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Abstract

Detecting out-of-distribution (OOD) inputs is a central

challenge for safely deploying machine learning models in

the real world. Existing solutions are mainly driven by

small datasets, with low resolution and very few class la-

bels (e.g., CIFAR). As a result, OOD detection for large-

scale image classification tasks remains largely unexplored.

In this paper, we bridge this critical gap by proposing a

group-based OOD detection framework, along with a novel

OOD scoring function termed MOS. Our key idea is to

decompose the large semantic space into smaller groups

with similar concepts, which allows simplifying the deci-

sion boundaries between in- vs. out-of-distribution data for

effective OOD detection. Our method scales substantially

better for high-dimensional class space than previous ap-

proaches. We evaluate models trained on ImageNet against

four carefully curated OOD datasets, spanning diverse se-

mantics. MOS establishes state-of-the-art performance, re-

ducing the average FPR95 by 14.33% while achieving 6x

speedup in inference compared to the previous best method.

1. Introduction

Out-of-distribution (OOD) detection has become a cen-

tral challenge in safely deploying machine learning mod-

els in the open world, where the test data may be distri-

butionally different from the training data. A plethora of

literature has emerged in addressing the problem of OOD

detection [3, 14, 16, 24, 27, 29, 35, 4, 20, 31]. However, ex-

isting solutions are mainly driven by small, low-resolution

datasets such as CIFAR [23] and MNIST [25]. Deployed

systems like autonomous vehicles often operate on images

that have far greater resolution and perceive environments

with far more categories. As a result, a critical research

gap exists in developing and evaluating OOD detection al-

gorithms for large-scale image classification tasks.

While one may be eager to conclude that solutions for

small datasets should transfer to a large-scale setting, we

argue that this is far from the truth. The main challenges

posed in OOD detection stem from the fact that it is impos-

sible to comprehensively define and anticipate anomalous

data in advance, resulting in a large space of uncertainty.

As the number of semantic classes increases, the plethora of

ways that OOD data may occur increases exponentially. For

example, our analysis reveals that the average false positive

rate (at 95% true positive rate) of a common baseline [16]

would rise from 17.34% to 76.94% as the number of classes

increases from 50 to 1,000 on ImageNet-1k [8]. Very few

works have studied OOD detection in the large-scale set-

ting, with limited evaluations and effectiveness [41, 15].

This begs the following question: how can we design an

OOD detection algorithm that scales effectively for classifi-

cation with large semantic space?

Motivated by this, we take an important step to bridge

this gap and propose a group-based OOD detection frame-

work that is effective for large-scale image classification.

Our key idea is to decompose the large semantic space into

smaller groups with similar concepts, which allows simpli-

fying the decision boundary and reducing the uncertainty

space between in- vs. out-of-distribution data. Intuitively,

for OOD detection, it is simpler to estimate whether an im-

age belongs to one of the coarser-level semantic groups than

to estimate whether an image belongs to one of the finer-

grained classes. For example, consider a model tasked with

classifying 200 categories of plantations and another 200

categories of marine animals. A truck image can be eas-

ily classified as OOD data since it does not resemble either

the plantation group or the marine animal group.

Formally, our proposed method leverages group soft-

max and derives a novel OOD scoring function. Specifi-

cally, the group softmax computes probability distributions

within each semantic group. A key component is to uti-

lize a category others in each group, which measures the

probabilistic score for an image to be OOD with respect

to the group. Our proposed OOD scoring function, Min-

imum Others Score (MOS), exploits the information car-

ried by the others category. As illustrated in Figure 1,

MOS is higher for OOD inputs as they will be mapped to

others with high confidence in all groups, and is lower

for in-distribution inputs.
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Figure 1: Top: Examples of in-distribution images sampled from ImageNet-1k (in green) and OOD images sampled from 4 datasets

described in Section 4.1 (in orange). Bottom: Overview of the proposed group-based OOD detection framework. The key idea is to de-

compose the large semantic space into smaller groups, which allows simplifying the decision boundary between in- and out-of-distribution

data. A category others is added to each group. An OOD image is mapped to others with high confidence for all groups, whereas

an in-distribution image will have a lower score for others in the group it belongs to (e.g., artifact group). The minimum score on

category others among all groups, MOS, allows effective differentiation of OOD data.

We extensively evaluate our approach on models trained

with the ImageNet-1k dataset, leveraging the state-of-the-

art pre-trained BiT-S models [22] as backbones. We explore

label space of size 10-100 times larger than that of previous

works [16, 29, 27, 31, 4, 17]. Compared to the best base-

line [15], our method improves the average performance of

OOD detection by 14.33% (FPR95) over four diverse OOD

test datasets. More importantly, our method achieves im-

proved OOD detection performance while preserving the

classification accuracy on in-distribution datasets. We note

that while group-based learning has been used for improv-

ing tasks such as long-tail object detection [28], our ob-

jective and motivation are very different—we are inter-

ested in reducing the uncertainty between in- and out-of-

distribution data, rather than reducing the confusion among

in-distribution data themselves. Below we summarize our

key results and contributions:

• We propose a group-based OOD detection frame-

work, along with a novel OOD scoring function MOS,

that scales substantially better for large label space.

Our method establishes the new state-of-the-art perfor-

mance, reducing the average FPR95 by 14.33% while

achieving 6x speedup in inference time compared to

the best baseline.

• We conduct extensive ablations which improve under-

standings of our method for large-scale OOD detection

under (1) different grouping strategies, (2) different

sizes of semantic class space, (3) different backbone

architectures, and (4) varying fine-tuning capacities.

• We curate diverse OOD evaluation datasets from four

real-world high-resolution image databases, which en-

ables future research to evaluate OOD detection meth-

ods in a large-scale setting1.

2. Preliminary and Analysis

Preliminaries We consider a training dataset drawn i.i.d.

from the in-distribution PX , with label space Y =
{1, 2, · · · , C}. For OOD detection problem, it is common

to train a classifier f(x) on the in-distribution PX , and eval-

uate on samples that are drawn from a different distribution

QX . An OOD detector G(x) is a binary classifier:

G(x) =

{

in, if S(x) ≥ γ

out, if S(x) < γ,

1Code and data for reproducing our results are available at: https:

//github.com/deeplearning-wisc/large_scale_ood
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where S(x) is the scoring function, and γ is the threshold

chosen so that a high fraction (e.g., 95%) of in-distribution

data is correctly classified.

Effect of Number of Classes on OOD Detection We

first revisit the common baseline approach [16], which

uses the maximum softmax probability (MSP), S(x) =

maxi
efi(x)

∑
C
j=1 e

fj(x) , for OOD detection. We investigate the

effect of label space size on the OOD detection perfor-

mance. In particular, we use a ResNetv2-101 architec-

ture [13] trained on different subsets2 of ImageNet with

varying numbers of classes C. As shown in Figure 2,

the performance (FPR95) degrades rapidly from 17.34% to

76.94% as the number of in-distribution classes increases

from 50 to 1,000. This trend signifies that current OOD de-

tection methods are indeed challenged by the increasingly

large label space, which motivates our work.
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Figure 2: OOD detection performance of a common baseline

MSP [16] decreases rapidly as the number of ImageNet-1k classes

increases (left: AUROC; right: FPR95).

3. Method

Our novel group-based OOD detection framework is il-

lustrated in Figure 1. In what follows, we first provide an

overview and then describe the group softmax training tech-

nique in Section 3.1. We introduce our proposed OOD de-

tection algorithm MOS in Section 3.2, followed with group-

ing strategies in Section 3.3.

Method Overview: A Conceptual Example As afore-

mentioned, OOD detection performance can suffer notably

from the increasing number of in-distribution classes. To

mitigate this issue, our key idea is to decompose the large

semantic space into smaller groups with similar concepts,

which allows simplifying the decision boundary and reduc-

ing the uncertainty space between in- vs. out-of-distribution

data. We illustrate our idea with a toy example in Figure 3,

where the in-distribution data consists of class-conditional

Gaussians. Without grouping (left), the decision bound-

ary between in- vs. OOD data is determined by all classes

and becomes increasingly complex as the number of classes

2To create the training subset, we first randomly select C

(C ∈ {50, 200, 300, 400, 500, 600, 700, 800, 900, 1000}) labels from

the 1,000 ImageNet classes. For each of the chosen label, we then sample

700 images for training.
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C3 C5

C6
C4
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C2

After
Grouping

Decision boundaries between in- vs. out-of-distribution data
OOD samples In-distribution classes

C2

Figure 3: A toy example in 2D space of group-based OOD de-

tection framework. Left: without grouping, the decision bound-

ary between in- vs. out-of-distribution data becomes increasingly

complex with more classes. Right: our group-based method sim-

plifies the decision boundary and reduces the uncertainty space for

OOD data.

grows. In contrast, with grouping (right), the decision

boundary for OOD detection can be significantly simplified,

as shown by the dotted curves.

In other words, by way of grouping, the OOD detector

only needs to make a small number of relatively simple es-

timations about whether an image belongs to this group, as

opposed to making a large number of hard decisions about

whether an image belongs to this class. An image will

be classified as OOD if it belongs to none of the groups.

We proceed with describing the training mechanism that

achieves our novel conceptual idea.

3.1. Group­based Learning

We divide the total number of C categories into K

groups, G1,G2, ...,GK . We calculate the standard group-

wise softmax for each group Gk:

pkc (x) =
ef

k
c (x)

∑

c′∈Gk
ef

k
c′
(x)

, c ∈ Gk, (1)

where fk
c (x) and pkc (x) denote the output logit and the soft-

max probability for class c in group Gk, respectively.

Category “Others” Standard group softmax is insuffi-

cient as it can only discriminate classes within the group,

but cannot estimate the OOD uncertainty between inside vs.

outside the group. To this end, a new category others is

introduced to every group, as shown in Figure 1. The model

can predict others if the input x does not belong to this

group. In other words, the others category allows explic-

itly learning the decision boundary between inside vs. out-

side the group, as illustrated by the dashed curves surround-

ing classes C1/C2/C3 in Figure 3. This is desirable for OOD

detection, as an OOD input can be mapped to others for

all groups, whereas an in-distribution input will be mapped

to one of the semantic categories in some group with high

confidence.

Importantly, our use of the category others creates

“virtual” group-level outlier data without relying on any ex-

ternal data. Each training example x not only helps esti-

mate the decision boundary for the classification problem,
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but also effectively improves the OOD uncertainty estima-

tion for groups to which it does not belong. We show the

formulation can in fact achieve the dual objective of in-

distribution classification, as well as OOD detection.

Training and Inference During training, the ground-

truth labels are re-mapped in each group. In groups where

c is not included, class others will be defined as the

ground-truth class. The training objective is a sum of cross-

entropy losses in each group:

LGS = −
1

N

N
∑

n=1

K
∑

k=1

∑

c∈Gk

ykc log(p
k
c (x)), (2)

where ykc and pkc represent the label and the softmax prob-

ability of category c in Gk, and N is the total number of

training samples.

We denote the set of all valid (non-others) classes in

each group as G′
k = Gk\{others}. During inference time,

we derive the group-wise class prediction in the valid set for

each group:

p̂k = max
c∈G′

k

pkc (x), ĉ
k = argmax

c∈G′

k

pkc (x).

Then we use the maximum group-wise softmax score and

the corresponding class for final prediction:

k∗ = argmax
1≤k≤K

p̂k.

The final prediction is category ĉk∗ from group Gk∗
.

3.2. OOD Detection with MOS

For a classification model trained with the group softmax

loss, we propose a novel OOD scoring function, Minimum

Others Score (MOS), that allows effective differentiation

between in- vs. out-of-distribution data. Our key observa-

tion is that category others carries useful information for

how likely an image is OOD with respect to each group.

As discussed in Section 3.1, an OOD input will be

mapped to others with high confidence in all groups,

whereas an in-distribution input will have a low score on

category others in the group it belongs to. Therefore, the

lowest others score among all groups is crucial for distin-

guishing between in- vs. out-of-distribution data. This leads

to the following OOD scoring function, termed as Minimum

Others Score:

SMOS(x) = − min
1≤k≤K

pkothers(x). (3)

Note that we negate the sign to align with the conventional

notion that SMOS(x) is higher for in-distribution data and

lower for out-of-distribution.

To provide an interpretation and intuition behind MOS,

we show in Figure 4 the average scores for the category

others in each group for both in-distribution and OOD

images. For in-distribution, we select all validation images

from the animal group in the ImageNet-1k dataset. The

minimum others score among all groups is significantly

lower for in-distribution data than that for OOD data, allow-

ing for effective differentiation between them.
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Figure 4: Average of others scores in each group for both in-

distribution data (left) and OOD data (right).

3.3. Grouping Strategies

Given the dependency on the group structure, a natural

question arises: how do different grouping strategies affect

the performance of OOD detection? To answer this, we

systematically consider three grouping strategies: (1) tax-

onomy, (2) feature clustering, and (3) random grouping.

Taxonomy The first grouping strategy is applicable when

the taxonomy of the label space is known. For example, in

the case of ImageNet, each class is associated with a synset

in WordNet [34], from which we can build the taxonomy

as a hierarchical tree. In particular, we adopt the 8 super-

classes defined by ImageNet3 as our groups and map each

category into one of the 8 groups: animal, artifact,

geological formation, fungus, misc, natural

object, person, and plant.

Feature Clustering When taxonomy is not available,

we can approximately estimate the structure of semantic

classes through feature clustering. Specifically, we extract

feature representations for each training image from a pre-

trained feature extractor. Then, the feature representation

of each class is the average of feature embeddings in that

class. Finally, we perform a K-Means clustering [32] on

categorical feature representations, one for each class.

Random Grouping Lastly, we contrast the taxonomy

and the feature clustering strategies with random grouping,

where each class is randomly assigned to a group. This al-

lows us to estimate the lower bound of OOD detection per-

formance with MOS.

By default, we use taxonomy as the grouping strategy if

not specified otherwise. In Section 4.3.3, we experimentally

compare the OOD detection performance using all three

grouping strategies.

3http://image-net.org/explore
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Method

Test

Time

(min)

iNaturalist SUN Places Textures Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

MSP [16] 3.1 87.59 63.69 78.34 79.98 76.76 81.44 74.45 82.73 79.29 76.96

ODIN [29] 23.6 89.36 62.69 83.92 71.67 80.67 76.27 76.30 81.31 82.56 72.99

Mahalanobis [27] 145.4 46.33 96.34 65.20 88.43 64.46 89.75 72.10 52.23 62.02 81.69

Energy [31] 3.1 88.48 64.91 85.32 65.33 81.37 73.02 75.79 80.87 82.74 71.03

KL Matching [15] 20.6 93.00 27.36 78.72 67.52 76.49 72.61 87.07 49.70 83.82 54.30

MOS (ours) 3.2 98.15 9.28 92.01 40.63 89.06 49.54 81.23 60.43 90.11 39.97

Table 1: OOD detection performance comparison between MOS and baselines. All methods are fine-tuned from the same pre-trained

BiT-S-R101x1 backbone with ImageNet-1k as in-distribution dataset. The description of 4 OOD test datasets is provided in Section 4.1. ↑

indicates larger values are better, while ↓ indicates smaller values are better. All values are percentages. Bold numbers are superior results.

Test time for all methods are evaluated with the same in- and out-of-distribution datasets (60k images in total).

4. Experiments

We first describe the evaluation datasets (Section 4.1)

and experimental setups (Section 4.2). In Section 4.3, we

show that MOS achieves state-of-the-art OOD detection

performance, followed by extensive ablations that improve

the understandings of MOS for large-scale OOD detection.

4.1. Datasets

4.1.1 In-distribution Dataset

We use ImageNet-1k [8] as the in-distribution dataset,

which covers a wide range of real-world objects. ImageNet-

1k has at least 10 times more labels compared to CIFAR

datasets used in prior literature. In addition, the image reso-

lution is also significantly higher than CIFAR (32×32) and

MNIST (28×28).

4.1.2 Out-of-distribution Datasets

To evaluate our approach, we consider a diverse collec-

tion of OOD test datasets, spanning various domains in-

cluding fine-grained images, scene images, and textural im-

ages. We carefully curate the OOD evaluation benchmarks

to make sure concepts in these datasets do not overlap with

ImageNet-1k. Below we describe the construction of each

evaluation dataset in detail. Samples of each OOD dataset

are provided in Figure 1. We provide the list of concepts

chosen for each OOD dataset in Appendix A.

iNaturalist iNaturalist [46] is a fine-grained dataset con-

taining 859,000 images across more than 5,000 species of

plants and animals. All images are resized to have a max

dimension of 800 pixels. We manually select 110 plant

classes not present in ImageNet-1k, and randomly sample

10,000 images for these 110 classes.

SUN SUN [48] is a scene database of 397 categories and

130,519 images with sizes larger than 200× 200. SUN and

ImageNet-1k have overlapping categories. Therefore, we

carefully select 50 nature-related concepts that are unique

in SUN, such as forest and iceberg. We randomly sample

10,000 images for these 50 classes.

Places Places365 [50] is another scene dataset with sim-

ilar concept coverage as SUN. All images in this dataset

have been resized to have a minimum dimension of 512. We

manually select 50 categories from this dataset that are not

present in ImageNet-1k and then randomly sample 10,000

images for these 50 categories.

Textures Textures [6] consists of 5,640 images of textural

patterns, with sizes ranging between 300 × 300 and 640 ×
640. We use the entire dataset for evaluation.

4.2. Experiment Setup

Pre-trained Backbone We use Google BiT-S mod-

els [22] as our feature extractor in all experiments. The

models are trained on ImageNet-1k, with ResNetv2 archi-

tectures [13] at varying capacities. Pre-trained models allow

extracting high-quality features with minimal time and en-

ergy consumption. In practice, one can always choose to

train from scratch.

For the main results, we use the BiT-S-R101x1 model

with depth 101 and width factor 1, unless specified other-

wise. We provide a comparison of using feature extractors

of varying model sizes in Section 4.3.4. For efficiency, we

fix the backbone and only fine-tune the last fully-connected

(FC) layer in the main experiments. We additionally ex-

plore the effect of fine-tuning more layers beyond the last

FC layer in Section 4.3.5.

Training Details We follow the procedure in BiT-

HyperRule [22] and fine-tune the pre-trained BiT-S model

for 20k steps with a batch size of 512. We use SGD with an

initial learning rate of 0.003 and a momentum of 0.9. The

learning rate is decayed by a factor of 10 at 30%, 60%, and

90% of the training steps. During training, all images are

resized to 512 × 512 and randomly cropped to 480 × 480.

At test time, all images are resized to 480 × 480. A learning

rate warm-up is used for the first 500 steps. We perform all

experiments on NVIDIA GeForce RTX 2080Ti GPUs.

Evaluation Metrics We measure the following metrics

that are commonly used for OOD detection: (1) the false

positive rate of OOD examples when the true positive rate
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Figure 5: OOD detection performance of MOS (blue) and the MSP baseline (gray). MOS exhibits more stabilized performance as the

number of in-distribution classes increases. For each OOD dataset, we show AUROC (top) and FPR95 ( bottom).

of in-distribution examples is at 95% (FPR95); (2) the area

under the receiver operating characteristic curve (AUROC).

We additionally report the area under the precision-recall

curve (AUPR) in Appendix D.

4.3. Results

4.3.1 MOS vs. Existing Methods

The main results are shown in Table 1. We report perfor-

mance for each dataset described in Section 4.1, as well as

the average performance. For fair evaluation, we compare

with competitive methods in the literature that derive OOD

scoring functions from a model trained on in-distribution

data and do not rely on auxiliary outlier data. We first com-

pare with approaches driven by small datasets, including

MSP [16], ODIN [29], Mahalanobis [27], as well as En-

ergy [31]. All these methods rely on networks trained with

flat softmax. Under the same network backbone (BiT-S-

R101x1), MOS outperforms the best baseline Energy [31]

by 31.06% in FPR95. It is also worth noting that fine-tuning

with group softmax maintains competitive classification ac-

curacy (75.16%) on in-distribution data compared with its

flat softmax counterpart (75.20%).

We also compare our method with KL matching [15], a

competitive baseline evaluated on large-scale image classi-

fication. MOS reduces FPR95 by 14.33% compared to KL

matching. Note that for each input, KL matching needs to

calculate its KL divergence to all class centers. Therefore,

the running time of KL matching increases linearly with the

number of in-distribution categories, which can be compu-

tationally expensive for a very large label space. As shown

in Table 1, our method achieves a 6x speedup compared to

KL matching.

4.3.2 MOS with Increasing Numbers of Classes

In Figure 5, we show the OOD detection performance

as we increase the number of in-distribution classes

C ∈ {50, 200, 300, 400, 500, 600, 700, 800, 900, 1000} on

ImageNet-1k. For each C, we create training data by first

randomly sampling C labels from the entire 1k classes, and

then sampling 700 images for each chosen label. Impor-

tantly, we observe that MOS (in blue) exhibits more stabi-

lized performance as C increases, compared to MSP [16]

(in gray). For example, on the iNaturalist OOD dataset,

FPR95 rises from 21.02% to 63.36% using MSP, whilst

MOS degrades by only 4.76%. This trend signifies that

MOS is an effective approach for scaling OOD detection

towards a large semantic space.

We also explore an alternative setting where we fix the

total number of training images, as we vary the number of

classes C. In this setting, the model is trained on fewer

images per class as the number of classes increases, making

the problem even more challenging. We report those results

in Appendix B.1. Overall, MOS remains less sensitive to

the number of classes compared to the MSP baseline.

4.3.3 MOS with Different Grouping Strategies

In this ablation, we contrast the performance of three dif-

ferent grouping strategies described in Section 3.3. For a

fair comparison, we use the number of groups K = 8 for

all methods, since ImageNet taxonomy has 8 super-classes.

For feature clustering, we first extract the feature vector

from the penultimate layer of the pre-trained BiT-S model

for each training image. The feature representation for each

category is the average feature vector among all images in

that category. We then perform a K-Means clustering on the

1,000 categorical feature vectors (one for each class) with
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Figure 6: OOD detection performance comparison between MOS

with different grouping strategies and the MSP baseline on 4 OOD

datasets. (top: AUROC; bottom: FPR95).

K = 8. For random grouping, we randomly split 1,000

classes into 8 groups with equal sizes (125 classes each).

We compare the performance of MOS under different

grouping strategies in Figure 6. We observe that feature

clustering works substantially better than the MSP base-

line [16] while maintaining similar in-distribution classifi-

cation accuracy (-0.16%) to the taxonomy-based grouping.

Interestingly, random grouping achieves better performance

than the MSP baseline [16] on 3 out of 4 OOD datasets.

However, we do observe a drop of in-distribution classifica-

tion accuracy (-0.98%) using random grouping, compared

to the taxonomy-based grouping. We argue that feature

clustering is a viable strategy when taxonomy is unavail-

able, as it outperforms MSP by 18.2% (FPR95) on average.

We additionally report how different numbers of groups K

affect the OOD detection performance for all three grouping

strategies in Appendix B.2.

4.3.4 MOS with Different Feature Extractors

We investigate how the performance of OOD detection

changes as we employ different pre-trained feature extrac-

tors. In Figure 7, we compare the performance of using a

family of 5 feature extractors (in increasing size): BiT-S-

R50x1, BiT-S-R101x1, BiT-S-R50x3, BiT-S-R152x2, BiT-

S-R101x34. All models are ResNetv2 architectures with

varying depths and width factors. It is important to note

that since we fix the entire backbone and only fine-tune the

last FC layer, this ablation is about the effect of the quality

of feature extractors rather than model capacities.

As we use feature extractors trained on larger capacities,

the classification accuracy increases, with comparable per-

4https : / / github . com / google - research / big _

transfer

formance between using the flat vs. group softmax. Overall

the OOD detection performance improves as the capacity of

feature extractors increases. More importantly, MOS con-

sistently outperforms MSP [16] in all cases. These results

suggest that using pre-trained models with better feature

representations will not only improve classification accu-

racy but also benefit OOD detection performance.

4.3.5 MOS with Varying Fine-tuning Capacities

In this ablation, we explore the efficacy of fine-tuning more

layers. Concretely, we go beyond the FC layer and fine-tune

different numbers of residual blocks in BiT-S-R101x1. Fig-

ure 8 shows the classification accuracy and OOD detection

performance under different fine-tuning capacities. Notice-

ably, MOS consistently outperforms MSP [16] in OOD de-

tection under all fine-tuning capacities. As expected, we

observe that fine-tuning more layers leads to better clas-

sification accuracy. However, increasing the number of

fine-tuning layers would adversely affect OOD detection in

some cases. We hypothesize that fine-tuning with more lay-

ers will result in more label-overfitted predictions, and un-

desirably produce higher confidence scores for OOD data.

This suggests that only fine-tuning the top FC layers is not

only computationally efficient but also in fact desirable for

OOD detection performance.

5. Related Work

OOD Detection with Pre-trained Models Hendrycks

and Gimpel [16] establish a common baseline for OOD

detection by using maximum softmax probability (MSP).

Several works attempt to improve the OOD uncertainty es-

timation by using ODIN score [29], deep ensembles [24],

Mahalanobis distance-based confidence score [27], gener-

alized ODIN score [20], and energy score [31]. However,

previous methods driven by small datasets are either sub-

optimal or inefficient in a large-scale setting. In contrast,

MOS scales significantly better with large label space, both

in algorithmic accuracy and computational efficiency.

OOD Detection with Model Fine-tuning An orthogonal

line of work explores training with auxiliary outlier data for

model regularization [3, 11, 33, 35, 43, 31]. Auxiliary out-

lier data can either be realistic images [17, 35, 37, 31, 4]

or synthetic images generated by GANs [26]. Several loss

functions have been designed to regularize model predic-

tions of the auxiliary outlier data towards uniform distri-

butions [26], a background class for OOD data [4, 35], or

higher energies [31]. In this work, our model is fine-tuned

only on in-distribution data, as we do not assume the avail-

ability of auxiliary outlier data. Different from previous

settings, it can be prohibitive to construct an auxiliary out-

lier dataset in large-scale image classification, since the in-

distribution data has a much wider coverage of concepts.
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Figure 8: Effect of fine-tuning different numbers of residual blocks in BiT-S-R101x1. We show both OOD detection (bars) and image

classification (dashed lines) performance.

Generative Modeling Based OOD Detection Genera-

tive models [21, 44, 40, 10, 45] estimate the probability

density of input data and can thus be directly utilized as

OOD detectors with high density indicating in-distribution

and low density indicating out-of-distribution. However,

as shown in [36], deep generative models can undesirably

assign a high likelihood to OOD data. Several strategies

have been proposed to mitigate this issue, such as improved

metrics [5], likelihood ratio [39, 42], and modified train-

ing techniques [17]. In this work, we mainly focus on the

discriminative-based approaches. It is important to note that

generative models [19] can be prohibitively challenging to

train and optimize on large-scale real-world datasets.

OOD Detection for Large-scale Classification Several

works make pioneering efforts in large-scale OOD detec-

tion. Roady et al. [41] sample half of the classes from

ImageNet-1k as in-distribution data, and evaluate the other

half as OOD test data. They use a one-vs-rest training strat-

egy and background class regularization, which requires ac-

cess to an auxiliary dataset. KL matching was employed as

the OOD scoring function in [15]. In this work, we propose

a novel group-based solution that scales more effectively

and efficiently for large-scale OOD detection. We also per-

form evaluations on more diverse real-world OOD datasets

and conduct thorough ablations that improve understand-

ings of the problem and solutions in many aspects.

Learning with Hierarchical Labels The hierarchical

structure of the class categories has been utilized for effi-

cient inference [9, 30], improved classification accuracy [7],

and stronger object detection performance [38]. Some

works aim to learn a label tree structure when taxonomy

is unavailable [2, 9, 30]. As a typical hierarchy, group-

based learning has been widely adopted in image classifi-

cation tasks [18, 1, 49, 47, 12]. Recently, a group softmax

classifier is proposed to tackle the problem of long-tail ob-

ject detection, where categories are grouped according to

the number of training instances [28]. We contribute to this

field by showing the promise of using a group label struc-

ture for effective OOD detection.

6. Conclusion

In this paper, we propose a group-based OOD detec-

tion framework, along with a novel OOD scoring function,

MOS, that effectively scales the OOD detection to a real-

world setting with a large label space. We curate four di-

verse OOD evaluation datasets that allow future research

to evaluate OOD detection methods in a large-scale set-

ting. Extensive experiments show our group-based frame-

work can significantly improve the performance of OOD

detection in this large-scale setting compared to existing ap-

proaches. We hope our research can raise more attention to

expand the view of OOD detection from small benchmarks

to a large-scale real-world setting.
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