,280 neurons in each layer.

the four-layer MLP if the group number g is not too large.

This suggests that the benefits of normalization on optimiza-

tion dominate if the model’s representation is not too limited.

We also observe that the best training accuracy of GW is

higher than that of GN. We attribute this to the fact that the

whitening operation is better for improving the conditioning

of optimization, compared to standardization. We also con-

duct similar experiments on convolutional neural networks

(CNNs). Pleaser refer to the SM for details.

4.3. Discussion of Previous Work

Previous analyses on BN are mainly derived from the

perspective of optimization [46, 33, 28, 8]. One argument

is that BN can improve the conditioning of the optimization

problem [46, 8, 13, 26, 11], either by avoiding the rank

collapse of pre-activation matrices [11, 19] or alleviating

the pathological sharpness of the landscape [46, 26, 19].

This argument has been further investigated by computing

the spectrum of the Hessian for a large-scale dataset [13].

The improved conditioning enables large learning rates, thus

improving the generalization [6, 38]. Another argument is

that BN is scale invariant [24, 4], enabling it to adaptively

adjust the learning rate [9, 17, 1, 8, 68, 32], which stabilizes

and further accelerates training [24, 4]. Other analyses focus

on investigating the signal and gradient propagation, either

by exploiting mean-field theory [63, 57], or a neural tangent

kernel (NTK) [25].

Different from these works, we are the first to investigate

how BN/GN affects a model’s representational capacity, by

analyzing the constraint on the representation of internal

features. This opens new doors in analyzing and understand-

ing normalization methods. We also investigate how batch

size affects the training performance of batch normalized

networks (Figure 1 (a)), from the perspective of a mod-

el’s representational capacity. Several works [48, 22, 21]

have shown that batch size is related to the magnitude of

stochasticity [2, 53] introduced by BN, which also affects

the model’s training performance. However, the stochastici-

ty analysis [22] is specific to normalization along the batch

dimension, and cannot explain why GN with a large group

number has significantly worse performance (Figure 1 (b)).

Our work provides a unified analysis for batch and group

8 16 32 64 128
Group number

72

74

76

78

80

T
ra

in
in

g
 a

c
c
u
ra

c
y
 (

%
) GN

GW

77.24

78.22

79.24
78.96

78.14

79.04

77.36

78.44

75.72
75.98

(a) Training accuracy

8 16 32 64 128
Group number

72

74

76

78

80

V
a
lid

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
) GN

GW

75.08

74.47

75.20 75.25

75.71
75.93

75.62

76.32

74.55

75.07

(b) Validation accuracy

Figure 6. Effects of group number of GW/GN on ResNet-50 for Im-

ageNet classification. We evaluate the top-1 training and validation

accuracies.

normalized networks.

5. Large-Scale Visual Recognition Tasks

We investigate the effectiveness of our proposed GW on

large-scale ImageNet classification [45], as well as COCO

object detection and segmentation [35]. We use the more

efficient and numerically stable ‘ItN’ (with T = 5) [22] to

calculate the whitening matrix for both GW and BW, in all

experiments. Our implementation is based on PyTorch [42].

5.1. ImageNet Classification

We experiment on the ImageNet dataset with 1,000 class-

es [45]. We use the official 1.28M training images as a

training set, and evaluate the top-1 accuracy on a single-crop

of 224x224 pixels in the validation set with 50k images. We

investigate the ResNet [15] and ResNeXt [60] models.

5.1.1 Ablation Study on ResNet-50

We follow the same experimental setup as described in [15],

except that we use two GPUs and train over 100 epochs. We

apply SGD with a mini-batch size of 256, momentum of 0.9

and weight decay of 0.0001. The initial learning rate is set to

0.1 and divided by 10 at 30, 60 and 90 epochs. Our baseline

is the 50-layer ResNet (ResNet-50) trained with BN [24].

Effects of group number. We investigate the effects of

group number for GW/GN, which we use to replace the B-

N of ResNet-50. We vary the group number g ranging in

{8, 16, 32, 64, 128} (we use the channel number if it is less

than the group number in a given layer), and report the train-

ing and validation accuracies in Figure 6. We can see that

9517



S1 S1-B1 S1-B2 S1-B3 S1-B12

Baseline (BN) 76.23 76.23 76.23 76.23 76.23

BW [22] 76.58 (↑0.35) 76.68 (↑0.45) 76.86 (↑0.63) 76.53 (↑0.30) 76.60 (↑0.37)
BWΣ [21] 76.63 (↑0.40) 76.80 (↑0.57) 76.76 (↑0.53) 76.52 (↑0.29) 76.71 (↑0.48)

GW 76.76 (↑0.53) 77.62 (↑1.39) 77.72 (↑1.49) 77.47 (↑1.24) 77.45 (↑1.22)

Table 2. Effects of position when applying GW on ResNet-50 for ImageNet classification. We evaluate the top-1 validation accuracy on five

architectures (S1, S1-B1, S1-B2, S1-B3 and S1-B12).

Method ResNet-50 ResNet-101 ResNeXt-50 ResNeXt-101

Baseline (BN) [24] 76.23 77.69 77.01 79.29

GN [59] 75.71 (↓0.52) 77.20 (↓0.49) 75.69 (↓1.32) 78.00 (↓1.29)
BWΣ [21] 77.21 (↑0.98) 78.27 (↑0.58) 77.29 (↑0.28) 79.43 (↑0.14)

GW 77.72 (↑1.49) 78.71 (↑1.02) 78.43 (↑1.42) 80.43 (↑1.14)

Table 3. Comparison of validation accuracy on ResNets [15] and ResNeXts [60] for ImageNet. Note that we use an additional layer for

BWΣ to learn the decorrelated features, as recommended in [21].

GW has consistent improvement over GN in training accura-

cy, across all values of g, which indicates the advantage of

the whitening operation over standardization in terms of op-

timization. Besides, GW also has better validation accuracy

than GN. We believe this may be because the stronger con-

straints of GW contribute to generalization. We also observe

that both GN and GW have significantly reduced training

accuracy when the group number is too large (e.g., g=128),

which is consistent with the previous results in Figure 5.

Positions of GW. Although GW (g=64) provides slight

improvement over the BN baseline (76.32% vs. 76.23%), it

has a 90% additional time cost3 on ResNet-50. Based on the

analysis in Section 4, it is reasonable to only partially replace

BN with GW in networks, because 1) normalization within

a batch or a group of channels both have their advantages in

improving the optimization and generalization; 2) whitening

can achieve better optimization efficiency and generaliza-

tion than standardization [20], but at a higher computational

cost [20, 22, 49].

Here, we investigate the position at which to apply G-

W (g=64) in ResNet-50. ResNet and ResNeXt are both

composed primarily of a stem layer and multiple bottleneck

blocks [15]. We consider: 1) replacing the BN in the stem

layer with GW (referred to as ‘S1’); and 2) replacing the 1st,
2nd, 1st & 2nd, and 3rd BNs in all the bottleneck blocks,

which are referred to as ‘B1’, ‘B2’, ‘B12’ and ‘B3’, respec-

tively. We investigate five architectures, S1, S1-B1, S1-B2,

S1-B3 and S1-B12, which have 1, 17, 17, 17 and 33 GW

modules, respectively. We also perform experiments using

BW [22] and BWΣ [21] (employing a covariance matrix to

estimate the population statistics of BW) for contrast.

We report the results in Table 2. BW/BWΣ improve their

BN counterparts on all architectures by a clear margin, which

demonstrates the advantage of the whitening operation over

standardization [22]. GW provides significant improvements

3Note that our implementations are based on the APIs provided by

PyTorch and are not finely optimized. For more discussion on time costs,

please refer to the SM.

over BW/BWΣ on S1-B1, S1-B2, S1-B3 and S1-B12 (an

absolute improvement of 0.9% on average). We attribute

this to the advantage of GW in avoiding the estimation of

population statistics. We also observe that GW has a slightly

worse performance on S1-B12 than on S1-B1/S1-B2. We

believe there is a trade-off between GW and BN, in terms of

affecting the model’s representational capacity, optimization

efficiency and generalization.

We also investigate the effect of inserting a GW/BW layer

after the last average pooling (before the last linear layer) to

learn the decorrelated feature representations, as proposed

in [22]. This can slightly improve the performance (0.10%
on average) when using GW, though the net gain is smaller

than using BW (0.22%) or BWΣ (0.43%). Please refer to

the SM for details.

5.1.2 Validation on Larger Models

In this section, we further validate the effectiveness of GW

on ResNet-101 [15], ResNeXt-50 and ResNeXt-101 [60].

We apply GW (g=64) in these models following the S1-B2

architecture, which achieves the best performance (Table 2)

without significantly increasing the computational cost (it

is only increased by roughly 23%). For comparison, we

also apply BWΣ following the ‘S1-B2’ architecture, com-

bining the learning of decorrelated features [21] (BWΣ has a

slightly improved performance compared to BW [21]). Our

baselines are the original networks trained with BN, and we

also provide the results trained with GN.

The results are shown in Table 3. We can see that 1) our

method improves the baseline (BN) by a significant margin

(between 1.02% and 1.49%); and 2) BWΣ has consistently

better performance than BN, but the net gain is reduced on

wider networks (RexNeXt-50 and ResNeXt-101), which is

probably caused by the difficulty in estimating the population

statistics. We also conduct experiments using more advanced

training strategies (e.g., cosine learning rate decay [36], label

smoothing [16] and mixup [69]) and GW again improves the

baseline consistently. Please refer to the SM for details.

9518



2fc head box 4conv1fc head box

Method APbbox APbbox
50 APbbox

75 APbbox APbbox
50 APbbox

75

BN† 36.31 58.39 38.83 36.39 57.22 39.56

GN 36.62(↑0.31) 58.91(↑0.52) 39.32(↑0.49) 37.86(↑1.47) 58.96(↑1.74) 40.76(↑1.20)
GW 38.13(↑1.82) 60.63(↑2.24) 41.08(↑2.25) 39.60(↑3.21) 61.12(↑3.90) 43.25(↑3.69)

Table 4. Detection results (%) on COCO using the Faster R-CNN framework implemented in [39]. We use ResNet-50 as the backbone,

combined with FPN. All models are trained by 1x lr scheduling (90k iterations), with a batch size of 16 on eight GPUs.

Method APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

BN† 42.24 63.00 46.19 37.53 59.82 39.96

GN 42.18(↓0.06) 63.22(↑0.22) 46.00(↓0.19) 37.54(↑0.01) 60.18(↑0.36) 39.99(↑0.03)
GW 44.41(↑2.17) 65.36(↑2.36) 48.67(↑2.48) 39.17(↑1.64) 62.13(↑2.31) 41.95(↑1.99)

Table 5. Detection and segmentation results (%) on COCO using the Mask R-CNN framework implemented in [39]. We use ResNeXt-101

as the backbone, combined with FPN. All models are trained by 1x lr scheduling (180k iterations), with a batch size of 8 on eight GPUs.

5.2. Object Detection and Segmentation on COCO

We fine-tune the models trained on ImageNet for object

detection and segmentation on the COCO benchmark [35].

We experiment on the Faster R-CNN [44] and Mask R-

CNN [14] frameworks using the publicly available codebase

‘maskrcnn-benchmark’ [39]. We train the models on the CO-

CO train2017 set and evaluate on the COCO val2017 set.

We report the standard COCO metrics of average precision

(AP), AP50, and AP75 for bounding box detection (APbbox)

and instance segmentation (APm) [35]. For BN, we use

its frozen version (indicated by BN†) when fine-tuning for

object detection [59].

Results on Faster R-CNN. For the Faster R-CNN frame-

work, we use the ResNet-50 models pre-trained on ImageNet

(Table 3) as the backbones, combined with the feature pyra-

mid network (FPN) [34]. We consider two setups: 1) we use

the box head consisting of two fully connected layers (‘2fc’)

without a normalization layer, as proposed in [34]; 2) fol-

lowing [59], we replace the ‘2fc’ box head with ‘4conv1fc’,

which can better leverage GN, and apply GN/GW to the FPN

and box head. We use the default hypeparameter configura-

tions from the training scripts provided by the codebase [39]

for Faster R-CNN. The results are reported in Table 4. The

GW pre-trained model improves BN† and GN by 1.82%
and 1.51% AP, respectively. By adding GW/GN to the FPN

and ‘4conv1fc’ head box, GW improves BN† and GN by

3.21% and 1.74% AP, respectively.

Results on Mask R-CNN. For the Mask R-CNN frame-

work, we use the ResNeXt-101 [60] models pre-trained on

ImageNet (Table 3) as the backbones, combined with FPN.

We use the ‘4conv1fc’ box head, and apply GN/GW to the

FPN, box head and mask head. We again use the default

hypeparameter configurations from the training scripts pro-

vided by the codebase for Mask R-CNN [39]. The results

are shown in Table 5. GW achieves 44.41% in box AP and

39.17% in mask AP, an improvement over BN† of 2.17%
and 1.64%, respectively.

Small-batch-size training of BNs. Here, we further show

that the network mixed with BNs and GWs can still work

well under small-batch-size scenarios. As illustrated in [23],

one main cause of BN’s small-batch-size problem is the

inaccurate estimation between training and inference distri-

butions, which is amplified for a network with increased BN

layers (these inaccuracies are compounded with depth). We

believe inserting GW (which ensures the same distribution

between training and inference) between consecutive BN

layers will ‘break’ these compounding inaccuracies, thus

relieving the small-batch-size problem of BNs in a network.

We train Faster R-CNN from scratch and use normal BN that

is not frozen. We follow the same setup as in the previous

experiment (e.g., two images/GPUs). We find that using all

BNs only obtains 25.10% AP, while 28.37% AP is achieved

using our mixture of BNs and GWs (the S1-B2 architecture).

Note that using all GNs (GWs) obtains 28.19% (28.79%)

AP. This experiment further validates that our mixture of

BNs and GWs may also help mitigate the small-batch-size

problem of the BNs in a network.

6. Conclusion and Future Work

In this paper, we proposed group whitening (GW), which

combines the advantages of normalization within a group

of channels and the whitening operation. The effective-

ness of GW was validated on large-scale visual recognition

tasks. Furthermore, we also analyzed the feature constraints

imposed by normalization methods, enabling further under-

standing of how the batch size (group number) affects the

performance of batch (group) normalized networks from

the perspective of representational capacity. This analysis

can provide theoretical guidance for applying GW and other

normalization methods in practice. It would be interesting to

build a unified framework to further investigate the effects

of normalization in representation, optimization and general-

ization, by combining the proposed constraint analysis with

the previous conditioning analysis [31, 19] and stochastic-

ity analysis [3, 21]. Our GW has also the potentialities to

be used as a basic module in the switchable normalization

methods [37, 41, 70] to improve their performance.

9519



References

[1] Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical

analysis of auto rate-tuning by batch normalization. In ICLR,

2019. 6

[2] Andrei Atanov, Arsenii Ashukha, Dmitry Molchanov, Kirill

Neklyudov, and Dmitry Vetrov. Uncertainty estimation via

stochastic batch normalization. In ICLR Workshop, 2018. 6

[3] Hossein Azizpour, Mattias Teye, and Kevin Smith. Bayesian

uncertainty estimation for batch normalized deep networks.

In International Conference on Machine Learning (ICML),

2018. 8

[4] Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. Layer

normalization. arXiv preprint arXiv:1607.06450, 2016. 1, 2,

5, 6

[5] Dario A. Bini, Nicholas J. Higham, and Beatrice Meini. Al-

gorithms for the matrix pth root. Numerical Algorithms,

39(4):349–378, Aug 2005. 2

[6] Johan Bjorck, Carla Gomes, and Bart Selman. Understanding

batch normalization. In NeurIPS, 2018. 6

[7] Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu,

and Liwei Wang. Graphnorm: A principled approach to

accelerating graph neural network training. arXiv preprint

arXiv:2009.03294, 2020. 1

[8] Yongqiang Cai, Qianxiao Li, and Zuowei Shen. A quantita-

tive analysis of the effect of batch normalization on gradient

descent. In ICML, 2019. 6

[9] Minhyung Cho and Jaehyung Lee. Riemannian approach to

batch normalization. In NeurIPS, 2017. 6

[10] Tim Cooijmans, Nicolas Ballas, César Laurent, and Aaron C.

Courville. Recurrent batch normalization. In ICLR, 2017. 2

[11] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hof-

mann, and Aurelien Lucchi. Theoretical understanding of

batch-normalization: A markov chain perspective. arXiv

preprint arXiv:2003.01652, 2020. 6

[12] Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and

koray kavukcuoglu. Natural neural networks. In NeurIPS,

2015. 1

[13] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An in-

vestigation into neural net optimization via hessian eigenvalue

density. In ICML, 2019. 6

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask R-CNN. In ICCV, 2017. 8

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

1, 2, 6, 7

[16] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan

Xie, and Mu Li. Bag of tricks for image classification with

convolutional neural networks. In CVPR, 2019. 7

[17] Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry.

Norm matters: efficient and accurate normalization schemes

in deep networks. In NeurIPS, 2018. 6

[18] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely

connected convolutional networks. In CVPR, 2017. 1

[19] Lei Huang, Jie Qin, Li Liu, Fan Zhu, and Ling Shao. Layer-

wise conditioning analysis in exploring the learning dynamics

of dnns. In ECCV, 2020. 6, 8

[20] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated

batch normalization. In CVPR, 2018. 1, 2, 3, 4, 5, 7

[21] Lei Huang, Lei Zhao, Yi Zhou, Fan Zhu, Li Liu, and Ling

Shao. An investigation into the stochasticity of batch whiten-

ing. In CVPR, 2020. 2, 6, 7, 8

[22] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Itera-

tive normalization: Beyond standardization towards efficient

whitening. In CVPR, 2019. 1, 2, 3, 6, 7

[23] Sergey Ioffe. Batch renormalization: Towards reducing mini-

batch dependence in batch-normalized models. In NeurIPS,

2017. 1, 2, 8

[24] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 1, 2, 3, 4, 5, 6, 7

[25] Arthur Jacot, Franck Gabriel, and Clément Hongler. Freeze

and chaos for dnns: an ntk view of batch normalization,

checkerboard and boundary effects. arXiv preprint arX-

iv:1907.05715, 2019. 6

[26] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The

normalization method for alleviating pathological sharpness

in wide neural networks. In NeurIPS. 2019. 6

[27] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Opti-

mal whitening and decorrelation. The American Statistician,

72(4):309–314, 2018. 2, 3

[28] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas

Hofmann, Ming Zhou, and Klaus Neymeyr. Exponential

convergence rates for batch normalization: The power of

length-direction decoupling in non-convex optimization. In

AISTATS, 2019. 6

[29] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan

Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.

Big transfer (bit): General visual representation learning. In

ECCV, 2020. 1

[30] César Laurent, Gabriel Pereyra, Philemon Brakel, Ying

Zhang, and Yoshua Bengio. Batch normalized recurrent neu-

ral networks. In ICASSP, 2016. 2

[31] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-

Robert Müller. Effiicient backprop. In Neural Networks:

Tricks of the Trade, pages 9–50, 1998. 1, 8

[32] Zhiyuan Li and Sanjeev Arora. An exponential learning rate

schedule for batch normalized networks. In ICLR, 2020. 6

[33] Xiangru Lian and Ji Liu. Revisit batch normalization: New

understanding and refinement via composition optimization.

In AISTATS, 2019. 6

[34] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,

Bharath Hariharan, and Serge J. Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 8

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 2, 6, 8

[36] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient

descent with restarts. In ICLR, 2017. 7

[37] Ping Luo, Jiamin Ren, and Zhanglin Peng. Differentiable

learning-to-normalize via switchable normalization. arXiv

preprint arXiv:1806.10779, 2018. 1, 8

9520



[38] Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng.

Towards understanding regularization in batch normalization.

In ICLR, 2019. 6

[39] Francisco Massa and Ross Girshick. maskrcnn-benchmark:

Fast, modular reference implementation of Instance Segmen-

tation and Object Detection algorithms in PyTorch. https:

//github.com/facebookresearch/maskrcnn-

benchmark, 2018. Accessed: 09-26-2019. 8

[40] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and

Yoshua Bengio. On the number of linear regions of deep

neural networks. In NeurIPS, 2014. 5

[41] Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang,

and Ping Luo. Switchable whitening for deep representation

learning. In ICCV, 2019. 1, 3, 8

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NeurIPS Autodiff Workshop,

2017. 3, 6

[43] Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz,

and Richard S. Zemel. Normalizing the normalizers: Compar-

ing and extending network normalization schemes. In ICLR,

2017. 1

[44] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015. 8

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li

Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–

252, 2015. 2, 6

[46] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Alek-

sander Madry. How does batch normalization help optimiza-

tion? In NeurIPS, 2018. 1, 4, 6

[47] Wenqi Shao, Shitao Tang, Xingang Pan, Ping Tan, Xiaogang

Wang, and Ping Luo. Channel equilibrium networks for

learning deep representation. In ICML, 2020. 3

[48] Alexander Shekhovtsov and Boris Flach. Stochastic normal-

izations as bayesian learning. In ACCV, 2018. 1, 6

[49] Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe.

Whitening and coloring batch transform for gans. In ICLR,

2019. 2, 3, 7

[50] Saurabh Singh and Abhinav Shrivastava. Evalnorm: Estimat-

ing batch normalization statistics for evaluation. In ICCV,

2019. 1

[51] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke.

Inception-v4, inception-resnet and the impact of residual con-

nections on learning. In AAAI, 2017. 1

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-

ception architecture for computer vision. In CVPR, 2016.

1

[53] Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian

uncertainty estimation for batch normalized deep networks.

In ICML, 2018. 6

[54] Vladimir N Vapnik. An overview of statistical learning theory.

IEEE transactions on neural networks, 10(5):988–999, 1999.

5

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 2

[56] Guangrun Wang, Jiefeng Peng, Ping Luo, Xinjiang Wang,

and Liang Lin. Kalman normalization: Normalizing internal

representations across network layers. In NeurIPS, 2018. 1

[57] Mingwei Wei, James Stokes, and David J. Schwab. Mean-

field analysis of batch normalization. arXiv preprint arX-

iv:1903.02606, 2019. 6

[58] Simon Wiesler and Hermann Ney. A convergence analysis of

log-linear training. In NeurIPS, 2011. 1

[59] Yuxin Wu and Kaiming He. Group normalization. In ECCV,

2018. 1, 2, 3, 5, 7, 8

[60] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017. 2, 6, 7, 8

[61] Huan Xiong, Lei Huang, Mengyang Yu, Li Liu, Fan Zhu, and

Ling Shao. On the number of linear regions of convolutional

neural networks. In ICML, 2020. 5

[62] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and

Junyang Lin. Understanding and improving layer normaliza-

tion. In NeurIPS, 2019. 2

[63] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-

Dickstein, and Samuel S. Schoenholz. A mean field theory of

batch normalization. In ICLR, 2019. 6

[64] Chengxi Ye, Matthew Evanusa, Hua He, Anton Mitrokhin,

Tom Goldstein, James A. Yorke, Cornelia Fermuller, and

Yiannis Aloimonos. Network deconvolution. In ICLR, 2020.

3

[65] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao,

Kai Chen, Mohammad Norouzi, and Quoc V Le. Qanet:

Combining local convolution with global self-attention for

reading comprehension. In ICLR, 2018. 2

[66] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In BMVC, 2016. 1

[67] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,

and Oriol Vinyals. Understanding deep learning requires

rethinking generalization. In ICLR, 2017. 5, 6

[68] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger B.

Grosse. Three mechanisms of weight decay regularization.

In ICLR, 2019. 6

[69] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In ICLR, 2018. 7

[70] Ruimao Zhang, Zhanglin Peng, Lingyun Wu, Zhen Li, and

Ping Luo. Exemplar normalization for learning deep repre-

sentation. In CVPR, 2020. 8

9521


