
MetricOpt: Learning to Optimize Black-Box Evaluation Metrics

Chen Huang Shuangfei Zhai Pengsheng Guo Josh Susskind

Apple Inc.

{chen-huang,szhai,pengsheng guo,jsusskind}@apple.com

Abstract

We study the problem of directly optimizing arbitrary

non-differentiable task evaluation metrics such as misclas-

sification rate and recall. Our method, named MetricOpt,

operates in a black-box setting where the computational de-

tails of the target metric are unknown. We achieve this by

learning a differentiable value function, which maps com-

pact task-specific model parameters to metric observations.

The learned value function is easily pluggable into existing

optimizers like SGD and Adam, and is effective for rapidly

finetuning a pre-trained model. This leads to consistent im-

provements since the value function provides effective met-

ric supervision during finetuning, and helps to correct the

potential bias of loss-only supervision. MetricOpt achieves

state-of-the-art performance on a variety of metrics for (im-

age) classification, image retrieval and object detection.

Solid benefits are found over competing methods, which of-

ten involve complex loss design or adaptation. MetricOpt

also generalizes well to new tasks and model architectures.

1. Introduction

In real-world vision applications, machine learning mod-

els are usually evaluated on a variety of complex evalua-

tion metrics. For example, one may evaluate a classification

model using Mis-Classification Rate (MCR), and evaluate

a ranking model using recall. Many of these metrics are

non-continuous, non-differentiable, or non-decomposable,

which poses challenges for direct metric optimization due

to the difficulty of obtaining an informative gradient (e.g., it

is zero almost everywhere for MCR). In other scenarios, the

computational details may be unknown for a black box met-

ric function. Hence its true gradient is simply inaccessible,

which further increases the challenge of metric optimiza-

tion.

As a common practice, people usually rely on a sur-

rogate differentiable loss, which can be easily optimized

with Stochastic Gradient Descent (SGD). One example is

the widely used cross-entropy loss [15] for classification

problems. While cross-entropy loss can be regarded as a

(a) (b)Loss-based trajectory

time (iteration)

error

metric

Loss & metric-based trajectory

time (iteration)

error

metric

High

Low

Metric space Metric space

Metric observation Interpolated metric contour

Figure 1. Motivation (a) Optimization with loss-only supervision

may travel through several “bumps” in the metric space, and tends

to converge to a suboptimal solution in terms of evaluation metric.

We propose to collect a sparse set of (black-box) metrics along

the optimization trajectory. Then we use the temporally interpo-

lated metrics to meta-learn a differentiable value function, which

can provide effective metric supervision to augment and improve

any loss optimization process. (b) This way, we find continuous

decrease in the error metric while keeping the loss from growing.

smooth relaxation of MCR, this loss is not a good proxy

for other metrics like recall. When the loss does not match

the target metric, inferior performance can be obtained [23].

State-of-the-art approaches follow two main paradigms to

address this loss-metric mismatch issue. One is to intro-

duce better metric-aligned surrogate losses, e.g., AUCPR

loss [9]. These hand-designed losses not only require te-

dious manual effort and white-box metric formulation, but

also tend to be specific to a given metric. Another paradigm

is to learn adaptive losses in a relaxed or interpolated surro-

gate space [16, 23, 24, 28], which is inherently sub-optimal

when compared to optimization in the original space.

In this paper, we propose to directly adapt the gradient-

based optimization process to optimize black-box metrics,

without knowing any details about the metric function. To

do so, we first meta-learn a differentiable value function to

model the metric observations along optimization trajecto-

ries. We focus on the model finetuning setup which can pro-

vide meaningful metrics to learn our value function. Once

learned, the value function can provide useful metric super-

174

vision, including approximate metric gradients, to augment

surrogate loss gradients. As a result, we can use the value

function to finetune a new model that has been pre-trained

using any given surrogate loss. Fig. 1 illustrates the high

level idea. Intuitively, the value function is trained to pro-

duce meaningful adjustments to the optimization trajectory

driven by loss only, leading to corrective directions on the

metric landscape.

In practice, we parameterize the value function by a

lightweight network for fast training and inference speeds.

The input are a small set of adapter parameters that modu-

late a pre-trained model. Such a compact parameterization

has been shown to suffice for task specialization [49], and

removes our need to finetune the entire network. We meta-

learn our value function using an enhanced ordinal regres-

sion objective, which is uncertainty-aware to avoid overcon-

fident metric estimates. We then show that it is straightfor-

ward to apply our value function to off-the-shelf optimizers

like SGD and Adam [25], and also to a learned optimizer.

The resulting method MetricOpt is shown to consis-

tently improve different evaluation metrics across the tasks

of (image) classification, image retrieval and object detec-

tion. MetricOpt not only outperforms prior methods based

on strong surrogate losses (either hand-designed or adap-

tively learned), but also shares speed advantages as a fast

finetuning method, often with no more than thousands of

tuning steps. Furthermore, MetricOpt generalizes well to

new tasks, e.g., from CIFAR-10 [27] to ImageNet [7] clas-

sification. We summarize our contributions as follows:

• We introduce a differentiable value function to model a

black-box evaluation metric.

• We show the value function is easily pluggable to existing

optimizers, resulting in a fast finetuning approach.

• We show MetricOpt consistently improves over differ-

ent surrogate losses without tedious loss engineering,

achieves state-of-the-art performance for various tasks

and metrics, and generalizes to out-of-distribution tasks

and model architectures.

2. Related Work

Optimizing evaluation metrics Due to the non-

differentiable nature of most real-life evaluation metrics, a

large body of surrogate loss functions have been proposed

as smooth metric relaxations. Examples include AUCPR

loss [9], pairwise AUCROC loss [38], Lovász-Softmax

loss [3] for IoU metric, and cost-sensitive classification for

F-measure [37]. To remove the manual effort to design

these metric-approximating losses, there has been a recent

push towards learning them instead [46, 47]. However, the

loss learning is still based on metric relaxation schemes,

whereas our focus is on a direct metric representation to be

used for optimization. Existing options for direct metric

optimization are post-shift methods [26, 33] that tune

model threshold accordingly, and direct loss minimization

methods [18, 43] that embed the true metric as a correction

term for optimization. Their common limitation is that they

require the evaluation metric to be available in closed-form.

Some recent works aim to optimize black-box metrics,

from learning adaptive losses [16, 23, 24, 28] to learning

adaptive example weights [48]. However, these methods

can be sub-optimal since they work in a relaxed surrogate

space or with predefined weighting schemes. By contrast,

we learn to directly model black-box metrics which can in

turn adapt the optimization process.

Computer vision metrics are frequently defined as rank-

based ones, such as recall for image retrieval, and Aver-

age Precision (AP) for object detection and feature match-

ing, etc. Prior works approach the AP metric optimiza-

tion via histogram binning approximations [4, 19, 20] and

gradient approximation [22, 32, 43]. While these works

mainly focus on AP relaxation, we differ in learning a fast

and generic function approximation of the original metric.

Other techniques have been proposed to learn the ranking

operation with a large LSTM [10], or optimize an AP-loss

using error-driven update [5], but both suffer from low effi-

ciency. More recently, black-box differentiation [41] is used

for efficient interpolation of the ranking function. More

similar to our work is the deep embedding method [35]

where the model and embedding space are learned alter-

natively such that the Euclidean distance between the em-

bedded prediction and groundtruth approximates the met-

ric value. Our paper introduces a value function to regress

metrics directly. The value function can be learned and de-

ployed separately, runs fast and generalizes.

Meta learning The goal of meta-learning is to infer a learn-

ing strategy from a distribution of similar tasks, which fa-

cilitates efficient learning of new tasks from the same dis-

tribution. Previous works have approached this problem by

learning a good initialization [12, 34, 49], preconditioning

matrix [13] or mathematical update equation [2]. We use

the efficient Reptile algorithm [34] to meta-learn the initial-

ization of our value function in an online fashion.

Value function approximation Many Reinforcement

Learning (RL) methods require value function approxima-

tion to estimate an action-value for fast decision making.

Popular off-policy actor-critic methods [14, 17] are such ex-

amples. Their critic uses a differentiable function approx-

imator to provide a loss, which guides the actor to update

its action policy. The notion of “value function” in RL is

related to the idea of learning a parametric loss as a met-

ric approximator in the optimization field [23, 16], in order

to provide some proxy gradients. Here we directly learn a

differentiable mapping to evaluation metrics, bypassing the

tedious step of loss function engineering.

175

(c)

1 0

D
ec

re
as

in
g m

et
ric

Normalized metric M̂

(b)

Metric

ϕtϕ1 ϕT

(M̂t, ̂σt)

Adapter parameters

Value function M̂t = fwv
(ϕt)

(a)

ϕt M̂tSGD optimizer

variants

Pre-trained

model θ

Adapter

parameters

ϕt

Value function fwv
(ϕt)

Surrogate loss ℓ(ϕt)

Figure 2. (a) Alongside finetuning the adapter parameters φ (e.g., FiLM conditioning parameters [36]) of a pre-trained model θ, we learn

a value function fwv
that maps φ to the non-differentiable metric M. The learned value function is applicable to existing optimizers

(e.g., SGD and Adam) in a plug-and-play manner to augment loss-based optimization. (b) We parameterize fwv
by a lightweight network,

which is meta-trained from different finetuning trajectories (solid stems – sparse metric observations, dotted lines – interpolated metrics

M̂t and variances σ̂t). (c) t-SNE [44] visualization of 2D feature embeddings of fwv
, where the ordinal ranks of metrics are well preserved.

3. Methodology

We consider optimizing the evaluation metric M of

a neural network model in a finetuning setup, where

the model weights θ have been pre-trained using a user-

specified surrogate loss. Instead of finetuning the high-

dimensional θ which is costly, we optimize the condition-

ing parameters φ ∈ Φ of a small adapter module that mod-

ulates θ (detailed later). Assume the surrogate loss is given

as ℓ(θ, φ) for the tuple (θ, φ). For brevity, we will, moving

forward, use ℓ(φ) in place of ℓ(θ, φ) since θ is fixed. Let

M(φ) be the metric subject to minimization. We also as-

sume ℓ(φ) and M(φ) are normalized into the range of [0, 1]
for scale-independent modeling across tasks.

Generally, the metric function of M is either non-

differentiable (true gradient of the metric is often not mean-

ingful), or simply unknown (black box setting with no ac-

cess to the gradient). In both cases, we are faced with the

great challenge of direct metric optimization. Here, we as-

sume the only operation available to us is the ability to query

metrics from a meaningful set of examples, without know-

ing the computational details of M. Evaluation can be con-

ducted on a held-out validation set Dval or on the training

set Dtrain. We consider optimizing the metric in the form:

φ∗ = argmin
φ∈Φ

λM(φ) + ℓ(φ), (1)

where λ is a weighting parameter of M(φ), and loss ℓ(φ)
acts as an auxiliary signal. Without metric supervision,

Eq. (1) is reduced to the standard loss optimization problem,

which often leads to the loss-metric mismatch and hence

suboptimal performance in evaluation metrics. On the other

hand, without the surrogate loss, the supervision from met-

ric alone is often sparse and limiting. We will show in the

paper that the metric supervision always boosts the loss-

based performance without any bells and whistles.

3.1. Meta learning differentiable value function

In Eq. (1), we aim at efficient optimization of the met-

ric term M(φ) via gradient-based methods. The core com-

ponent of our approach is the value function fwv
: Φ →

R, a differentiable mapping from input φ ∈ Φ to metric

M ∈ R. We parameterize f by a deep neural network

with weights wv . It has the benefits of being able to out-

put both metric estimate for any φ, as well as partial deriva-

tives ∂f/∂φ w.r.t. parameters φ to augment the loss gradi-

ents ∂ℓ/∂φ. In other words, the value function is a generic

function approximation of M, which can offer useful su-

pervision for the metric and gradient-based optimizablility.

As a result, finetuning can be accomplished using both the

loss function and value function, without a significant com-

putational overhead, see Fig. 2(a).

In practice, we train the value function from different op-

timization tasks T ∼ p(T), where each task finetunes ran-

domly initialized φ with random mini-batches (two sources

of task variability). The finetuning process ensures the value

function can be learned with meaningful metrics around

converged θ, rather than with noisy metrics collected by a

“from-scratch” model. This simplifies value function learn-

ing and gives rise to a fast finetuning process. Below we

address two main challenges for value function learning.

Adapter parameters The high dimensionality of input

parameters θ (often millions) renders value function learn-

ing parameter-inefficient. To this end, we have tried using a

subset of θ in early experiments, e.g., only the layer biases

or last layer. However, we found these approaches still not

parameter-efficient enough, and they cannot strike a good

performance-efficiency tradeoff.

In this paper, we turn to using the adapter modules that

offer an equally simple but better performing solution. Ex-

isting adapters like conditional BatchNorm [6] and FiLM

layers [36] introduce a few conditioning parameters φ ∈ R
d

to modulate the fixed θ. They have been shown to suf-

fice for task specialization, with comparable performance

to full model fine-tuning. We follow [49] to use dynamic

biases at the first layer of fully connected networks, and use

FiLM parameters to modulate the feature maps of convolu-

tional networks (visualizations in supplementary materials).

These two types of φ have small dimension d on the order

of tens to hundreds, and are found effective in our experi-

ments. We are open to other choices.

Metric interpolation Another challenge for value func-

tion training is the lack of training signals. Usually we can

176

L ̂σ

. (3-4)(a) (c)

6.5 6.7 6.9 7.1 7.3 7.5
6.5

6.7

6.9

7.1

7.3

7.5

L

L

MetricOpt

7.0

6.6

6.7

6.8

6.9

M
et

ri
c

M
C

R
 (

%
) 0.10

0.02

0.04

0.06

0.08

V
al

u
e

fu
n

c
p

re
d

ic
t

er
r

(%
)

no

- ordinal embedding

Loe no

- uncertainty

̂σt

Value func training objective -

ordinal regression (default)

Meta-training value func

(default)

pre-

trained
sequentially

finetuned

6.0

6.5

7.0

7.5

M
et

ri
c

M
C

R
 (

%
)

no metric

signal

Meta-testing with Eqs. (3-4)

no loss

signal

MetricOpt

(a) (c)

(b)

6.5 6.7 6.9 7.1 7.3 7.5

6.5

6.7

6.9

7.1

7.3

7.5

6.5 6.7 6.9 7.1 7.3 7.5
6.5

6.7

6.9

7.1

7.3

7.5

Value func predicted MCR (%)

T
ru

e
M

C
R

 (
%

)

w/

w/o

Loe

Loe

Figure 3. Optimizing Mis-Classification Rate (MCR) on CIFAR10. (a) Value function trained with and without the ordinal embedding

constraint Loe. The latter has more scattered predictions and higher prediction error (0.052 vs. 0.023). (b) Value function prediction error

highly correlates with the final optimized metric, thus can serve as a performance indicator to diagnose e.g., meta-training alternatives for

the value function. (c) Comparing different meta-testing schemes.

only collect K ≪ T metrics {Mk = M(φk)}
K
k=1

during

T finetuning steps, where fast metric evaluation may not be

an option. For instance, metrics like recall require evalu-

ation on sizable data to be statistically significant, and the

large evaluation cost makes frequent evaluation impracti-

cal. For this reason, we simply use the K sparse metric ob-

servations, with each Mk evaluated at user-specified time

k ∈ [1, . . . , T]. We further interpolate metrics over time to

enrich training signals for our value function. This incurs

much lower cost than using heavier metric evaluations, but

has similar performance empirically. Specifically, we use a

standard Gaussian process with RBF kernel [39], and inter-

polate metrics into a dense time series {(M̂t, σ̂t)}
T
t=1

with

mean M̂t and variance σ̂t at time t, see Fig. 2(b). Com-

pared to linear interpolation like line fitting, the Gaussian

process can derive useful uncertainties for the interpolated

metrics, which is important to avoid overconfident supervi-

sion for value function learning.

Value function parameterization Given sequence

{φt}
T
t=1

and the corresponding “labels” {(M̂t, σ̂t)}
T
t=1

, we

can now train the mapping M̂t = fwv
(φt) as our value

function. We parametrize fwv
by an MLP (Multi-Layer

Perceptron) network with architecture d–64–32–32–16–1.

BatchNorm and ReLU activation are used for all layers.

The network is lightweight for fast metric regression and

gradient-based optimization, but can further benefit from

improved design choices for particular problems or metrics.

Value function training objective consists of a regres-

sion term Lregress and an ordinal embedding term Loe:

Lv(wv) = γLregress + Loe, (2)

Lregress =
1

∑T

t=1
1/σ̂t

T
∑

t=1

‖fwv
(φt)− M̂t‖2

σ̂t

,

Loe =
1

T

T
∑

t=1

log
(

1 + exp(−(Dt,tn −Dt,tp))
)

,

where γ is a weighting parameter, Dt,t′ = ‖gwv
(φt) −

gwv
(φt′)‖2 is the Euclidean distance between the fea-

ture embeddings gwv
(·) of our value function (penultimate

layer), and (t, tp, tn) is the sampled triplet at time t for em-

bedding learning.

Note Lregress is aware of the uncertainty σ̂t that helps

to re-weight metric regression errors. While the Loe term

imposes ordinal constraints for the metric in feature space.

Concretely, we sample triplets (t, tp, tn), with anchor t ∈
[1, . . . , T], its positive sample tp ∈ Pt and negative sam-

ple tn ∈ Nt for embedding learning. To do so, we lever-

age Fisher’s ratio rt,t′ = (M̂t − M̂t′)
2/(σ̂2

t + σ̂2

t′) that

measures the discrimination between two metric variables.

The Fisher’s ratio offers us great convenience to construct

the positive set Pt = {t′|rt,t′ < 2} and negative set

Nt = {t′|rt,t′ ≥ 2} for every time step t. Then we perform

hard mining within Pt and Nt to sample the required tp and

tn, in a similar way to [45]. In general, Loe provides effec-

tive regularization in feature space (see Fig. 2(c)) and eases

177

our value function training. Fig. 3(a-b) shows improved per-

formance by Loe. Fig. 3(b) also validates the need to encode

metric uncertainties σ̂t for value function learning.

Meta-training value function For meta-training fwv
,

we have access to different finetuning trajectories of tasks

T ∼ p(T) and their densely interpolated metrics. Task

variability comes from random initialization φ0 and mini-

batches. Then using the given training data and objective

(Eq. (2)), how do we train fwv
effectively and efficiently?

We follow the first-order Reptile algorithm [34] to meta-

update wv in an online fashion, see Algorithm 1 (meta-

training stage). Such meta-training avoids catastrophic for-

getting with sequential task finetuning by knowledge dis-

tillation into the initialization of wv . Another compet-

ing scheme is to pre-train the value function from all the

task trajectories stored offline, which however requires con-

structing a large dataset. Fig. 3(b) compares performance

for the two schemes.

3.2. Meta­testing with learned value function

Meta-testing involves optimizing the target metric for a

new task T , i.e., finetuning a new pre-trained model θ or

with a different adapter initialization φ0. The key here is

to use our value function to augment a given surrogate loss

with metric information during finetuning. Recall that value

function can provide direct metric supervision or explicit

gradients about metric. Hence it can be readily applied to

off-the-shelf optimizers in a plug-and-play manner.

Inspired by the Guided ES approach [30], we combine

our value function with SGD/Adam optimizers in a random

search framework. We call the resulting method Metric Op-

timizer (MetricOpt). The high-level idea is to perform value

function-based random search around surrogate loss gradi-

ents, in order to estimate a new descent direction favoring

metric. Specifically, we keep track of a subspace defined by

the past k loss gradients from SGD or Adam. Then the or-

thonormal basis U ∈ R
d×k of the subspace is derived. We

define the search covariance as:

Σ =
1

2d
I +

1

2k
UUT . (3)

By sampling P perturbations {δi}
P
i=1

∼ N (0, s2Σ) with

variance s2 within the subspace, we estimate the descent

direction ut using Evolutionary Strategies (ES) informed by

our learned value function fw̃v
:

ut =
1

s2P

P
∑

i=1

δi [fw̃v
(φt + δi)− fw̃v

(φt − δi)] . (4)

Remarks The above meta-testing method provides one

simple way to combine the loss and metric signals for fine-

tuning. As evidenced in Fig. 3(c), the metric signal plays an

important role. Without it, we see a large performance drop

 Algorithm 1 Pseudocode of MetricOpt (with SGD/Adam)

 Input: Task distribution , hyper-parameters

 Input: Number of finetuning steps per task

 Input: Number of metric evaluations per task

 // Meta-training value function

 1: Initialize of value function

 2: for do

 3: Collect sparse evaluation metrics over

 the tuning sequence of SGD or Adam

 4: Obtain dense interpolation

 5: Update via Eq. (2)

 6: Update // Reptile update

 7: end for

 8: return

 // Meta-testing with Guided ES and value function

 9: Initialize for new task

10: for to do

// Loss signal

11: Update search covariance via Eq. (3)

12: Sample perturbations

// Metric signal from value function

13: Estimate descent direction using , see Eq. (4)

14: Update

15: end for

16: return

α, η, P, s2

T

K

wv fwv

{M(ϕk)}
K
k=1

{ϕt}
T
t=1

{(M̂t, ̂σt)}
T
t=1

w̃v = wv − α∇wv
Lv(wv)

wv ← wv + η(w̃v − wv)

w̃v

ϕ0

t = 0 T − 1

Σ

P {δi}
P
i=1

∼ '(0,s2Σ)

ut fw̃v

ϕt+1 ← ϕt − αtut

ϕT

as expected. Whereas using metric alone (no auxiliary loss)

barely hurts performance. The downside is the reduced ef-

ficiency – tuning with metric only will incur a larger cost

for random search (over 5× slower in the CIFAR10 case).

Therefore we always treat our value function as a metric im-

prover for surrogate losses, including those well-designed

and learned losses. Also, the value function can be easily

applied to other gradient-based optimization methods. Sup-

plementary materials give one example of combining value

function with a learned optimizer that achieves state-of-the-

art performance.

3.3. Computational complexity

Algorithm 1 shows meta-training of our value function

over three main steps: obtain the finetuning trajectory for

task T with task-dependent tuning steps T , metric interpo-

lation for task T , and meta-update of the value function.

The task finetuning is very efficient since in practice we find

it only involves hundreds of tuning steps over the compact

adapter parameters φ. The overhead of metric interpolation

is negligible. Overall, our value function can be trained for

0.5k to 2k meta-iterations (tasks), which requires less than

half a GPU day for all experiments reported. For meta-

testing, finetuning with Guided ES and value function is

178

Table 1. Mis-Classification Rate (MCR) on CIFAR-10. The average

and standard deviation are from 10 runs. Note MetricOpt (SGD) is

our default approach, while MetricOpt (learned) involves joint learn-

ing of value function and optimizer (see text for details).

Method MCR (%) ↓

Cross-entropy loss 7.51

Large-margin softmax [29] 7.01

L2T-DLF [46] 6.95

Example weighting (MOEW) [48] 6.71±0.08

Adaptive Loss Alignment (ALA) [23] 6.79±0.07

Black-box differentiation [41] 6.84±0.05

Cross-entropy finetune + dense metric eval 7.19±0.16

MetricOpt (SGD) + cross-entropy 6.63±0.05

MetricOpt (learned) + cross-entropy 6.58±0.06

MetricOpt (SGD) + large-margin softmax [29] 6.56±0.06

MetricOpt (learned) + large-margin softmax [29] 6.47±0.07

Table 2. Area Under the Precision Recall Curve (AUCPR) on CIFAR-

10. The average and standard deviation are from 10 runs. MetricOpt

(SGD) is our default approach, while MetricOpt (learned) involves

joint learning of value function and optimizer (see text for details).

Method AUCPR (%) ↑

Cross-entropy loss 84.6

Pairwise AUCROC loss [38] 94.2

AUCPR loss [9] 94.2

Example weighting (MOEW) [48] 94.6±0.11

Adaptive Loss Alignment (ALA) [23] 94.9±0.14

Black-box differentiation [41] 94.4±0.07

Cross-entropy finetune + dense metric eval 90.8±0.18

MetricOpt (SGD) + cross-entropy 95.7±0.12

MetricOpt (learned) + cross-entropy 96.2±0.09

MetricOpt (SGD) + AUCPR loss [9] 96.6±0.10

MetricOpt (learned) + AUCPR loss [9] 97.2±0.08

only 22% to 34% slower than standard loss optimization.

The overhead is reasonable given the few finetuning steps.

4. Experiments

We aim to answer the following questions in our experi-

ments: 1) Does the value function consistently improve over

surrogate losses on problems with only black-box access to

the metric? 2) How does MetricOpt compare to state-of-

the-art methods for metric optimization, and why the differ-

ence? 3) Can MetricOpt generalize to new tasks and model

architectures? To answer these questions, we consider opti-

mizing various evaluation metrics on a diverse set of prob-

lems, including (image) classification, image retrieval and

object detection.

Hyper-parameters In all experiments we set γ = 10 to

make the two terms in Eq. (2) roughly equally weighted.

Results are insensitive to γ in a wide range. The number

of finetuning steps T is task-dependent. For meta-testing

with Guided ES [30], we use the same parameters—search

within a subspace of past k = 3 loss gradients (Eq. (3)),

and sample P = 3 perturbations with variance s2 = 0.01
(Eq. (4)). In Algorithm 1, the inner learning rate α = 0.005,

and meta learning rate η = 1 with a linear decay to 0.

4.1. Image classification

We optimize the Mis-Classification Rate (MCR) and

Area Under the Precision Recall Curve (AUCPR) on

CIFAR-10 dataset [27]. ResNet-32 [21] and the network

in [9] are used for MCR and AUCPR respectively, for fair

comparisons with methods that use the same networks. We

use the train/validation/test split of sizes 45k/5k/10k for

both MetricOpt and those methods [1, 23, 31, 48] whose

training also requires querying the validation statistics (loss

or metric). MetricOpt is trained to optimize d = 128 con-

ditioning parameters φ of the FiLM layers for considered

ConvNets. During meta-training, we finetune T = 200

0 20 40 60 80 100 120 140 160 180 200

4

6

8

10

12

14

16

18

0 40 80 120 160 200
4

6

8

10

12

14

16

18

Steps

T
es

t
1
-A

U
C

P
R

 (
%

)

MetricOpt (Adam)

MLP optimizer

LSTM optimizer

SGD

Adam

MetricOpt (SGD)

Figure 4. 10-run results of optimizing AUCPR on CIFAR-10. The

metric undergoes a 1− x conversion, so the lower the better. Our

MetricOpt, when combined with either SGD or Adam, outper-

forms both the SGD variants and learned optimizers on surrogate

cross-entropy loss.

steps and randomly collect K = 5%T evaluation metrics

on validation data Dval along the finetuning trajectory. We

report 10-run results of meta-testing on Dtest.

First off, Fig. 4 uses the AUCPR case to compare our

MetricOpt against existing popular optimizers. AUCPR

is a non-differentiable metric and hard to optimize di-

rectly. Hence existing optimizers often choose the widely

used cross-entropy loss as a surrogate, and we will discuss

about advanced surrogates later. For best performance, we

tune the learning rates of hand-crafted optimizers SGD and

Adam [25], and tune the meta learning rates of the learned

LSTM optimizer [1] and MLP optimizer [31] by a grid

search over the range of [10−4, 1]. We can see from the fig-

ure that existing loss optimizers suffer from the absence of

metric supervision and do not optimize the metric well. By

contrast, MetricOpt helps SGD/Adam to converge to better

metrics by the guidance of value function.

In the following, we choose MetricOpt (SGD) as our

default approach. Tables 1 and 2 compare MetricOpt with

179

Table 3. Binary classification on A9A and CoverType (Cov) datasets. We compare MetricOpt (with cross-entropy loss) against learned

Surrogate Loss (SL) and various metric-specific losses. Specifically, we compare against CE (Cross-Entropy) and SL for MCR (Mis-

Classification Rate), LO (Lovász-Softmax loss) and SL for JAC (Jaccard Index), and CS (Cost-Sensitive) and SL for F-measure.

Data
MCR ↓ JAC ↑ F-measure ↑

CE SL [16] MetricOpt LO [3] SL [16] MetricOpt CS [37] SL [16] MetricOpt

A9A 0.1520 0.1502 0.1369 0.8461 0.8488 0.8691 0.6823 0.6866 0.6934

Cov 0.2149 0.2198 0.2057 0.7406 0.7808 0.7758 0.7695 0.7898 0.8013

Table 4. Top-1 and Top-5 classification accuracies (%) on ImageNet. All methods use the same NASNet-A network.

Method Top-1 Top-5

RMSProp + cross-entropy 73.5 91.5

PowerSign-cd [2] (CIFAR-10 transfer) 73.9 91.9

ALA [23] (CIFAR-10 transfer) 74.3 92.1

MetricOpt (transfer from ImageNet training with ResNet-18) 74.2 92.3

MetricOpt (transfer from CIFAR-10 training with NASNet-A) 74.4 92.2

MetricOpt (ImageNet training with NASNet-A) 74.9 92.7

MetricOpt + 2nd run (finetune θ and φ) 75.1 93.0

advanced loss functions and state-of-the-art black-box met-

ric optimization methods. We have several observations:

• Surrogate loss functions (top cell) are suboptimal, al-

though they take lots of time for manual design or online

learning (e.g., L2T-DLF).

• MOEW and ALA learn dynamic weighting schemes for

data and loss respectively, both adapted to black-box met-

ric observations. But MOEW is limited by using a pre-

defined weighting scheme, and ALA still works in a re-

laxed surrogate space. In [41], gradient interpolation is

performed via black-box differentiation. Our MetricOpt

is more competitive by directly adapting the optimization

process based on explicit metric modeling.

• With MetricOpt, our value function consistently im-

proves over surrogate losses, including cross-entropy loss

and advanced losses (large-margin softmax or AUCPR

loss). The gains over advanced losses are smaller be-

cause they are often better aligned with metrics already.

However, designing advanced losses requires tremendous

human efforts. Hence in the following experiments, we

mainly combine our value function with the default loss

function for each problem, which waives the need for te-

dious loss engineering.

• A learned optimizer from the loss and value functions

finds extra boosts. Supplementary materials introduce the

learning mechanism and more results.

• We further compare with a simple finetuning baseline:

it finetunes adapter parameters just like MetricOpt, but

uses cross-entropy loss only and evaluates metrics at ev-

ery step with the best picked. We see the resulting perfor-

mance is far from that of MetricOpt. This suggests Met-

ricOpt can find a truly different solution off loss-based

trajectories. The solution has better test metric without

requiring excessive metric evaluations along finetuning.

4.2. Binary classification on non­image data

Experiments are conducted on the A9A and Cover-

Type datasets from the UCI Machine Learning Reposi-

tory [8]. We randomly split data into 70%/10%/20% as

the train/validation/test sets for both datasets. All methods

use class-balanced mini-batch sampling, and train a Leaky

ReLU-activation MLP with 100-30-10-1 neurons. Batch-

Norm and dropout are applied at each layer. Our MetricOpt

finetunes d = 16 dynamic biases added at the input layer for

T = 50 steps. We still use cross-entropy loss as the baseline

loss for model pre-training and MetricOpt-based finetuing,

arriving at MetricOpt (SGD) + cross-entropy again.

Table 3 compares our MetricOpt with competing meth-

ods for 3 evaluation metrics—MCR, JAC and F-measure.

Specifically, we compare with hand-designed metric-

specific losses CE, LO [3] and CS [37]. We also compare

with the learned Surrogate Loss (SL) [16], a representative

of recent adaptively learned surrogate losses [16, 23, 24,

28]. The table generally confirms our advantages over these

surrogate loss methods. This demonstrates the versatility of

MetricOpt on black-box metrics.

4.3. Generalization test on ImageNet

This section compares different methods on the large-

scale ImageNet dataset [7]. All methods use the same

NASNet-A network architecture [50] unless otherwise

noted. Evaluation metrics are the top 1 and top 5 clas-

sification accuracies. Table 4, top cell, outlines the full

model training baselines, while the middle cell lists our

MetricOpt-based finetuning variants. All MetricOpt vari-

ants finetune d = 256 conditioning parameters of FiLM

layers for T = 500 steps. They aim at augmenting the

cross-entropy loss to improve the MCR metric. Note for fair

comparison, the number of model pre-training plus finetun-

180

ing steps of MetricOpt is the same as the total number of

training steps for full training methods.

We can see from Table 4 that the RMSProp optimizer

achieves suboptimal results since it merely optimizes the

cross-entropy loss. PowerSign-cd [2] and ALA [23] trans-

fer their update policy and loss controlling policy learned

from CIFAR-10 to ImageNet, both showing strong results

of out-of-distribution training. Our MetricOpt considers di-

rect metric optimization during finetuning. In doing so,

we obtain even better results than the full training base-

lines, although we only finetune a small number of param-

eters. We further study the transferability of MetricOpt by

reusing our value function in two settings: learned with a

smaller base network (ResNet-18) on the same ImageNet

data, and learned with the same NASNet-A network on a

smaller dataset (CIFAR-10). MetricOpt achieves better gen-

eralization results for a larger problem or model architec-

ture, demonstrating the flexibility of the approach.

Given the good finetuning performance of MetricOpt,

the bottom cell of Table 4 studies the following question:

what if we also finetune the pre-trained network θ instead

of keeping it fixed and only finetuning the modulating pa-

rameters φ? To answer the question, we build on the fine-

tuned φ in the first run, and continue to fine-tune θ (using

cross-entropy loss) followed by a quick adjustment of φ via

MetricOpt for a second run. This variant leads to marginal

gains, but has much lower time efficiency than just tuning φ
since finetuning the high-dimensional θ is very expensive.

Moreover, we found diminishing returns when we alternate

between finetuning θ and φ for a couple of more rounds.

4.4. Image retrieval

The image retrieval task is a perfect testbed for optimiz-

ing rank-based metrics like recall. We conduct experiments

on the Stanford Online Products dataset [42] which con-

tains 120,053 images of 22,634 classes. We follow the stan-

dard train/test splits and image data preparation procedure

in [42]. A pretrained ResNet-50 [21] is used with a fully

connected embedding layer. The embedding has a fixed

size at 512 with L2 normalization. For a fair comparison

with related methods, we use the same mini-batch sampling

strategy with batch size 128. The only difference in ex-

perimental setup is that we focus on finetuning from dif-

ferent pretrained models. For finetuning, instead of using

SGD/Adam optimizers for a continued loss optimization,

we use MetricOpt to finetune d = 128 conditioning param-

eters of FiLM layers for only T = 200 steps. Such finetun-

ing relies on a value function optimized for the evaluation

metric of average Recall@k.

For good performance, we use our value function to

augment state-of-the-art surrogate losses – FastAP [4] and

Recall loss [41]. They are derived by histogram binning

approximation and ranking function interpolation respec-

Table 5. Recall(%)@k on Stanford Online Products dataset.

k 1 10 100 1000

FastAP [4] 76.4 89.1 95.4 98.5

Recall loss [41] 78.6 90.5 96.0 98.7

MetricOpt + FastAP [4] 79.6 91.2 96.3 98.9

MetricOpt + Recall loss [41] 80.4 91.8 96.5 99.0

Table 6. Object detection performance in terms of AP 50 on Pascal

VOC 07 test set. CE stands for Cross-Entropy loss.

Training CE AP loss [41]
MetricOpt MetricOpt

+ CE + AP loss [41]

07 74.2 75.7 77.8 78.3

07+12 80.4 81.4 82.3 82.6

tively. Table 5 confirms our consistent improvements over

both surrogate losses due to direct metric optimization.

4.5. Object detection

We adopt the commonly-used Faster R-CNN [40] frame-

work for object detection. Experiments are conducted on

the Pascal VOC dataset [11] where the VOC 07 or VOC

07+12 trainval sets are used for training, and VOC 07 test

set is used for testing (4952 images with 20 object cate-

gories). We use the ResNet-50 [21] backbone and standard

hyperparameters (e.g., batch size, anchor setting) for Faster

R-CNN. Our MetricOpt finetunes d = 128 conditioning pa-

rameters of FiLM layers for T = 200 steps. The finetuning

goal is to improve the AP 50 metric (average precision for

boxes with at least 50% IoU against groundtruth).

Table 6 shows MetricOpt-based finetuning is able to ob-

tain notable gains in AP 50 over two baselines, using ei-

ther the standard cross entropy loss or state-of-the-art AP

loss [41]. This validates again the effectiveness of Metri-

cOpt as a consistent metric improver but with low cost (hun-

dreds of finetuning steps). Supplementary materials include

an interesting observation that our metric-driven finetuning

has non-trivial impact on the two-staged Faster R-CNN de-

tector (e.g., improves recall of the region proposal module).

One future work is a detailed investigation of different im-

pacts from varying metrics.

5. Conclusion

We present a new method to optimize black-box eval-

uation metrics using a differentiable value function. The

value function is meta-learned to provide useful supervi-

sion or gradients about metric to augment any user-specified

loss. We show it is easy to apply the value function to

existing optimizers for gradient-based optimization, which

consistently improves over the given loss. The resulting

MetricOpt approach is efficient and achieves state-of-the-art

performance in various metrics. MetricOpt also generalizes

well across tasks and model architectures.

181

References

[1] Marcin Andrychowicz, Misha Denil, Sergio Gómez,

Matthew W Hoffman, David Pfau, Tom Schaul, Brendan

Shillingford, and Nando de Freitas. Learning to learn by

gradient descent by gradient descent. In NeurIPS, 2016.

[2] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V.

Le. Neural optimizer search with reinforcement learning.

In ICML, 2017.

[3] Maxim Berman, Amal Rannen Triki, and Matthew B

Blaschko. The lovász-softmax loss: A tractable surrogate

for the optimization of the intersection-over-union measure

in neural networks. In CVPR, 2018.

[4] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan

Sclaroff. Deep metric learning to rank. In CVPR, 2019.

[5] K. Chen, J. Li, W. Lin, J. See, J. Wang, L. Duan, Z. Chen, C.

He, and J. Zou. Towards accurate one-stage object detection

with AP-loss. In CVPR, 2019.

[6] Harm de Vries, Florian Strub, Jeremie Mary, Hugo

Larochelle, Olivier Pietquin, and Aaron C Courville. Mod-

ulating early visual processing by language. In NeurIPS,

2017.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009.

[8] Dheeru Dua and Casey Graff. UCI machine learning reposi-

tory, 2017.

[9] Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon,

Ryan Rifkin, and Gal Elidan. Scalable learning of non-

decomposable objectives. In AISTATS, 2017.

[10] Martin Engilberge, Louis Chevallier, Patrick Perez, and

Matthieu Cord. Sodeep: A sorting deep net to learn rank-

ing loss surrogates. In CVPR, 2019.

[11] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, John Winn, and Andrew Zisserman. The pascal

visual object classes (voc) challenge. IJCV, 88:303–308,

2010.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, 2017.

[13] Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Hu-

jun Yin, and Raia Hadsell. Meta-learning with warped gra-

dient descent. In ICLR, 2020.

[14] Scott Fujimoto, Herke Hoof, and David Meger. Address-

ing function approximation error in actor-critic methods. In

ICML, 2018.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[16] Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme.

Learning surrogate losses. CoRR, abs/1905.10108, 2019.

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey

Levine. Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor. In ICML,

2018.

[18] Tamir Hazan, Joseph Keshet, and David A. McAllester. Di-

rect loss minimization for structured prediction. In NeurIPS,

2010.

[19] K. He, F. Cakir, S. A. Bargal, and S. Sclaroff. Hashing as

tie-aware learning to rank. In CVPR, 2018.

[20] Kun He, Yan Lu, and Stan Sclaroff. Local descriptors opti-

mized for average precision. In CVPR, 2018.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[22] Paul Henderson and Vittorio Ferrari. End-to-end training of

object class detectors for mean average precision. In ACCV,

2016.

[23] Chen Huang, Shuangfei Zhai, Walter Talbott, Miguel Ángel

Bautista, Shih-Yu Sun, Carlos Guestrin, and Joshua M.

Susskind. Addressing the loss-metric mismatch with adap-

tive loss alignment. In ICML, 2019.

[24] Qijia Jiang, Olaoluwa Adigun, Harikrishna Narasimhan,

Mahdi Milani Fard, and Maya Gupta. Optimizing black-box

metrics with adaptive surrogates. In ICML, 2020.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015.

[26] Oluwasanmi O Koyejo, Nagarajan Natarajan, Pradeep K

Ravikumar, and Inderjit S Dhillon. Consistent binary classi-

fication with generalized performance metrics. In NeurIPS,

2014.

[27] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

[28] Lanlan Liu, Mingzhe Wang, and Jia Deng. A unified frame-

work of surrogate loss by refactoring and interpolation. In

ECCV, 2020.

[29] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang.

Large-margin softmax loss for convolutional neural net-

works. In ICML, 2016.

[30] Niru Maheswaranathan, Luke Metz, George Tucker, Dami

Choi, and Jascha Sohl-Dickstein. Guided evolutionary

strategies: augmenting random search with surrogate gradi-

ents. In ICML, 2019.

[31] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel

Freeman, and Jascha Sohl-Dickstein. Understanding and

correcting pathologies in the training of learned optimizers.

In ICML, 2019.

[32] P. Mohapatra, M. Rolinek, C. V. Jawahar, V. Kolmogorov,

and M. P. Kumar. Efficient optimization for rank-based loss

functions. In CVPR, 2018.

[33] Harikrishna Narasimhan, Rohit Vaish, and Shivani Agarwal.

On the statistical consistency of plug-in classifiers for non-

decomposable performance measures. In NeurIPS, 2014.

[34] Alex Nichol, Joshua Achiam, and John Schulman. On first-

order meta-learning algorithms. CoRR, abs/1803.02999,

2018.

[35] Yash Patel, Tomas Hodan, and Jiri Matas. Learning surro-

gates via deep embedding. In ECCV, 2020.

[36] Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-

moulin, and Aaron C. Courville. Film: Visual reasoning with

a general conditioning layer. In AAAI, 2018.

[37] Shameem Puthiya Parambath, Nicolas Usunier, and Yves

Grandvalet. Optimizing F-measures by cost-sensitive clas-

sification. In NeurIPS, 2014.

182

[38] Alain Rakotomamonjy. Optimizing Area Under Roc Curve

with SVMs. In ROCAI, 2004.

[39] CE. Rasmussen and CKI. Williams. Gaussian Processes

for Machine Learning. Adaptive Computation and Machine

Learning. MIT Press, 2006.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NeurIPS, 2015.

[41] Michal Rolinek, Vit Musil, Anselm Paulus, Marin Vlastelica,

Claudio Michaelis, and Georg Martius. Optimizing rank-

based metrics with blackbox differentiation. In CVPR, 2020.

[42] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio

Savarese. Deep metric learning via lifted structured feature

embedding. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4004–4012, 2016.

[43] Yang Song, G. Alexander Schwing, S. Richard Zemel, and

Raquel Urtasun. Training deep neural networks via direct

loss minimization. In ICML, 2016.

[44] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-SNE. Journal of Machine Learning Research,

9:2579–2605, 2008.

[45] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In CVPR, 2019.

[46] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-

Huang, and Tie-Yan Liu. Learning to teach with dynamic

loss functions. In NeurIPS, 2018.

[47] Haowen Xu, Hao Zhang, Zhiting Hu, Xiaodan Liang, Ruslan

Salakhutdinov, and Eric Xing. Autoloss: Learning discrete

schedule for alternate optimization. In ICLR, 2019.

[48] Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, and

Maya Gupta. Metric-optimized example weights. In ICML,

2019.

[49] Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja

Hofmann, and Shimon Whiteson. Fast context adaptation

via meta-learning. In ICML, 2019.

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.

Le. Learning transferable architectures for scalable image

recognition. In CVPR, June 2018.

183

