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Abstract

An LBYL (‘Look Before You Leap’) Network is proposed

for end-to-end trainable one-stage visual grounding. The

idea behind LBYL-Net is intuitive and straightforward: we

follow a language’s description to localize the target ob-

ject based on its relative spatial relation to ‘Landmarks’,

which is characterized by some spatial positional words

and some descriptive words about the object. The core

of our LBYL-Net is a landmark feature convolution mod-

ule that transmits the visual features with the guidance of

linguistic description along with different directions. Con-

sequently, such a module encodes the relative spatial po-

sitional relations between the current object and its con-

text. Then we combine the contextual information from the

landmark feature convolution module with the target’s vi-

sual features for grounding. To make this landmark feature

convolution light-weight, we introduce a dynamic program-

ming algorithm (termed dynamic max pooling) with low

complexity to extract the landmark feature. Thanks to the

landmark feature convolution module, we mimic the human

behavior of ‘Look Before You Leap’ to design an LBYL-Net,

which takes full consideration of contextual information.

Extensive experiments show our method’s effectiveness in

four grounding datasets. Specifically, our LBYL-Net out-

performs all state-of-the-art two-stage and one-stage meth-

ods on ReferitGame. On RefCOCO and RefCOCO+, Our

LBYL-Net also achieves comparable results or even better

results than existing one-stage methods. Code is available

at https://github.com/svip-lab/LBYLNet.

1. Introduction

Humans often refer to objects in an image by describing

their relationships with other entities, e.g. “laptop on table”,

and understanding their relationships is vital to compre-

† Corresponding author

Query expression: the guy in brown on the right.

Figure 1. Illustration on how LBYL-Net uses contextual cues. On

the left figure, the target location (green) perceives information

from landmarks (red) to localize itself. In this case, landmarks

attend to the attribute brown to differ from the other guy. The right

figure shows our predicted result (blue box) and the ground-truth

(yellow box).

hend referential expressions. Visual grounding, aiming to

localize the entities described by referential expressions, in-

herently requires contextual information for grounding the

target. By considering relationship of objects, several re-

cent studies have achieved promising results [44, 24, 9, 43].

In particular, these methods usually leverage a two-stage

paradigm, where they first extract region proposals as can-

didates and then rank the region-expression pairs as a way

of metric learning.

Although effective, these two-stage methods have the

following defects: (i) two stages bring time complexity,

which hinders these methods from being real-time. (ii)

since only objects in the pre-defined categories are con-

sidered, the contextual cues in the whole scene may not

be fully exploited. Motivated by the success of one-stage

detection [28, 19], one-stage based visual grounding has

gained great interest, where the pipeline is simplified, and

the inference is accelerated with a detecting and matching

simultaneously paradigm [39, 29]. These detection-based

one-stage approaches, however, still perform localization

on grid features indivisually. The contextual information in

the whole scene, especially relationships between objects,
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is not thoroughly investigated yet, making them inferior to

their two-stage counterparts.

From this perspective, it is desirable to enable relation-

ship modeling in one-stage visual grounding since the ob-

ject requires perceiving the relational entities mentioned by

the language to localize itself, e.g. “the chair with owl on

it”. We enable the grid features to capture rich contextual

cues for better localization by introducing the concepts of

Landmark Features and Landmark Feature Convolution.

To begin with, in our real life, we usually judge our lo-

cation or positions of other buildings by using an easily no-

ticed building, which is called Landmark. Similarly, in the

image domain of visual grounding, the landmarks can be

regarded as those locations that are helpful for object lo-

calization. Figure 1 shows the visualization of landmarks

in an image given the query language. These landmarks

might fall on the background, other objects or the object

itself to be located as long as they have helpful semantic

cues. The network could extract the Landmark Features,

which contains the global contextual information from these

landmarks. To fully integrate this contextual information to

improve the localization, these landmark features are propa-

gated to the target object from different orientations to char-

acterize relative positions by an efficient dynamic program-

ming algorithm, termed Dynamic Max Pooling. By aggre-

gating landmark features with a standard convolution opera-

tion, the grid features are equipped with (i) global receptive

field (ii) direction-awareness. We call the whole process as

Landmark Feature Convolution.

Considering the long-range context, we propose a novel

one-stage visual grounding framework. Our network first

applies feature pyramid network (FPN) [15] to extract vi-

sual features of objects from different scales, of which ef-

fectiveness has been proven for better object localization.

A landmark feature convolution is then employed to ex-

tract contextual information of objects from different ori-

entations, for a better characterizing relationship to objects

mentioned by expressions. Since we mimic the ‘Look Be-

fore You Leap’ behavior of us humans in visual grounding,

we term our method as LBYL-Net.

We summarize our main contributions as follows:

• We propose a novel LBYL-Net for one-stage visual

grounding, which combines the visual feature of ob-

jects mentioned in the description as well as landmark

features of the spatial relationships between different

objects for target localization;

• A landmark features convolution is proposed, which

has a global receptive field but without introducing ex-

tra parameter and complexity. We showcase it’s su-

periority over related convolutional modules, i.e. di-

lated convolution [41], deformable convolution [4] and

Non-Local module [34].

• Extensive experiments show the effectiveness and effi-

ciency of our LBYL-Net on four grounding datasets.

Especially, our method achieves state-of-the-art per-

formance on ReferitGame.

2. Related Work

Two-Stage Visual Grounding. Probably motivated by the

evidence that regions of interest can provide better localiza-

tion of individual entities and the ease to build their rela-

tional connections, the two-stage have become the de-facto

approaches over a period of time. Typically, different ap-

proaches differ in how they represent the context. Mao et

al. [23] and Hu et al. [10] use the whole image as a global

context, while Yu et al. [44] directly pool visual feature

from nearby objects as a way of modeling visual differ-

ences, showing that focus on the relationship between ob-

jects can achieve better results. Furthermore, the context

in [24, 9] is regarded as weak supervision signals of unan-

notated objects, and multiple instances learning [7] is then

adopted to maximize the joint likelihood of all object pairs.

However, the above modeling may oversimplify the number

of contextual objects to a fixed size, e.g., one object as the

contextual information. To this end, Zhang et al. [47] gen-

erates an attention map over all the objects as contextual in-

formation to approximate the combinatorial context config-

urations using a Variational Bayesian framework. For more

detailed visual-language alignment, attention mechanisms

are also widely adopted to fragment language to match the

targets or contextual objects [5, 43, 48]. Unlike them, we

think context can present arbitrarily within the whole scene

and fully integrate them into a one-stage framework.

One-Stage Visual Grounding. Before using one-stage ob-

ject detectors, several methods have attempted to directly

regress the bounding box from the whole image. However,

these frameworks often suffer from a lower recall of ob-

jects, making them inferior to the two-stage counterparts.

Some attention-based techniques are employed to enhance

the local features of the target [8]. Besides, Yeh et al. [40]

use a subwindow search to find the location that minimizes

the energy function. Encouraged by the prominent one-

stage detectors (e.g., YOLO [28], SSD [19]), many recent

one-stage approaches have regarded proposals as grids in

the feature map and directly regress the bounding box from

the grid features responsible for detection [39, 29]. While

achieving a large-margin improvement compared with that

try to directly regress object from the entire image, such

progress may attribute to the robust local features represen-

tation on the grid. Another line to improve one-stage visual

grounding is to apply complex language modeling, such as

decomposing the longer phrase into multiple parts [38]. In

this work, we do not use complex techniques for language

modeling. We show that by simply considering the context

within the scene, our network can show competitive results.
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3. Landmark Feature Convolution

We first summarize the most common convolutions,

which we categorize into the family of point-based sam-

pling strategy, and along the way, discuss their relations,

advantages and limitations. After that, we introduce our

proposed region-based sampling strategy, followed by the

landmark feature convolution as well as its formulation and

implementation.

3.1. Pointbased Sampling

v

(a) Standard Conv.

v

(b) Dilated Conv.

v

(c) Defrormable Conv.

Figure 2. A graphical view of different point-based convolutions.

Given an input feature map X = {xv : v ∈ V } with

node feature xv ∈ R
c, a point-based convolution learns a

representation vector yv by

yv = SUM({W(u,v) · xu : ∀u ∈ N (v) ∪ {v}}), (1)

where v ∈ V is the location of the node, N (v) is the neigh-

borhood of node v and W(u,v) parameterizes the spatial re-

lation of node u and node v. In the context of image feature

maps, a node is the same as a location, so that we use both

notations interchangeably. Different convolutions have dif-

ferent sampling strategies N (v). That is, how we sample

nodes for convolution to represent the output vector yv .

Standard Convolution. In a 3 × 3 convolution kernel, a

regurlar grid window R is used, which can be represented

as a list of offests. Then the sampled neighbor N (v), or

we called receptive field, is equal to {v + o : ∀o ∈ R},

as shown in Figure 2 (a). Notably, the parameter W is not

shared among sampled locations, such that the spatial rela-

tions between node v and its neighborhood nodes u ∈ N (v)
can be explicitly captured. This property enables the convo-

lution to detect meaningful patterns, such as line segments

and corners. Theoretically, the receptive field grows as a

convolutional layers stack, allowing deep CNNs to perform

various high-level semantic tasks, such as object recogni-

tion, face detection, and semantic segmentation. However,

the effecive receptive field often occupies a fraction of the

full theoratical receptive field and converges to a Gaussian,

making recognizing large objects and long-range modeling

still challenge [22].

Dilated Convolution. To model long-range context, one

solution is to increase the number of sampling points to en-

large receptive field, such as morphing the kernel size from

3 × 3 to 5 × 5. However, this substantially improves the

number of parameters and brings the risk of over-fitting. To

this end, the sampling window of a 3×3 kernel is dilated to

a 5 × 5 grid window, resulting in a dilated convolution (in

this case, dilation is 2) [41], as shown in Figure 2 (b).

By enlarging the receptive field without introducing ex-

tra parameters, dilated convolution has become the de-facto

technique to aggregate multi-scale context and hence has

advanced a variety of researches [2, 3]. However, due to the

sparse topology of sampling locations, dilated convolution

can suffer from gridding artifacts [42, 35]. In visual ground-

ing, this can hinder relation modeling of objects since their

spatial positions can be arbitrary.

Deformable Convolution. Due to the fixed topology of

sampling locations, the aforementioned CNNs are inher-

ently limited to model large, unkown transformations [4].

Deformable convolution relieves this issue by adding learn-

able 2D offsets to the regular grid via additional convolu-

tional layers [4]. That is, transforming N (v) = {v + o :
∀o ∈ R} to N (v) = {v + o + ∆o : ∀o ∈ R}, where ∆o
is a leraned offset. After that, the node features are sampled

from the transformed N (v) via bilinear interpolation. The

illustrasion is shown in Figure 2 (c).

While deformable convolution excels in recognize ob-

jects by morphing the kernels to intra-object geometries,

little do we know that such deformation can generalize to

model inter-object relations, particularly in the context of

visual grounding. One potential is that it may fail when

modeling relations across very long distances since the

learned offsets are expected to be constrained by the recep-

tive field of their producers, i.e. the standard CNNs.

Graph Convolution. By regarding any pair of points have

an edge, one can apply graph convolution on node v to have

a global receptive field. For example, Non-Local module

[34] update yv by

yv = SUM{f(xv, xu) ·W · xu : ∀u ∈ V }, (2)

where f(xv, xu) is a affinity between xv, xu, and W is

shared for all locations. Since W is shared, the ability to

represent spatial relations relies on f(xv, xu), which re-

quires V has a suitable positional embedding. While appli-

cable, how to effectively represent relative positional em-

bedding still remains unclear.

3.2. Regionbased Sampling

To overcome the gridding artifacts and receptive field

limitations of point-based convolutions, we proposed a

region-based sampling strategy for convolution. That is, we

set some axes on the node v to part the whole feature map

into several sub-regions and update the representation of v
by aggregating representations from each region. Formally,

we update the representation of node v by

yv = SUM({W(v,G) · hG : ∀G ∈ Pv(V )}), (3)
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v

G

(a) P = 2.

v

G

(b) P = 4.

v

G

(c) P = 8.

Figure 3. Some variants of our region-based convolution. P = k

denotes that we divide the whole feature map V into k groups, i.e.

‖P(V )‖ = k. For clarity, only one group (G) is highlighted.

where Pv denotes the partition function P over the input

feature map V based on node v, and G is a group of nodes

that shares similar spatial relation to node v, and hG is

yielded from G, which we call landmark feature. There are

a variety of partitions P , as shown in Figure 3. For P = 2
in Figure 3 (a), the nodes are parted into two groups accord-

ing to the vertical axis, such that one group is to the left of

node v and the other is to the right. By parameterizing two

groups differently, the convolution can specialize in detect-

ing horizontal spatial relations and hence help to ground the

target. Namely, given the expression “man to the right of

car”, the likelihood of the nodes to the right of “car” will be

raised.

To extract landmark feature hG, we apply a simple per-

mutation invariant function, sharing the same spirit to those

obtaining the entire graph’s representation in graph classifi-

cation [13, 36]. We use Max Pooling as the readout func-

tion, following the concept of landmark (namely, the most

noticeable position). To make the landmark feature more

descrimitive and spatial-aware, we can also use MLP or

CNN to embed hG. We find an additional one-layer MLP is

sufficient. The hG is yielded as follow:

hG = MAX({ReLU(WG · xu) : ∀u ∈ G}), (4)

where WG is the embedding parameter that is not shared

among different groups. Since WG is exclusive to each

pariticular group, we do not need position embedding once

choosing a suitable partition P . In this paper, we empir-

ically adopt P = 4 for modeling the most common rela-

tions (i.e. “left, right, on, below”), as shown in Figure 3 (b).

Since our module update the representation of node v with

landmark features {hG, G ∈ P(V )}, we call it Landmark

Feature Convolution.

Implementation details. We pay close attention to the ef-

ficiency of our proposed module. The biggest bottleneck

is that we need to perform k times Max Pooling to update

{yv : v ∈ V }, for P = k. Noticing that landmark features

of adjacent nodes have overlapping sub-regions, computa-

tions can be reduced by dynamic programming. Assuming

the input is the embedded feature map XG, we show how we

Algorithm 1: Dynamic Max Pooling

Input: An input X = {xi,j}
M×N where xi,j ∈ R

c.

Output: An outputH = {hi,j}
M×N , where hi,j ∈ R

c.

1: H ← X
2: for i ∈ [1,M ] do

3: for j ∈ [1, N ] do

4: hi,j ← MAX({hi,j−1, hi−1,j})
5: end for

6: end for

7: return H

compute HG = {hv : ∀v ∈ V } for the group highlighted

in Figure 3 (b) with a few lines in Algorithm 1, termed Dy-

namic Max Pooling. Computing for other groups or parti-

tions P can be implemented as straightforward. We also

accelerate it with CUDA since each channel can run in par-

allel, which distinguishes our algorithm from those running

RNNs over the feature map [1, 18].

Overall, our algorithm has linear time-space complex-

ity with respect to the number of nodes, i.e. Θ(k‖V ‖)
where k represents the number of partitions. Although hav-

ing sequential operations, our implementation demonstrates

its superiority over graph convolution layers, such as Non-

Local layer [34] or self-attention layer [31] whose time-

space complexity is Θ(‖V ‖2), by simulations, as shown in

Figure 4.
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Figure 4. Real time simulation of memory usage and running time.

Different from Non-Local layer [34], our LFC is linear time-space

complexity w.r.t. ‖V ‖, and still enjoy a global receptive field.

4. LBYL-Net

Based on landmark feature convolution, we propose

LBYL-Net. LBYL-Net consists of four components: a vi-

sual and language encoder, a fusion module, a landmark

feature convolution module, and a localization module,

which are introduced in the following, respectively.

Visual and language encoder. In Figure 5, LBYL-Net

firstly forwards the given image through a backbone net-

work, where we use DarkNet-53 based Feature Pyramid

Network (FPN) [15] to extract features from different

scales. We choose the outputs from P3 to P5 levels of

FPN as visual features v ∈ R
cd×hd×wd , where d = 3, 4, 5

shows the d-th level. After that, we utilize a 1 × 1 convo-
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Figure 5. Our proposed LBYL-Net, which consists of four components: a visual and language encoder, a fusion module, a landmark feature

convolution module and a localization module.

lution in v to obtain feature maps with the same channel cv
and concatenate the coordinate features with a 8 dimension

position embedding vector, which is the same with prior

work [39, 38], such that we generate the fused feature maps

Xd ∈ R
(c)×hd×wd , where c = cv + 8.

For the language encoder, we firstly encode each word

to dimension cl with a one-hot embedding given a language

expression, and then a Bi-LSTM is applied to extract lan-

guage feature L ∈ R
cl to encode the whole expression. We

also use BERT [6] in place of LSTM to enhance language

representation, following [39, 38].

Fusion Module. Given the generated language feature, we

aim to obtain the maximum response of visual information

conditioned on language. Therefore, we fuse visual and lan-

guage features through a FiLM module [26] and a 1 × 1
convolution. FiLM applies an affine transformation in vi-

sual features Xd under the guidance of language L. The

specific operations are as follows:

γd = MLPd
γ(L), β

d = MLPd
β(L), (5)

and

Yd = ReLU(Conv(ReLU(γd ⊙Xd ⊕ βd))), (6)

where MLPd
γ and MLPd

β are two one-layer MLP that maps

language vector L to coefficients γd and βd. Then we apply

these coefficients to visual feature Xd from different FPN

level followed by convolution and ReLU operations, yield-

ing the output Yd ∈ R
(c)×hd×wd , where ⊙ and ⊕ represent

the broadcast element-wise multiplication and addition, re-

spectively. After that, the feature of each position in Yd

might be adaptively responsible for different fine-grained

properties, such as colors, positions, categories conditioned

on language [26].

Prior to spatial relation modeling, we observe that FPN

can hurt the performance. It could be that FPN distributes

objects into different feature maps based on their scales,

making modeling across-scale relation difficult. For exam-

ple, given the relation “painting over bed”, the “painting”

hardly stands a chance of perceiving the “bed” if they are

assigned to two separate feature maps. Simply summing

the feature map to the intermediate size cures that problem,

the same technique as BFPN [25]. In particular, we achieve

this through max downsampling and bilinear upsampling,

and finally:

Y =
1

3

d=5∑

d=3

Yd. (7)

Landmark feature convolution module and localization

module. To consider the landmark features, we apply a

landmark feature convolution in feature map Y , where we

choose P = 4 (as shown in Figure 3 (b)). By DMP (dy-

namic max pooling) and convolution, landmark features

from four sub-regions are aggregated, yielding a direction-

aware feature map. Afterward, we distribute the features

to different FPN levels to account for the scale problem in

general object detection.

Finally, we feed them into the localization module,

where we adopt an anchor-based box regression head in

YOLOv3 as a detection head. The final output of LBYL-

Net has a dimension of KA × hd × wd, where A = 3 is

the number of anchors and K = 5 for (tx, ty, tw, th, s),
where the first four values mean the bounding box offset rel-

ative to the pre-defined anchor and the last one is the confi-

dence score indicating whether there is an object in this po-

sition. Following [28], only the anchor with the largest IoU

with the ground-truth bounding box is assigned as a posi-

tive sample; the rest are negative samples. Therefore, there
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Methods
Visual

Encoder

Language

Encoder

RefCOCO RefCOCO+ RefCOCOg Time

(ms)val testA testB val testA testB val

Two-stage methods

MMI [23] VGG-16 - - 64.9 54.51 - 54.03 42.8 - -

Neg Bag [24] VGG-16 - - 58.6 56.4 - - - 49.5 -

CMN [9] VGG-16 LSTM - 71.03 65.77 - 54.32 47.76 - -

VC [47] VGG-16 LSTM - 73.33 67.44 - 50.86 58.03 -

ParallelAttn [48] VGG-16 LSTM - 75.31 65.52 - 61.34 50.86 - -

LGRAN [33] VGG-16 LSTM - 76.6 66.4 - 64.00 53.40 61.78 -

SLR [45] ResNet-101 LSTM 69.48 73.71 64.96 55.71 60.74 48.80 - -

MAttNet [43] ResNet-101 LSTM 76.40 80.43 69.28 64.93 70.26 56.00 - 320

DGA [37] ResNet-101 LSTM - 78.42 65.53 - 69.07 51.99 - 341

CM-Att-Erase [20] ResNet-101 LSTM 78.35 83.14 71.32 68.09 73.65 58.03 68.67 -

NMTree [17] ResNet-101 TreeLSTM [30] 76.41 81.21 70.09 66.46 72.02 57.52 64.62 -

One-stage methods

RCCF [14] DLA-34 LSTM - 81.06 71.85 - 70.35 56.32 65.73 25

YOLO-VG† [39] DarkNet-53 BERT 72.05 74.35 68.5 56.81 60.23 49.6 56.12 23

SQC-Base [38] DarkNet-53 BERT 76.59 78.22 73.25 63.23 66.64 55.53 60.96 26

SQC-Large [38] DarkNet-53 BERT 77.63 80.45 72.3 63.59 68.36 56.81 63.12 36

Baseline [39] DarkNet-53 LSTM 72.36 73.86 65.93 57.98 63.97 48.31 47.25 24

LBYL-Net w/o LFC DarkNet-53 LSTM 77.43 80.75 70.68 64.84 70.24 54.71 56.17 25

LBYL-Net DarkNet-53 LSTM 78.76 82.18 71.91 66.67 73.21 56.23 58.72 28

LBYL-Net DarkNet-53 BERT 79.67 82.91 74.15 68.64 73.38 59.49 62.70 30

† indicates the result is adopted from [38].

Table 1. Performance comparisons on the RefCOCO, RefCOCO+, RefCOCOg. The best two-stage performance is highlighted with

underline, and the best one-stage performance is highlighted with bold.

Methods
Visual

Encoder

Language

Encoder

Pr@0.5

(%)

Time

(ms)

Two-stage methods

CMN[9] VGG-16 LSTM 28.33 -

VC [47] VGG-16 LSTM 31.13 -

Similarity Net [32] ResNet-101 - 34.54 184

CITE [27] ResNet-101 - 35.07 196

MAttNet [43] ResNet-101 LSTM 29.04 320

DDPN‡ [46] ResNet-101 LSTM 63.00 -

One-stage methods

ZSGNet [29] ResNet-50 LSTM 58.63 25

RCCF [14] DLA-34 LSTM 63.79 25

YOLO-VG [39] DarkNet-53 LSTM 58.76 21

YOLO-VG [39] DarkNet-53 BERT 59.30 38

SQC-Base [38] DarkNet-53 BERT 64.33 26

SQC-Large [38] DarkNet-53 BERT 64.60 36

Baseline [39] DarkNet-53 LSTM 59.28 24

LBYL-Net w/o LFC DarkNet-53 LSTM 62.59 25

LBYL-Net DarkNet-53 LSTM 65.48 28

LBYL-Net DarkNet-53 BERT 67.47 30

Table 2. Performance comparisons on the ReferitGame [11].

is only one positive sample because we only want to find

an object referred to by sentence. For the ranking loss, we

maximize the distance between the positive sample and the

negative samples. Thus a cross-entropy loss is employed,

which can be viewed as MMI training defined in [23]. For

the bounding box regression loss, we use an MSE loss to

minimize the distance between the predicted bounding box

and the ground-truth. The whole loss function consists of a

localization term and a regression term:

ℓ = ℓloc + βℓreg, (8)

where β is the hyper-parameter to balance two terms, and

we empirically set β = 5. The whole network is optimized

with Adam [12] in an end-to-end manner.

5. Experiments

5.1. Implementation and Evaluation

Training. A DarkNet-53 pre-trained on COCO is used

as our backbone, and a cosine annealing strategy [21] is

employed for optimization. We train our network with a

learning rate 1e−4, weight decay 1e−4, batch size 64, with

GPUs. We do not use very high resolution for speed, al-

though it could be helpful for the performance. The input

images are resized 256 × 256 and employed on two GTX

TITAN X. The total numbers of epochs are 100 for Refer-

itGame, RefCOCO, RefCOCO+ datasets, and 30 for the Re-

fCOCOg dataset.

The standard data augmentation methods in object detec-

tion are employed. We use random horizontal flip, random

affine operations, and random color jitter. When horizon-

tally flipping images, we need to flip the expressions simul-

taneously. e.g., replacing ‘left’ with ‘right’ and vice versa.

Evaluation. We evaluate our method on ReferitGame [11],

RefCOCO [44], RefCOCO+ [44] and RefCOCOg [23] vi-

sual grounding datasets. The evaluation metric is the same

as that in [16]. Specifically, given a regressed bounding box

of the referring object, we treat the regression as right if

IoU > 0.5 between the ground-truth bounding box and pre-

diction, termed as Pr@0.5. We also use Pr@0.75 for ana-
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Module Pr@0.5(%) Pr@0.75(%)

Baseline 59.28 40.02

+ FiLM 60.99 (+1.71) 40.24 (+0.22)

+ FiLM

+ BFPN
62.59 (+1.71+1.60) 41.00 (+0.22+0.76)

+ FiLM

+ BFPN

+ LFC

65.48 (+1.71+1.60+2.87) 44.31 (+0.22+0.76+3.31)

Table 3. Ablation studies on ReferitGame. The numbers inside

parentheses show the improvement upon the baseline.

lyzing certain experiments.

Settings. We re-implement YOLO-VG [39] with an LSTM

language encoder as our baseline, which perform grounding

on gird features individually, i.e. only using 1 × 1 convo-

lution in fusion module. We have small modifications to

keep the same training scheme like ours, like learning rate

and optimizer. We see a slight improvement in accuracy in

ReferitGame compared to the result reported in [39]. This

will serve as our baseline for all of our experiments. We

mainly report results with LSTM, unless specified.

5.2. Quantitative Results

Comparisons with baselines. In summary, our LBYL-Net

has about 6.2%, 7.5%, 8.6%, 12.4% absolute improvement

on ReferitGame, RefCOCO, RefCOCO+, RefCOCOg, re-

spectively, which demonstrates the effectiveness of our

LBYL-Net. When a stronger language encoder is adopted,

the performance can be further improved. The advance of

our modification will be detailed in ablation studies.

Comparisons with state-of-the-art results. We compare

our proposed LBYL-Net with state-of-the-art results of both

one-stage and two-stage methods on ReferitGame, Ref-

COCO, RefCOCO+, RefCOCOg. The comparisons on

ReferitGame are listed in Table 2 and those on RefCOCO,

RefCOCO+, RefCOCOg are listed in Table 1. Stronger vi-

sual and language representation can boost performance.

For fair comparisons, we list the visual encoders and lan-

guage encoders of these methods.

In ReferitGame, it is worth noting that the two-stage

methods usually obtain poor results because they have no

qualified proposals. We attribute the poor performance

to the off-the-shelf detector that is not trained on Refer-

itGame. The evidence is that by using an end-to-end train-

able RPN (region proposal network), the best result in

two-stage methods can be achieved [46]. In COCO series

datasets, e.g., RefCOCO, RefCOCO+, RefCOCOg, top re-

sults are usually achieved by two-stage methods since they

adopt powerful detectors for COCO datasets. The detector

helps to filter out irrelevant or noise regions prior to per-

forming reasoning. However, our one-stage LBYL-Net still

achieves competitive results among all the SOTA methods

on RefCOCO, RefCOCO+, and the best result on Refer-

Ablation Pr@0.5(%) Pr@0.75(%)
Time

(ms)

1 × 1 Conv 62.59 41.00 25

Nonlocal NN 63.59 42.46 29

Dilated Conv 63.85 42.90 26

Deform Conv 63.99 43.72 29

LFC 65.48 44.31 28

Table 4. Performance comparison to related convolution opera-

tions on ReferitGame.

itGame. We show that not only is a one-stage pipeline ad-

vantageous to efficiency but can also achieve very strong

performance by modeling long-range spatial relations.

Another line to improve one-stage visual grounding is

to better comprehend longer expression, especially for Re-

fCOCOg, which contains more complex sentences. Al-

though decomposing the expressions can achieve significant

improvement [14, 38], we adopt a gloabl language represen-

tation for the sake of simplicity. On RefCOCOg, our model

still improves the performance upon our baseline [39] by

12% and 6%, with LSTM and BERT, respectively, showing

that modeling long-range spatial relations can help to com-

prehend longer sentences since these cases require more

spatial relational cues to localize the target.

5.3. Ablation Studies

We conduct several ablation studies on ReferitGame [11]

to reveal the effectiveness of our proposed LBYL-Net as

well as our proposed Landmark Feature Convolution Mod-

ule (LFC). We additionally train three models upon this

baseline by gradually replacing the ‘Concat-Conv’ with

FiLM [26], replacing the FPN with BFPN [25] and adding

LFC, respectively. The results are shown in Table 3. Thanks

to the capacity of FiLM of fusing language and visual fea-

tures, the performance is improved by 1.71% under the met-

ric Pr@0.5. The performance is further boosted by aligning

visual features from different scales with BFPN by 1.6%.

However, the major improvement should be attributed to

landmark feature convolution because it significantly raises

the precision to 65.48%. This can be more clearly validated

under Pr@0.75. In this metric, LFC significantly improves

the accuracy by more than 3%, while the improvement of

FiLM plus BFPN is marginally close to 1%.

5.4. Effectiveness of LFC

We first compare the performance of the LFC and the

point-based convolutions discussed in Sec. 3.1. We com-

pare to Gaussian embedded Non-Local layer [34], De-

formable convolution with kernel size 3 [4], and Dilated

convolution with dilation 3. The result is shown in Table

4. By comparing to 1× 1 convolution, we show that a large

receptive field is of central importance. We also see that
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(a). the chair with the owl on it.

(d). guy by the red wall with arms crossed. (e). the cow standing on the left. (f). train dark and light gray left.

(b). silver car in back of horse car. (c). horse in foreground rider leaning back.

Figure 6. Visualizations of landmark positions and the grounding results. The images on the left side show the landmark positions (red

dots) and the center of the predicted box (green dot). Notably, the predicted center receives information from landmark positions. The

images on the right side show the ground-truths (yellow boxes) and the predictions (blue boxes).

Conv LFC

w/o P P = 1 P = 2 P = 4 P = 8

62.59 63.90 65.05 65.36 65.48 65.26 65.58

Table 5. Performance on ReferitGame (Pr@0.5) with different P .

Non-Local is inferior to other convolutions, probably due to

its limitation of modeling relative spatial relation. With the

merits of the global receptive field as well as spatial aware-

ness, our LFC outperforms all of them.

5.5. The Effect of Different Partitions

We study the effect of various partitions, as shown in

Table 5. When P = 1, our formulation of DMP (dynamic

max pooling) degenerates to a global max pooling, yielding

globally equal representations. We are surprised to find that

such a simple global representation can boost performance.

By considering spatial information, the performance can be

further improved but reach saturation when P = 4. We

hypothesis that this is dataset-related.

5.6. Visualizations of Results and Landmarks

Beyond effectiveness, the design of the landmark feature

h ∈ R
c, which is max pooled from the sub-region, allows us

to see where are focused over the whole feature map. In this

way, we are able to take a small step toward interpretability

in one-stage visual grounding. In particular, we can decode

the landmark locations by argmax. Since the landmark fea-

tures are pooled from a coarse feature map, to reflect on

the original image size, we add a gaussian G(µ, σ) for each

landmark positions, where we choose µ = 0, σ = 1/3. It is

worth noting that there could be c landmark positions since

the dimension of h is c.

We visualize several examples of landmark features of

the grounding centers, as well as the grounding results in

Figure 6. Many two-stage methods are typically motivated

by the fact that the ROI-pooled features can provide better

localization for individual objects and filter irrelevant back-

ground noise. We show that simply using Max-pooled fea-

tures has a similar effect, i.e. focusing on useful cues, but

without resorting to extra supervision. In addition, while

two-stage methods hold a strong assumption that contex-

tual cues only come from a pre-defined set of objects, e.g.

80 objects in COCO, we show that some of the cues outside

of this distribution are also important, such as “red wall” as

shown in Figure 6 (d). We return such a degree of freedom

to the data itself.

6. Conclusion

In this work, we place emphasis on the relation mod-

eling in one-stage visual grounding, and along this line

of thought, propose a novel and simple LBYL-Net that

shows competitive results over all state-of-the-art one-stage

and two-stage methods. Central to our idea is to model

long-range and spatial-aware features with Dynamic Max

Pooling (DMP) and Landmark Feature Convolution (LFC),

showing its superiority over related modules. We hope that

our proposed LFC can also accelerate related researches,

such as visual relation detection.
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