
MetaSets: Meta-Learning on Point Sets for Generalizable Representations

Chao Huang∗, Zhangjie Cao∗, Yunbo Wang∗, Jianmin Wang, Mingsheng Long (B)

School of Software, BNRist, Tsinghua University, China

{microhhh9,caozhangjie14,yunbo.thu}@gmail.com, {jimwang,mingsheng}@tsinghua.edu.cn

Abstract

Deep learning techniques for point clouds have achieved

strong performance on a range of 3D vision tasks. However,

it is costly to annotate large-scale point sets, making it criti-

cal to learn generalizable representations that can transfer

well across different point sets. In this paper, we study a new

problem of 3D Domain Generalization (3DDG) with the goal

to generalize the model to other unseen domains of point

clouds without any access to them in the training process.

It is a challenging problem due to the substantial geometry

shift from simulated to real data, such that most existing 3D

models underperform due to overfitting the complete geome-

tries in the source domain. We propose to tackle this problem

via MetaSets, which meta-learns point cloud representations

from a group of classification tasks on carefully-designed

transformed point sets containing specific geometry priors.

The learned representations are more generalizable to vari-

ous unseen domains of different geometries. We design two

benchmarks for Sim-to-Real transfer of 3D point clouds. Ex-

perimental results show that MetaSets outperforms existing

3D deep learning methods by large margins.

1. Introduction

Understanding and reasoning about 3D objects are cru-

cial for AI robots to understand the real world. Recently,

with the success of deep learning in 2D vision tasks [8, 25],

3D deep learning techniques have also obtained state-of-

the-art classification/detection results in both simulated and

real-world datasets of point clouds [20, 22, 38, 19]. How-

ever, the high performance of 3D deep learning is mostly

achieved when the training data and testing data come from

the same domain. But in practical applications, the assump-

tion is always violated. For example, we can easily use the

well-annotated CAD models collected from the Internet as

training data [35, 4], but when we directly use the learned

deep networks to classify real objects, we find that the perfor-

mance decreases dramatically. Since scanning real objects

∗Equal contribution

0.0 0.1 0.2 0.3 0.4
Dropping rate

55

60

65

70

75

80

85

90
Ac

cu
ra

cy
(%

)

Retrained model on transformed dataset
Original model on transformed dataset
Original model on original dataset

Figure 1. The geometric domain shift is the key challenge of

3DDG. Top: Domain misalignment can be easily caused by broken

assemblies or missing parts. Bottom: The existing deep networks

learned in the complete point sets underperform in the transformed

point sets with broken assemblies or missing parts. The X-axis

represents the ratio of randomly discarded points for each point set.

Further details of transformed datasets are included in Section 3.2.

using depth cameras or LiDAR sensors are extremely costly,

it is worthwhile to study the Sim-to-Real transfer learning

problem for 3D point clouds.

Under these circumstances, in this paper, we present a

new problem of 3D Domain Generalization (3DDG), which

aims to learn a classification model in source point sets that

can achieve high performance in target point sets that are

not accessible during training. The training and testing data

are from different domains with a large domain shift. In the

case of 3DDG, it is mainly caused by various geometries of

shapes from distant domains, namely the geometry shift. Fig-

ure 1 (top) shows an example of geometry shift between the

simulated ModelNet dataset [35] and the real ScanObjectNN

[29] dataset. There exist some misalignments of learned

8863

features caused by broken assemblies or missing parts of the

entire point cloud. Existing point cloud classification meth-

ods [1, 15, 32, 36, 20, 22] perform sub-optimally under such

a domain shift [29]. In an early experiment of this paper,

we empirically analyze their performance in target domains

with incomplete point clouds. The results of PointNet [20]

are shown in Figure 1 (bottom). Note that only by retraining

it on the transformed target set with missing parts, can the

model perform well on it. By contrast, if we directly evaluate

a model trained on a full source dataset, the performance

will degrade significantly, which can be caused by overfitting

the geometry of training data.

To mitigate the geometric domain shift, we propose a

meta-learning framework named MetaSets that has two con-

tributions to 3DDG. First and foremost, MetaSets improves

the previous gradient-based meta-learning algorithms by ap-

plying a learned soft-sampling strategy to the meta-tasks.

It is partly inspired by the idea that the robustness of the

model to out-of-distribution test samples can be improved

by penalizing pre-defined data groups with weights that are

inversely proportional to the sample size of the groups [26].

Specifically, we split the source dataset into a meta-training

set and a meta-validation set, and perform meta-training and

meta-validation on corresponding meta-tasks iteratively. In

each meta-training phase, a batch of tasks is sampled with

learned probabilities that are decided by the corresponding

meta-validation error. This sampling strategy dynamically

adjusts the training workload on all tasks and encourages the

model to focus more on the difficult ones. In this way, the

proposed meta-learning algorithm can effectively balance

the importance of different tasks.

Another contribution of MetaSets is the transformation

approaches that are specifically designed for point cloud and

can be used to build different meta-tasks by expanding the

source dataset. The transformed point sets simulate the cases

of occlusions, missing parts, and the changes in scanning

density in real environments. They can best facilitate the

Sim-to-Real transfer learning by providing various geomet-

ric priors, and thus prevent the model from overfitting the

source dataset. In this way, the proposed algorithm can learn

both domain-invariant latent factors that greatly improve

the generalization ability of the model, and domain-specific

geometric priors that enhance the discriminability.

We design two Sim-to-Real benchmarks based on stan-

dard point cloud datasets, and observe that the proposed

MetaSets remarkably outperforms existing approaches for

3DDG. We further validate the effectiveness of the meta-

learning framework, the soft-sampling strategy with learned

probabilities, as well as each transformed point set.

2. Problem Setup

This work studies the problem of 3D Domain Gener-

alization (3DDG), which has been missing a full study at

present. In 3DDG, we have a source domain consisting of

point clouds and labels Ds = {(Ps, ys)}, and the goal is to

train a highly generalizable model f to achieve low classifi-

cation errors E = E(P,y)∼Dt
[f(P) 6= y] on an unseen target

domain Dt = {(Pt, yt)}. Only the data and labels in the

source domain are available during training, while those in

the target domain are only used for evaluation. The technical

challenge of this problem is the variations of data distribu-

tion between Ds and Dt, which usually exist in simulation-

to-reality (Sim-to-Real) transfer learning scenarios due to

geometry deformation or the change of the point cloud den-

sity, and may violate the i.i.d. assumption of the existing

deep learning approaches for point cloud classification.

3. MetaSets

In this section, we first introduce the overall framework of

a new meta-learning approach for 3D domain generalization

named MetaSets. Then we describe the specific meta-tasks

in the framework, from which the model can learn meta-level

geometric priors and generalize the features to other unseen

domains. Figure 2 shows a schematic of our approach.

3.1. The MetaSets Framework

A possible solution to 3DDG is to mitigate the potential

geometry shift of a variety of 3D point sets by learning the do-

main invariant geometric structures. To this end, we propose

the MetaSets framework, as shown in Alg. 1, which follows

the basic idea of Model-Agnostic Meta-Learning (MAML)

[6], and contributes to ensuring the balance of various meta-

tasks in the learning process so that features can be broadly

generalizable to other unseen domains. We use MAML be-

cause it is a typical gradient-based meta-learning approach,

and MetaSets is supposed to be a general framework that can

be combined with more advanced meta-learning algorithms.

Meta-tasks. Since in practice we have only one source

domain Ds of point sets that can be used for training, we

need to augment Ds with reasonable data transformations to

build multiple meta-tasks. Assuming that there has been a

set of transformation functions {Fn}
N
n=1 that we can use off-

the-shelf, we may construct n classification tasks {Tn}
N
n=1

for the transformed point sets, and divide each of them into a

meta-training set and a meta-validation set. We will discuss

the details of Fn in Section 3.2.

Meta-training. An inductive bias of MetaSets is that ef-

fective meta-learners are supposed to perform well on all

meta-tasks. For this purpose, in MetaSets, we improve the

meta-training process of MAML [6] by explicitly balancing

the contributions of all meta-tasks to the meta-learner. As

shown in Line 6 in Alg. 1, at each meta-training step, we

dynamically sample K transformation functions denoted by

{F ′

k}
K
k=1 from the function set, instead of pre-progressing

8864

Algorithm 1 Training process of MetaSets

Input: Source dataset Ds = (Dtrain
s ,Dval

s), data minibatch size B, transformation functions {Fn}
N
n=1, number of sampled

functions K, validation error bound ǫ, learning rates η and β

1: Initialize θ ← θ0

2: {pn}
N
n=1 = 1

N
⊲ Initialize the task sample probability

3: while Lval
n < ǫ for n = 1, . . . , N do

4: repeat ⊲ Meta-training phase

5: {(Pi
s, y

i
s)}

B
i=1 ∼ D

train
s

6: {F ′

k}
K
k=1 ∼ multinomial({Fn}

N
n=1;K) w.r.t. {pn}

N
n=1 ⊲ Sample K functions

7: for k = 1, . . . ,K do

8: {Pi
k}

B
i=1 = {F ′

k(P
i
s)}

B
i=1 ⊲ Obtain transformed point sets

9: Lk ← {fθ(P
i
k)}

B
i=1; θ

′

k = θ − η∇θLk ⊲ According to Eqn (1)

10: Lcls ← {fθ′

k
(Pi

k)}
B,K
i=1,k=1; θ ← θ − β∇θL

cls ⊲ According to Eqn (2)

11: until end of Dtrain
s

12: repeat ⊲ Meta-validation phase

13: {(Pi
s, y

i
s)}

B
i=1 ∼ D

val
s

14: for n = 1, . . . , N do

15: {Pi
n}

B
i=1 = {Fn(P

i
s)}

B
i=1 ⊲ Obtain transformed point sets

16: Lval
n ← {fθ(P

i
n)}

B
i=1 ⊲ According to Eqn (3)

17: {pn}
N
n=1 ← {softmax({Lval

n }
N
n=1)}

N
n=1 ⊲ According to Eqn (4)

18: until end of Dval
s

19: return θ

Ds in advance. The probabilities of sampling {pn}
N
n=1 are

initialized with a uniform distribution across all the tasks

and updated at each meta-validation step (Line 17 in Alg.

1). In other words, MetaSets not only learns to complete the

predefined tasks but also learns to balance their impact on the

meta-training process. Based on a minibatch of point clouds

{Pi
s}

B
i=1 randomly sampled from the source meta-training

set Dtrain
s , MetaSets maps them to K transformed point sets

Dtrain
k = {(Pi

k, y
i
s)}

B
i=1, where k ∈ {1, . . . ,K} (Line 8 in

Alg. 1). On each task, it computes the classification loss:

Lk =
1

B

B
∑

i=1

ℓ
(

fθ(P
i
k), y

i
s

)

, (1)

where N is the minibatch size, ℓ(·) is the cross-entropy loss,

and fθ is a point cloud classification model, e.g., PointNet

[20], parameterized by θ. We compute the parameters after

one gradient update as θ′k = θ − η∇θLk, then use the fol-

lowing meta-objective to minimize the classification error

over all sampled tasks with updated parameters θ′k:

Lcls =

K
∑

k=1

1

B

B
∑

i=1

ℓ
(

fθ′

k
(Pi

k), y
i
s

)

. (2)

Minimizing the meta-objective achieves high perfor-

mance on each sampled task, such that we can update the

classification model by θ ← θ − β∇θL
cls.

Meta-validation. After one training epoch over Dtrain
s ,

MetaSets performs the mata-validation process to evaluate

the classification loss under parameter θ on Dval
s for the total

of N tasks. Concretely, we first sample B point clouds from

Dval
s and transform them into Dval

n for all N transformation

functions {Fn}
N
n=1, and then for each task Tn, we have

Lval
n = E(P,y)∼Dval

n
ℓ
(

fθ(P), y
)

. (3)

The validation loss Lval
n serves two purposes. First, it

can be used as a signal of convergence for the classification

model. If Lval
n is smaller than a small threshold ǫ (i.e., vali-

dation error bound) for all tasks n ∈ {1, . . . , N}, the model

is considered to be converged.

Second and more importantly, at the end of each meta-

validation process, we use {Lval
n }

N
n=1 to compute the proba-

bility of sampling each task for the next meta-training phase,

as shown in Figure 2. We propose to increase the probabili-

ties of tasks with higher validation losses to be selected in

the next meta-training process so that MetaSets can focus

more on these challenging tasks. Specifically, in Line 17 in

Alg. 1, we update the probability of each task by performing

softmax over {Lval
n }

N
n=1:

pn =
exp(Lval

n)
∑N

n=1 exp(L
val
n)

. (4)

8865

Sum

Sample

PointNet

PointNet

Meta train

Meta
validation

…

Update probability

Meta learning
module (MLM)

Lk

<latexit sha1_base64="QaEYAj/oieQVYaMDkd++J5H2xc8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxIQd0V3bhwUcE+oB1KJs20oZlkTDKFMvQ73LhQxK0f486/MdPOQlsPBA7n3Ms9OUHMmTau++0U1tY3NreK26Wd3b39g/LhUUvLRBHaJJJL1QmwppwJ2jTMcNqJFcVRwGk7GN9mfntClWZSPJppTP0IDwULGcHGSn4vwmZEME/vZ/1xv1xxq+4caJV4OalAjka//NUbSJJEVBjCsdZdz42Nn2JlGOF0VuolmsaYjPGQdi0VOKLaT+ehZ+jMKgMUSmWfMGiu/t5IcaT1NArsZBZSL3uZ+J/XTUx45adMxImhgiwOhQlHRqKsATRgihLDp5ZgopjNisgIK0yM7alkS/CWv7xKWhdVr1a9fqhV6jd5HUU4gVM4Bw8uoQ530IAmEHiCZ3iFN2fivDjvzsditODkO8fwB87nDwpwkkw=</latexit>

r

<latexit sha1_base64="MQB4/oD8VYA/UEeO5aKVv6EVO5Q=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWsB/QhjLZbtq1m03Y3Qgl9D948aCIV/+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lg5kkzI9wKHnIKRortXoSA4H9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+RmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJ66Lq1arX97VK/SaPowgncArn4MEl1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AIM8jxw=</latexit>

`k

<latexit sha1_base64="r/rti3l4QQ4fQS4YbXVeow0relE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXvRWwX5AG8pmO2nXbjZhdyOU0P/gxYMiXv0/3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZKrR4K0R/3yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5tdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhlZ9xmaQGJVssClNBTExmr5MBV8iMmFhCmeL2VsJGVFFmbEAlG4K3/PIqaV1UvVr1+r5Wqd/lcRThBE7hHDy4hDrcQgOawOARnuEV3pzYeXHenY9Fa8HJZ47hD5zPH5L/jyw=</latexit>

Lcls

Lval
1

Lval
N

<latexit sha1_base64="4MSVh6YFAfAYcJB+h6wGYT2wroM=">AAAC3XicjVHLSsNAFD2N73fVjeAmWARXJRVB3YluXIgo2Cq0tUym0zZ08iCZiFLqzp249Qfc6u+If6B/4Z0xglpEJyQ5c+49Z+be60bSS5TjvOSsoeGR0bHxicmp6ZnZufz8QiUJ05iLMg9lGJ+5LBHSC0RZeUqKsygWzHelOHW7ezp+eiHixAuDE3UVibrP2oHX8jhTRDXySzWfqQ5nsnfQbxye15S4VL0LJvuNfMEpOmbZg6CUgQKydRTmn1FDEyE4UvgQCKAISzAk9FRRgoOIuDp6xMWEPBMX6GOStCllCcpgxHbp26ZdNWMD2mvPxKg5nSLpjUlpY5U0IeXFhPVptomnxlmzv3n3jKe+2xX93czLJ1ahQ+xfus/M/+p0LQotbJkaPKopMoyujmcuqemKvrn9pSpFDhFxGjcpHhPmRvnZZ9toElO77i0z8VeTqVm951luijd9Sxpw6ec4B0FlvVjaKG4fbxR2drNRj2MZK1ijeW5iB/s4Qpm8r/GARzxZDevGurXuPlKtXKZZxLdl3b8DMoCaCQ==</latexit>

Softmax

Projection Perspective Non-uniformly Density Randomly Drop

Source point cloudsP

P

P

P
0

k PointNet

θ
0

k

<latexit sha1_base64="Kx4DTnz7Mf4iTGNle2H209WUS4Q=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWRgnorevFYwX5AE8NmO2mXbj7YnQg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5QSq4Qtv+Nkpr6xubW+Xtys7u3n7VPDjsqCSTDNosEYnsBVSB4DG0kaOAXiqBRoGAbjC+mfndR5CKJ/E9TlLwIjqMecgZRS35ZtXFESB9cFPJI/DHvlmz6/Yc1ipxClIjBVq++eUOEpZFECMTVKm+Y6fo5VQiZwKmFTdTkFI2pkPoaxrTCJSXzw+fWqdaGVhhInXFaM3V3xM5jZSaRIHujCiO1LI3E//z+hmGl17O4zRDiNliUZgJCxNrloI14BIYiokmlEmub7XYiErKUGdV0SE4yy+vks553WnUr+4ateZ1EUeZHJMTckYcckGa5Ja0SJswkpFn8krejCfjxXg3PhatJaOYOSJ/YHz+ABESk2A=</latexit>

PointNet

Transformation functionFi

Task sample probabilitypi

θ
0

k

<latexit sha1_base64="Kx4DTnz7Mf4iTGNle2H209WUS4Q=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWRgnorevFYwX5AE8NmO2mXbj7YnQg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5QSq4Qtv+Nkpr6xubW+Xtys7u3n7VPDjsqCSTDNosEYnsBVSB4DG0kaOAXiqBRoGAbjC+mfndR5CKJ/E9TlLwIjqMecgZRS35ZtXFESB9cFPJI/DHvlmz6/Yc1ipxClIjBVq++eUOEpZFECMTVKm+Y6fo5VQiZwKmFTdTkFI2pkPoaxrTCJSXzw+fWqdaGVhhInXFaM3V3xM5jZSaRIHujCiO1LI3E//z+hmGl17O4zRDiNliUZgJCxNrloI14BIYiokmlEmub7XYiErKUGdV0SE4yy+vks553WnUr+4ateZ1EUeZHJMTckYcckGa5Ja0SJswkpFn8krejCfjxXg3PhatJaOYOSJ/YHz+ABESk2A=</latexit>

MLM

…MLM

…

…p1 pn

…

Projection Perspective Non-uniformly Density Randomly Drop

F 0

1

<latexit sha1_base64="PJPe8h/Nf4VE6IEutDl/dzpXWP8=">AAAB8XicbVDLSgNBEOyNrxhfUY9eFoPgKexKQL0FBfEYwTwwWcPspJMMmZldZmaFsOQvvHhQxKt/482/cZLsQRMLGoqqbrq7wpgzbTzv28mtrK6tb+Q3C1vbO7t7xf2Dho4SRbFOIx6pVkg0ciaxbpjh2IoVEhFybIaj66nffEKlWSTvzTjGQJCBZH1GibHSw81jJ1ZMYNfvFkte2ZvBXSZ+RkqQodYtfnV6EU0ESkM50brte7EJUqIMoxwnhU6iMSZ0RAbYtlQSgTpIZxdP3BOr9Nx+pGxJ487U3xMpEVqPRWg7BTFDvehNxf+8dmL6F0HKZJwYlHS+qJ9w10Tu9H23xxRSw8eWEKqYvdWlQ6IINTakgg3BX3x5mTTOyn6lfHlXKVWvsjjycATHcAo+nEMVbqEGdaAg4Rle4c3Rzovz7nzMW3NONnMIf+B8/gAj+pCX</latexit>

F 0

K

<latexit sha1_base64="xcbPlhnlnNa1DeLZ6BEnXfI/JZo=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN6CggheIpgHJmuYnfQmQ2Znl5lZISz5Cy8eFPHq33jzb5w8DppY0FBUddPdFSSCa+O6305uaXlldS2/XtjY3NreKe7u1XWcKoY1FotYNQOqUXCJNcONwGaikEaBwEYwuBr7jSdUmsfy3gwT9CPakzzkjBorPVw/thPFI+zcdoolt+xOQBaJNyMlmKHaKX61uzFLI5SGCap1y3MT42dUGc4EjgrtVGNC2YD2sGWppBFqP5tcPCJHVumSMFa2pCET9fdERiOth1FgOyNq+nreG4v/ea3UhOd+xmWSGpRsuihMBTExGb9PulwhM2JoCWWK21sJ61NFmbEhFWwI3vzLi6R+UvZOyxd3p6XK5SyOPBzAIRyDB2dQgRuoQg0YSHiGV3hztPPivDsf09acM5vZhz9wPn8AS2KQsQ==</latexit>

P
0

K

<latexit sha1_base64="KgRBdaSH2aWhnD+DKF/HbI7hhc0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiQiqLuiG8FNBfuAJobJdNIOnZmEmYkQQv0VNy4UceuHuPNvnLRZaOuBgcM593LPnDBhVGnH+bYqK6tr6xvVzdrW9s7unr1/0FVxKjHp4JjFsh8iRRgVpKOpZqSfSIJ4yEgvnFwXfu+RSEVjca+zhPgcjQSNKEbaSIFd9zjS4zDK29MHL5GUk+A2sBtO05kBLhO3JA1Qoh3YX94wxiknQmOGlBq4TqL9HElNMSPTmpcqkiA8QSMyMFQgTpSfz8JP4bFRhjCKpXlCw5n6eyNHXKmMh2ayiKoWvUL8zxukOrrwcyqSVBOB54eilEEdw6IJOKSSYM0yQxCW1GSFeIwkwtr0VTMluItfXibd06Z71ry8O2u0rso6quAQHIET4IJz0AI3oA06AIMMPINX8GY9WS/Wu/UxH61Y5U4d/IH1+QMMlJUM</latexit>

P
0

1

<latexit sha1_base64="jK+xapMegE09LouT0csRsFC3AlQ=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgqiRSUHdFNy4r2Ac0MUymk3bozCTMTIQQ6q+4caGIWz/EnX/jpM1CWw8MHM65l3vmhAmjSjvOt1VZW9/Y3Kpu13Z29/YP7MOjnopTiUkXxyyWgxApwqggXU01I4NEEsRDRvrh9Kbw+49EKhqLe50lxOdoLGhEMdJGCuy6x5GehFHemT14iaScBG5gN5ymMwdcJW5JGqBEJ7C/vFGMU06ExgwpNXSdRPs5kppiRmY1L1UkQXiKxmRoqECcKD+fh5/BU6OMYBRL84SGc/X3Ro64UhkPzWQRVS17hfifN0x1dOnnVCSpJgIvDkUpgzqGRRNwRCXBmmWGICypyQrxBEmEtemrZkpwl7+8SnrnTbfVvLprNdrXZR1VcAxOwBlwwQVog1vQAV2AQQaewSt4s56sF+vd+liMVqxypw7+wPr8AeUdlPI=</latexit>

P1

<latexit sha1_base64="VvngsFyHc496H1ApxWMFQflPZYg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQiqLuiG5cV7AOaUibTSTt0MgkzN0IJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7nK/88S1EbF6xGnC+xEdKREKRtFKvh9RHAdh1pwNvEG15tbdOcgq8QpSgwLNQfXLH8YsjbhCJqkxPc9NsJ9RjYJJPqv4qeEJZRM64j1LFY246WfzzDNyZpUhCWNtn0IyV39vZDQyZhoFdjLPaJa9XPzP66UYXvczoZIUuWKLQ2EqCcYkL4AMheYM5dQSyrSwWQkbU00Z2poqtgRv+curpH1R9y7rNw+XtcZtUUcZTuAUzsGDK2jAPTShBQwSeIZXeHNS58V5dz4WoyWn2DmGP3A+fwDxGZGk</latexit>

PN

<latexit sha1_base64="DKS7HT35lX3l7z6CvcDtzVBxTLQ=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRSUHdFN66kgn1AE8pkOmmHTiZhHkIJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cMOVMadf9dkpr6xubW+Xtys7u3v5B9fCooxIjCW2ThCeyF2JFORO0rZnmtJdKiuOQ0244uc397hOViiXiUU9TGsR4JFjECNZW8v0Y63EYZa3Z4H5Qrbl1dw60SryC1KBAa1D98ocJMTEVmnCsVN9zUx1kWGpGOJ1VfKNoiskEj2jfUoFjqoJsnnmGzqwyRFEi7RMazdXfGxmOlZrGoZ3MM6plLxf/8/pGR1dBxkRqNBVkcSgyHOkE5QWgIZOUaD61BBPJbFZExlhiom1NFVuCt/zlVdK5qHuN+vVDo9a8Keoowwmcwjl4cAlNuIMWtIFACs/wCm+OcV6cd+djMVpyip1j+APn8wcdHJHB</latexit>

FN

<latexit sha1_base64="OKWq9rpWEKPogYcKPeDdAbSC12Q=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL0FBfEkEc0DkiXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6305uZXVtfSO/Wdja3tndK+4fNEyUaMbrLJKRbgXUcCkUr6NAyVux5jQMJG8Go+up33zi2ohIPeI45n5IB0r0BaNopYeb7l23WHLL7gxkmXgZKUGGWrf41elFLAm5QiapMW3PjdFPqUbBJJ8UOonhMWUjOuBtSxUNufHT2akTcmKVHulH2pZCMlN/T6Q0NGYcBrYzpDg0i95U/M9rJ9i/8FOh4gS5YvNF/UQSjMj0b9ITmjOUY0so08LeStiQasrQplOwIXiLLy+TxlnZq5Qv7yul6lUWRx6O4BhOwYNzqMIt1KAODAbwDK/w5kjnxXl3PuatOSebOYQ/cD5/AO9JjZc=</latexit>

F1

<latexit sha1_base64="IcatjhvwmLGsIh/AYC3nKVmN1OU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FQTxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw23P65UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwks/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8q3rn1av780rtOo+jCEdwDKfgwQXU4A7q0AAGA3iGV3hzhPPivDsf89aCk88cwh84nz/DVY16</latexit>

Figure 2. A schematic of the meta-learning framework of MetaSets.

The updated probabilities are then applied to the sam-

pling process of the transformation functions and balance

the importance of N meta-tasks in the next training epoch.

In 3DDG scenarios, learning {pn}
N
n=1 dynamically prevents

the classification model from overfitting the source domain,

and encourages it to generalize across a wide range of possi-

ble variations of the source point clouds, such as geometric

distortion and missing parts. Unlike the MAML algorithm

[6] that mainly focuses on encoding domain-invariant knowl-

edge in the meta-leaner, the proposed MetaSets performs

soft-sampling on meta-tasks to further address the imbalance

of their impact, and thus enables the model to learn both

domain-invariant and domain-specific knowledge from the

expanded source domains.

For the convergence of MetaSets, since the standard meta-

learning paradigm has been proved to be able to converge

theoretically [5] and empirically [6] even for diverse tasks

with a large number of data points and MetaSets follows

a similar training paradigm to standard meta-learning, so

MetaSets can also converge soundly. For the time cost, the

proposed MetaSets only requires an extra meta-validation

step compared to standard meta-learning. However, the

meta-validation step costs much less time than the meta-

training step (about 1 : 30 on average in experiments). So

the time cost of MetaSets is comparable to standard meta-

learning. In experiments, we show that the convergence

speed of MetaSets is similar to standard meta-learning and

comparable to standard point cloud classification models.

3.2. Transformed Point Sets

The quality of the meta-tasks is the key to the effective-

ness of MetaSets, as is the case in any other MAML variant.

To improve the generalization ability of the learned model,

the tasks are supposed to cover a wide range of possible

variations of point clouds from the source domain. As men-

tioned above, we expand the source domain by applying a set

of transformation functions {Fn}
N
n=1 to the original point

clouds. At the same time, the diversity and representative-

ness of the transformed point sets are considered. Due to the

work of Wu et al. [33], the common geometry shift for point

clouds is mainly caused by occlusions, density changes, and

scanning noises. Accordingly, we design the following three

transformation approaches, as shown in Figure 2, that can

be used to generate a variety of meta-tasks by changing the

hyperparameters or using different combinations of them.

8866

Non-uniform density (P1, g). When scanning an object

with a LiDAR, the closer it is, the denser the point cloud will

be. We simulate the non-uniform density by firstly setting an

anchor position P1 outside the point cloud and calculating

its distances to each point, where P1 is randomly selected

from a unit sphere. We then discard the points with prob-

abilities (i.e., dropping rate) proportional to the distances.

To construct different point sets, we first normalize the dis-

tance from P1 to every point in the point cloud within the

range of [0, 1], which is used as the basic drop rate. Then we

multiply the basic drop rate with a multiplier g > 1, which

is called the gate parameter and controls the density of the

point cloud, where a larger g means more dropping points

and thus a sparser point cloud. The point distribution and

the density of the transformed point cloud can be controlled

by P1 and g respectively.

Dropping (P2, x%). Inspired by the idea of dropout that

keeps deep networks from overfitting, we propose to ran-

domly drop parts of point cloud structures. We randomly

select a position P2 in the point cloud and drop the nearest

x% points, where P2 and x% are controllable hyperparame-

ters. This transformation method has two benefits. First, it

produces meta-tasks that can prevent the model from over-

fitting the source domain. Second, it simulate the cases of

broken assemblies or missing parts in real environments, and

thus can best facilitate the Sim-to-Real generalization.

Self-occlusion (~v,W). Self-occlusion occurs when the

shape is viewed from a certain angle that the back surface

of the point clouds is invisible. As shown in Figure 2, we

simulate occlude by specifically designing a parallel projec-

tion method for point clouds, and take it as a basic operation

to construct the meta-tasks. To be specific, we first choose

a plain outside the 3D object and project the points cloud

to the plain along its normal vector ~v. All optional planes

are supposed to have the same minimum distance to the

point cloud. We then divide the plane into grids of equal

size. Within each grid, we keep the closest point along the

normal vector and remove the others. We can control the

grid size of W to obtain different occlusion patterns. As it

approaches infinity, it retains only one point, and when it is

small enough, the entire point cloud will be preserved and no

occlusion occurs. We can also control the projection angle,

i.e., the normal vector of the plane. The transformed point

sets with self-occlusion can greatly benefit the transfer learn-

ing problem of 3D point clouds in Sim-to-Real scenarios as

the inner structure of real-world data is not visible.

In summary, through the different types of transforma-

tions introduced above, we can simulate different geometry

shifts of self-occlusions, density changes, and missing parts.

We control the hyperparameters in (P1, g, P2, x%, ~v,W) to

develop a set of functions {Fn}
N
n=1 at the very beginning

of the training process. Each of them can be used to con-

struct a transformed point set Dn = {(Fn(P), y)}, where

(P, y) ∈ Ds. However, it is worth noting that, the imbalance

of the task difficulty may make the meta-learning approach

less effective for 3DDG. To solve this problem, we intro-

duce the soft-sampling technique to dynamically adjust the

training workload of the model on each task.

Another benefit of the above transformation methods is

that we design tasks at the input level so that they can be

easily combined with existing approaches that have specific

designs in model architectures [23, 24]. Besides, the overall

MetaSets framework is extendable and can be generalized

to other target domains by simply defining new tasks with

specific geometric priors.

4. Experiments

To evaluate MetaSets in Sim-to-Real scenarios, we build

two 3DDG benchmarks upon the synthetic datasets, Model-

Net [35] and ShapeNet [4], as well as a real dataset ScanOb-

jectNN [29]. See supplementary materials for more details.

Compared methods. We compare MetaSets with five

state-of-the-art point cloud classification models: Point-

Net [20], PointNet++ [22], DGCNN [32], ConvPoint [2],

LDGCNN [37], and PointCNN [15], covering both PointNet-

based, CNN-based and Graph-based methods. Besides, we

further compare MetaSets with PointDAN [23], a domain

adaptation approach for point clouds based on PointNet.It

is worth mentioning that PointDAN [23] requires unlabeled

target data for training, while for 3DDG, the distribution of

target data is not accessible. Thus, compared with PointDAN

[23], MetaSets tries to tackle a more challenging problem.

Implementation details. We divide each source domain

into a training set and a validation set at a scale of 5 : 1,

following the experimental protocol of domain generaliza-

tion [7]. Similar to [6], we implement our meta-learning

algorithm with first-order approximation to achieve high

computational efficiency. For all the compared methods,

we tune hyperparameters by performing cross-validation in

the source domain. For MetaSets, we construct three tasks

for each transformation method, where the parameters are

selected as follows: (1) we monotonically change the param-

eters, from preserving all points to deleting all points; When

we observe that the shape of the resulting point cloud begins

to change, we record the parameters as t1, and when we

observe that the shape is almost unrecognizable, we record

the parameters as t2. (2) We randomly sample three pa-

rameters within the range of (t1, t2) and add them to the

task set. At each iteration in the meta-training phase, we

sample four tasks from the task set of all transformations.

Hyperparameters η and β are tuned by cross-validation, as

shown in Alg. 1. Please see supplementary materials for

their sensitivity analysis. Unless otherwise specified, we use

PointNet [20] as the backbone of MetaSets. All experiments

8867

Self-occlusion

Dropping

ModelNet ScanObjectNN

Missing bottom

Broken backrest

Sink Complete bottom

Chair: Complete backrest

MetaSets: 0.9812

PointNet: 0.5746

MetaSets: 0.8612

PointNet: 0.6893

Confidence

Figure 3. Visualization of point clouds from the source domain (first column), the transformed point sets (second column), and the target

domain (third column). The geometries of the transformed point clouds match well with those of the target clouds, which enables the

proposed MetaSets to alleviate the influence of geometric domain shift.

are conducted using PyTorch [18]. We perform each exper-

iment three times and report the average and the standard

deviation of the results.

4.1. Geometry Overfitting

We first empirically study how our current point cloud

classification methods are affected by geometry shift. As

shown in Figure 1 (please go back to the first page), we

evaluate PointNet [20] on the ModelNet dataset by randomly

dropping some parts of the point cloud. As we can see, the

classification accuracy becomes lower as more points are

deleted. One might argue that this performance degradation

is because the remainder of the point cloud does not have

sufficient geometric information and is, therefore, less rec-

ognizable. Thus, we re-train the PointNet on transformed

point clouds and the performance rises back to the model on

the original dataset. The results show that the point clouds

after transformation are still recognizable, and the reason for

the performance degradation is the geometry shift between

training and testing, which is a common situation in most

Sim-to-Real scenarios. The model overfits the geometry of

the complete point cloud shapes and cannot recognize the

geometry of transformed shapes.

4.2. ModelNet to ScanObjectNN

On this benchmark, we select the 11 categories shared by

the ModelNet40 and ScanObjectNN datasets. Models are

trained on ModelNet and evaluated on ScanObjectNN. We

report the class-wise results in the supplementary materials.

Visualization of transformed point sets. Figure 3 illus-

trates the differences between geometries in the synthetic

source domain and those in the real target domain, and how

the transformed point sets contribute to learning more gen-

eralizable features. Due to self-occlusion or missing parts,

Method Object
Object &

Background

PointNet [20] 55.90±1.47 49.48±2.28

PointNet++ [22] 47.30±0.53 40.42±1.17

ConvPoint [2] 57.40±0.44 55.44±0.32

DGCNN [32] 61.68±1.26 57.61±0.44

PointCNN [15] 50.32±0.43 46.11±0.43

LDGCNN [37] 62.29±0.22 58.83±0.43

PointDAN [23] on PointNet 63.32±0.85 55.13±0.97

MetaSets on PointNet 68.28±0.79 57.19±1.23

MetaSets on ConvPoint 65.05±0.56 61.33±0.32

MetaSets on DGCNN 72.42±0.21 65.66±1.06

Table 1. Accuracy (%) on the ModelNet→ScanObjNN benchmark.

these point clouds that are randomly sampled from the real

domain suffer from “missing bottom” and “broken backrest”,

which leads to the decrease of the classification confidence

of the original PointNet. In contrast, the transformed point

sets proposed in this work can help bridge the geometry

gap between complete and imperfect point clouds, enabling

the meta-learning model to learn representations that can be

easily generalized to the geometries in the target domain.

Comparison with the single-domain state of the art. As

we can see from Table 1, MetaSets outperforms previous

point cloud classification methods, including the state-of-

the-art LDGCNN, under the 3DDG setting. The sub-optimal

performance of previous single-domain approaches, which

are also trained on the source domain only, is caused by

overfitting the geometry of complete point clouds in the

training set and thus lacking the ability to generalize to

the real domains with imperfect shapes. MetaSets obtains

remarkable and consistent improvement, indicating that it

is model-agnostic and performs better when the backbone

network gets stronger.

8868

Method None Density Dropping Self-occlusion All tasks

MetaSets on PointNet 58.95 65.47 64.00 63.58 68.28

MetaSets w/o meta-learning 55.90 62.58 62.95 61.47 63.16

Table 2. The ablation study of using different meta-tasks (columns) and different optimization algorithms (rows) on ModelNet→ScanObjNN.

Meta-training method
Density Dropping Self-occlusion Avg

Acc (%) Loss Acc (%) Loss Acc (%) Loss Acc (%) Loss

Density 59.58 1.49 57.26 1.61 62.53 1.42 59.79 1.51

Dropping 56.63 1.68 58.30 1.69 62.31 1.55 59.08 1.64

Self-occlusion 51.16 1.85 53.73 1.93 62.74 1.68 55.88 1.82

Final: MetaSets 68.42 1.13 65.05 1.20 63.16 1.26 65.54 1.20

MetaSets w/o soft-sampling 67.09 1.35 60.07 1.51 60.35 1.49 62.50 1.45

Table 3. Generalization analysis across meta-tasks on the ModelNet→ScanObjNN benchmark. See text for more details.

Comparison with PointDAN [23]. PointDAN is a do-

main adaptation model that incorporates target unlabeled

data into training. However, as shown in Table 1, it under-

performs MetaSets by 63.32% vs. 68.28%. Note that (1)

MetaSets and PointDAN use the same backbone: PointNet,

and (2) MetaSets does not require any target data throughout

the training. Thanks to the geometry priors learned from

various “imagined” point clouds from the source domain,

MetaSets tries to solve a more challenging problem while

turns out to achieve superior results. Therefore, we can

consider MetaSets as a good solution to the 3DDG problem.

Ablation study on meta-tasks. Table 2 compares the ef-

fectiveness of each individual meta-task. We respectively

train the model on the source dataset without any trans-

formed data (the “None” column), the expanded source

dataset with data transformation, and the one with all types

of transformed data (the “All tasks” column). The first row

is the proposed MetaSets that integrates geometrical trans-

formations with the meta-learning approach based on soft-

sampling. The second row, “w/o meta-learning”, means

learning directly on the above training dataset rather than

using any meta-learning algorithms. It is worth noting that

the soft-sampling technique is only effective if the number of

tasks in the meta-learning process is greater than 2. Particu-

larly, for the “None” column, the difference between the two

models is that MetaSets is trained with the MAML algorithm

on the raw dataset while the “w/o meta-learning” baseline

model is trained using the naïve SGD, as opposed to bilevel

optimization (L9-10 in Alg. 1). For both compared models,

we can observe that each individual transformation method

(as the meta-task or data augmentation) independently brings

in performance gains upon the “None” column, and the best

performance is achieved when using all of them, indicat-

ing that these transformation methods are complementary to

each other for inferring different geometry priors.

Generalization across meta-tasks. We further evaluate

the generalization ability of MetaSets even across differ-

ent transformed sub-datasets. For each of the first three

rows in Table 3, we only use one type of transformation

method to build the meta-task, and then evaluate the model

on point sets produced by different types of transformation

methods. For the last two rows, we use the full set of meta-

tasks in the training process. Each column indicates the task

on which meta-validation is performed, where we report

the meta-validation accuracy (Acc) and cross-entropy loss

(Loss). The results show that the model learned from the

point clouds after non-uniform density transformation can

be better generalized to other types of data with different ge-

ometry variations. The final results are further improved by

using all three transformation techniques to build meta-tasks.

Ablation study on model components. From Table 2,

MetaSets trained with the proposed meta-learning algorithm

significantly outperforms the “w/o meta-learning” baseline

model that uses the transformed point sets to augment the

source dataset. The results validate the effectiveness of meta-

learning. Further, Table 3 compares the final MetaSets with a

baseline model that is trained with all meta-tasks but without

soft-sampling. It can be observed that soft-sampling reduces

the cross-entropy loss of meta-validation remarkably. In fact,

the classification difficulty is not the same on all transformed

point sets, and the proposed soft-sampling method allows the

training process to focus more on the difficult ones, so as to

reduce the meta-validation loss of all tasks more effectively.

4.3. ShapeNet to ScanObjetNN

To ensure that the performance gain is not due to the bias

of our method to a particular benchmark, we conduct exper-

iments on ShapeNet to ScanObjectNN. In this benchmark,

we train on the ShapeNet and evaluate on the ScanObjectNN.

We select the 9 categories shared by ShapeNet and ScanOb-

jectNN. As shown in Table 4, our MetaSets still outperforms

all the other methods testing on objects either without or

with a background. In particular, MetaSets achieves a larger

margin on objects with background, which has a large do-

main shift from the source domain. Note that with a more

advanced backbone (DGCNN vs. PointNet), the margin

8869

Method Object
Object &

Background

PointNet [20] 54.00±0.32 45.50±0.99

PointNet++ [22] 45.50±0.64 43.25±1.23

ConvPoint [2] 52.58±0.58 50.67±0.88

DGCNN [32] 57.42±1.01 54.42±0.80

PointCNN [15] 49.42±0.29 43.92±0.63

LDGCNN [37] 57.92±0.63 52.50±0.25

PointDAN [23] on PointNet 54.95±0.87 43.00±0.95

MetaSets on PointNet 55.25±0.35 49.50±0.43

MetaSets on DGCNN 60.92±0.76 59.08±1.01

Table 4. Accuracy (%) on the ShapeNet→ScanObjNN benchmark.

between MetaSets and the backbone is larger, which indi-

cates an advanced backbone better utilizes the features from

MetaSets and MetaSets has the potential to achieve higher

performance with a better backbone in the future.

5. Related Work

Point cloud classification. Deep learning methods for 3D

shape data were originally designed for 3D meshes [35],

multi-view images [28, 21, 3], and voxels [16]. More re-

cently, the emergence of point clouds has encouraged a

growing number of deep networks specifically designed for

this simple 3D data structure. PointNet addresses the per-

mutation invariance of point clouds by leveraging the max

pooling [20]. PointNet++ improves PointNet by encoding

point clouds hierarchically at multiple scales [22]. Another

focus of recent approaches is to develop the convolution

operation applied to point clouds [15, 32, 36, 34]. However,

all of these methods assume that both the training and testing

data are from the same domain. When generalized across

domains, these methods tend to overfit the geometry of the

source domain and significantly degrade performance in the

target domain. Therefore, a new method is needed to address

the domain generalization problem for 3D point clouds.

Learning generalizable features. The domain generaliza-

tion (DG) problem is to train a model that can be generalized

to unseen target domains, which has been studied exten-

sively in the field of image classification [17]. Most existing

methods focus on learning domain invariant representations

[17, 7, 14, 12, 13]. Khosla et al. [9] and Li et al. [10] used a

hierarchy of parameters composed of domain-agnostic and

domain-specific parts. Shankar et al. [27] and Volpi et al.

[31] augmented the training domain with adversarial pertur-

bations. Li et al. [11] proposed to split source domains into

meta-train and meta-test splits and conduct standard MAML

across splits without data transformations. However, all of

these methods are only validated on image datasets but may

fail on the 3D data due to the large gap between 2D images

and 3D point clouds. Previous work for image classification

has shown that some heavy data augmentation techniques,

such as color jittering and rotation, in some cases can be

more helpful than gradient-based adversarial perturbations,

when the goal is to improve domain generalization perfor-

mance [30]. Similarly, the jittering method has also been

used for point clouds by PointNet [20] for the general data

augmentation purpose, but this approach does not explicitly

consider any possible data discrepancy across domains. Dif-

ferent from the prior work, we propose three transformation

approaches which are complementary to each other and par-

ticularly designed for 3DDG. These approaches show better

performance than straightforward 3D data augmentation.

Cross-domain point cloud classification. As the deep

networks achieve remarkable progress in recognizing syn-

thetic point clouds, the research focus in this field is gradu-

ally shifting to real-world data by improving the transferabil-

ity of deep models. But, as shown in [29], the performance

degrades due to the existence of a simulation-to-reality gap,

such as geometry deformation or the change of the point

cloud density. In order to reduce the domain gap, PointDAN

minimizes the Maximum Mean Discrepancy across domains

[23]. However, it can only be used as a solution to the prob-

lem of domain adaptation with known target domain data

distribution. Unlike the above methods, our work provides

an early study of 3DDG by performing meta-learning over

the transformed point sets that contain a variety of geometry

priors of point clouds for generalizable representations.

6. Conclusion

This paper presented a new research problem of 3DDG,

which aims to learn generalizable models that can be trans-

ferred to unseen target domains. Due to the geometry shift,

the previous deep models tend to overfit the geometry of

the synthetic point clouds and deteriorate on the target real-

world data. In this work, we proposed MetaSets. First, it

improves MAML by introducing a soft-sampling technique

for the meta-tasks, which dynamically adjusts the training

workload on each task, and enables the model to focus on

the more difficult tasks. Second, we defined a set of ba-

sic data transformation methods to construct the meta-tasks,

such that the transformed point sets can cover various point

cloud geometries in real domains. We designed two Sim-to-

Real 3DDG benchmarks, and demonstrated that MetaSets

remarkably outperformed the state-of-the-art point clouds

classification models, even including a domain adaptation

approach that uses target data for training.

Acknowledgments

This work was fully supported by the AI project granted

by China’s Ministry of Industry and Information. Yunbo

Wang was supported in part by CAAI-Huawei MindSpore

Open Fund.

8870

References

[1] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath

Fischer. 3DmFV: Three-dimensional point cloud clas-

sification in real-time using convolutional neural net-

works. RA-L, 3(4):3145–3152, 2018.

[2] Alexandre Boulch. Convpoint: Continuous convolu-

tions for point cloud processing. Computers & Graph-

ics, 88:24 – 34, 2020.

[3] Zhangjie Cao, Qixing Huang, and Ramani Karthik. 3d

object classification via spherical projections. In 3DV,

pages 566–574. IEEE, 2017.

[4] Angel X Chang, Thomas Funkhouser, Leonidas

Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, et al.

ShapeNet: An information-rich 3D model repository.

arXiv preprint arXiv:1512.03012, 2015.

[5] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.

On the convergence theory of gradient-based model-

agnostic meta-learning algorithms. In AISTATS, pages

1082–1092, 2020.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine.

Model-agnostic meta-learning for fast adaptation of

deep networks. In ICML, pages 1126–1135, 2017.

[7] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie

Zhang, and David Balduzzi. Domain generalization for

object recognition with multi-task autoencoderss. In

ICCV, pages 2551–2559, 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, pages 770–778, 2016.

[9] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz,

Alexei A Efros, and Antonio Torralba. Undoing the

damage of dataset bias. In ECCV, pages 158–171.

Springer, 2012.

[10] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M

Hospedales. Deeper, broader and artier domain gener-

alization. In ICCV, pages 5542–5550, 2017.

[11] Da Li, Yongxin Yang, Yi-Zhe Song, and Timo-

thy M Hospedales. Learning to generalize: Meta-

learning for domain generalization. arXiv preprint

arXiv:1710.03463, 2017.

[12] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M

Hospedales. Learning to generalize: Meta-learning for

domain generalization. In AAAI, 2018.

[13] Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-

Zhe Song, and Timothy M Hospedales. Episodic train-

ing for domain generalization. In ICCV, pages 1446–

1455, 2019.

[14] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C

Kot. Domain generalization with adversarial feature

learning. In CVPR, pages 5400–5409, 2018.

[15] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan

Di, and Baoquan Chen. Pointcnn: Convolution on x-

transformed points. In NeurIPS, pages 820–830, 2018.

[16] Daniel Maturana and Sebastian Scherer. VoxNet: A

3d convolutional neural network for real-time object

recognition. In IROS, pages 922–928, 2015.

[17] Krikamol Muandet, David Balduzzi, and Bernhard

Schölkopf. Domain generalization via invariant feature

representation. In ICML, pages 10–18, 2013.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam

Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

Alban Desmaison, Andreas Kopf, Edward Yang,

Zachary DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie

Bai, and Soumith Chintala. PyTorch: An imperative

style, high-performance deep learning library. In H.

Wallach, H. Larochelle, A. Beygelzimer, F. dAlché

Buc, E. Fox, and R. Garnett, editors, NeurIPS, pages

8024–8035. 2019.

[19] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and

Leonidas J Guibas. Frustum pointNets for 3D object

detection from RGB-D data. In CVPR, pages 918–927,

2018.

[20] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J

Guibas. PointNet: Deep learning on point sets for

3D classification and segmentation. In CVPR, pages

652–660, 2017.

[21] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric

and multi-view CNNs for object classification on 3D

data. In CVPR, pages 5648–5656, 2016.

[22] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas.

PointNet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, pages 5099–

5108, 2017.

[23] Can Qin, Haoxuan You, Lichen Wang, C-C Jay Kuo,

and Yun Fu. PointDAN: A multi-scale 3D domain

adaption network for point cloud representation. In

NeurIPS, pages 7190–7201, 2019.

[24] Yongming Rao, Jiwen Lu, and Jie Zhou. Global-local

bidirectional reasoning for unsupervised representation

learning of 3d point clouds. In CVPR, 2020.

[25] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian

Sun. Faster R-CNN: towards real-time object detection

with region proposal networks. In NeurIPS, pages 91–

99, 2015.

8871

[26] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto,

and Percy Liang. Distributionally robust neural net-

works. In ICLR, 2019.

[27] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Sid-

dhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi.

Generalizing across domains via cross-gradient train-

ing. arXiv preprint arXiv:1804.10745, 2018.

[28] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik Learned-Miller. Multi-view convolutional neural

networks for 3D shape recognition. In ICCV, pages

945–953, 2015.

[29] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son

Hua, Thanh Nguyen, and Sai-Kit Yeung. Revisiting

point cloud classification: A new benchmark dataset

and classification model on real-world data. In ICCV,

pages 1588–1597, 2019.

[30] Riccardo Volpi and Vittorio Murino. Addressing model

vulnerability to distributional shifts over image trans-

formation sets. In ICCV, pages 7980–7989, 2019.

[31] Riccardo Volpi, Hongseok Namkoong, Ozan Sener,

John C Duchi, Vittorio Murino, and Silvio Savarese.

Generalizing to unseen domains via adversarial data

augmentation. In NeurIPS, pages 5334–5344, 2018.

[32] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph CNN for learning on point clouds. TOG, pages

1–12, 2019.

[33] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu

Yue, and Kurt Keutzer. SqueezesegV2: Improved

model structure and unsupervised domain adaptation

for road-object segmentation from a liDAR point cloud.

In ICRA, pages 4376–4382. IEEE, 2019.

[34] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv:

Deep convolutional networks on 3D point clouds. In

CVPR, pages 9621–9630, 2019.

[35] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,

Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.

3D shapeNets: A deep representation for volumetric

shapes. In CVPR, pages 1912–1920, 2015.

[36] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu

Qiao. SpiderCNN: Deep learning on point sets with

parameterized convolutional filterss. In ECCV, pages

87–102, 2018.

[37] Kuangen Zhang, Ming Hao, Jing Wang, Clarence W

de Silva, and Chenglong Fu. Linked dynamic graph

cnn: Learning on point cloud via linking hierarchical

features. arXiv preprint arXiv:1904.10014, 2019.

[38] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-end

learning for point cloud based 3D object detection. In

CVPR, pages 4490–4499, 2018.

8872

