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Abstract

We introduce PREDATOR, a model for pairwise point-

cloud registration with deep attention to the overlap region.

Different from previous work, our model is specifically de-

signed to handle (also) point-cloud pairs with low overlap.

Its key novelty is an overlap-attention block for early infor-

mation exchange between the latent encodings of the two

point clouds. In this way the subsequent decoding of the

latent representations into per-point features is conditioned

on the respective other point cloud, and thus can predict

which points are not only salient, but also lie in the overlap

region between the two point clouds. The ability to focus

on points that are relevant for matching greatly improves

performance: PREDATOR raises the rate of successful reg-

istrations by more than 20% in the low-overlap scenario,

and also sets a new state of the art for the 3DMatch bench-

mark with 89% registration recall. [Code release]

1. Introduction

Recent work has made substantial progress in fully auto-

matic, 3D feature-based point cloud registration. At first

glance, benchmarks like 3DMatch [49] appear to be sat-

urated, with multiple state-of-the-art (SoTA) methods [16,

8, 3] reaching nearly 95% feature matching recall and suc-

cessfully registering >80% of all scan pairs. One may get

the impression that the registration problem is solved—but

this is actually not the case. We argue that the high success

rates are a consequence of lenient evaluation protocols. We

have been making our task too easy: existing literature and

benchmarks [5, 49, 20] consider only pairs of point clouds

with ≥30% overlap to measure performance. Yet, the low-

overlap regime is very relevant for practical applications.

On the one hand, it may be difficult to ensure high overlap,

for instance when moving along narrow corridors, or when

closing loops in the presence of occlusions (densely built-

up areas, forest, etc.). On the other hand, data acquisition is

∗First two authors contributed equally to this work.

a) Input point clouds b) Inferred overlap region c) Estimated registration

Figure 1: PREDATOR is designed to focus attention on the

overlap region, and to prefer salient points in that region, so

as to enable robust registration in spite of low overlap.

often costly, so practitioners aim for a low number of scans

with only the necessary overlap [45, 46].

Driven by the evaluation protocol, the high-overlap

scenario became the focus of research, whereas the

more challenging low-overlap examples were largely ne-

glected (cf . Fig. 1). Consequently, the registration perfor-

mance of even the best known methods deteriorates rapidly

when the overlap between the two point clouds falls below

30%, see Fig. 2. Human operators, in contrast, can still reg-

ister such low overlap point clouds without much effort.

This discrepancy is the starting point of the present work.

To study its reasons, we have constructed a low-overlap

dataset 3DLoMatch from scans of the popular 3DMatch

benchmark, and have analysed the individual modules/steps

of the registration pipeline (Fig. 2). It turns out that the ef-

fective receptive field of fully convolutional feature point

descriptors [8, 3] is local enough and the descriptors are

hardly corrupted by non-overlapping parts of the scans.

Rather than coming up with yet another way to learn better

descriptors, the key to registering low overlap point clouds

is learning where to sample feature points. A large perfor-

mance boost can be achieved if the feature points are pre-

dominantly sampled from the overlapping portions of the

scans (Fig. 2, right).

We follow this path and introduce PREDATOR, a neu-

ral architecture for pairwise 3D point cloud registration that

learns to detect the overlap region between two unregistered

scans, and to focus on that region when sampling feature
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Figure 2: Registration with SoTA methods deteriorates

rapidly for pairs with <30% overlap (left). By increasing

the fraction of points sampled in the overlap region, many

failures can be avoided as shown here for FCGF [8] (right).

points. The main contributions of our work are:

• an analysis why existing registration pipelines break

down in the low-overlap regime

• a novel overlap attention block that allows for early in-

formation exchange between the two point clouds and

focuses the subsequent steps on the overlap region

• a scheme to refine the feature point descriptors, by con-

ditioning them also on the respective other point cloud

• a novel loss function to train matchability scores, which

help to sample better and more repeatable interest points

Moreover, we make available the 3DLoMatch dataset, con-

taining the previously ignored scan pairs of 3DMatch that

have low (10-30%) overlap. In our experiments, PREDATOR

greatly outperforms existing methods in the low-overlap

regime, increasing registration recall by >10 percent points.

It also sets a new state of the art for the conventional

3DMatch benchmark, reaching a registration recall of 89%.

2. Related work

We start this related-work section by reviewing the indi-

vidual components of the traditional point cloud registration

pipelines, before proceeding to newer, end-to-end point-

cloud registration algorithms. Finally, we briefly cover re-

cent advances in using contextual information to guide and

robustify feature extraction and matching.

Local 3D feature descriptors: Early local descriptors for

point clouds [19, 31, 30, 37, 36] aimed to characterise the

local geometry by using hand-crafted features. While often

lacking robustness against clutter and occlusions, they have

long been a default choice for downstream tasks because

they naturally generalise across datasets [18]. In the last

years, learned 3D feature descriptors have taken over and

now routinely outperform their hand-crafted counterparts.

The pioneering 3DMatch method [49] is based on

a Siamese 3D CNN that extracts local feature descrip-

tors from a signed distance function embedding. Oth-

ers [20, 17] first extract hand-crafted features, then map

them to a compact representation using multi-layer percep-

trons. PPFNet [10], and its self-supervised version PPF-

FoldNet [9], combine point pair features with a Point-

Net [28] architecture to extract descriptors that are aware of

the global context. To alleviate artefacts caused by noise

and voxelisation, [16] proposed to use a smoothed den-

sity voxel grid as input to a 3D CNN. These early works

achieved strong performance, but still operate on individ-

ual local patches, which greatly increases the computational

cost and limits the receptive field to a predefined size.

Fully convolutional architectures [22] that enable dense

feature computation over the whole input in a single for-

ward pass [11, 12, 29] have been adopted to design faster

3D feature descriptors. Building on sparse convolutions [7],

FCGF [8] achieves a performance similar to the best patch-

based descriptors [16], while being orders of magnitude

faster. D3Feat [3] complements a fully convolutional fea-

ture descriptor with an salient point detector.

Interest point sampling: The classic principle to sample

salient rather than random points has also found its way into

learned 2D [11, 12, 29, 43] and 3D [47, 3, 23] local fea-

ture extraction. All these methods implicitly assume that

the saliency of a point fully determines its utility for down-

stream tasks. Here, we take a step back and argue that, while

saliency is desirable for an interest point, it is not sufficient

on its own. Indeed, in order to contribute to registration a

point should not only be salient, but must also lie in the re-

gion where the two point clouds overlap—an essential prop-

erty that, surprisingly, has largely been neglected thus far.

Deep point-cloud registration: Instead of combining

learned feature descriptors with some off-the-shelf robust

optimization at inference time, a parallel stream of work

aims to embed the differentiable pose estimation into the

learning pipeline. PointNetLK [1] combines a PointNet-

based global feature descriptor [28] with a Lucas/Kanade-

like optimization algorithm [24] and estimates the relative

transformation in an iterative fashion. DCP [40] use a

DGCNN network [42] to extract local features and com-

putes soft correspondences before using the Kabsch algo-

rithm to estimate the transformation parameters. To relax

the need for strict one-to-one correspondence, DCP was

later extended to PRNet [41], which includes a keypoint

detection step and allows for partial correspondence. In-

stead of simply using soft correspondences, [48] update the

similarity matrix with a differentiable Sinkhorn layer [33].

Similar to other methods, the weighted Kabsch algorithm[2]

is used to estimate the transformation parameters. Finally,

[15, 6, 27] complement a learned feature descriptor with an

outlier filtering network, which infers the correspondence

weights for later use in the weighted Kabsch algorithm.

Contextual information: In the traditional pipeline, fea-

ture extraction is done independently per point cloud. In-

formation is only communicated when computing pairwise

similarities, although aggregating contextual information at

an earlier stage could provide additional cues to robustify
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Figure 3: Network architecture of PREDATOR. Voxel-gridded point clouds P and Q are fed to the encoder, which extracts

the superpoints P′ and Q′ and their latent features XP′

, XQ′

. The overlap-attention module updates the features with co-

contextual information in a series of self- (GNN) and cross-attention (CA) blocks, and projects them to overlap oP′

, oQ′

and cross-overlap õP′

, õQ′

scores. Finally, the decoder transforms the conditioned features and overlap scores to per-point

feature descriptors FP, FQ, overlap scores oP, oQ, and matchability scores mP, mQ.

the descriptors and guide the matching step.

In 2D feature learning, D2D-Net [43] use an attention

mechanism in the bottleneck of an encoder-decoder scheme

to aggregate the contextual information, which is later used

to condition the output of the decoder on the second image.

SuperGlue [32] infuses the contextual information into the

learned descriptors with a whole series of self- and cross-

attention layers, built upon the message-passing GNN [21].

Early information mixing was previously also explored in

the field of deep point cloud registration, where [40, 41] use

a transformer module to extract task-specific 3D features

that are reinforced with contextual information.

3. Method

PREDATOR is a two-stream encoder-decoder network.

Our default implementation uses residual blocks with

KPConv-style point convolutions [35], but the architecture

is agnostic w.r.t. the backbone and can also be implemented

with other formulations of 3D convolutions, such as for in-

stance sparse voxel convolutions [7] (cf . Appendix). As il-

lustrated in Fig. 3, the architecture of PREDATOR can be

decomposed into three main modules:

1. encoding of the two point clouds into smaller sets of su-

perpoints and associated latent feature encodings, with

shared weights (Sec. 3.2);

2. the overlap attention module (in the bottleneck) that ex-

tracts co-contextual information between the feature en-

codings of the two point clouds, and assigns each super-

point two overlap scores that quantify how likely the

superpoint itself and its soft-correspondence are located

in the overlap between the two inputs (Sec. 3.3);

3. decoding of the mutually conditioned bottleneck repre-

sentations to point-wise descriptors as well as refined

per-point overlap and matchability scores (Sec. 3.4).

Before diving into each component we lay out the basic

problem setting and notation in Sec. 3.1.

3.1. Problem setting

Consider two point clouds P = {pi ∈ R
3|i = 1..N},

and Q = {qi ∈ R
3|i = 1..M}. Our goal is to recover a

rigid transformation T
Q
P with parameters R ∈ SO(3) and

t ∈ R
3 that aligns P to Q. By a slight abuse of notation

we use the same symbols for sets of points and for their

corresponding matrices P ∈ R
N×3 and Q ∈ R

M×3.

Obviously T
Q
P can only ever be determined from the data

if P and Q have sufficient overlap, meaning that after ap-

plying the ground truth transformation T
Q
P the overlap ratio

1

N

∣

∣

{

‖(TQ
P(pi)− NN(TQ

P(pi),Q)‖2 ≤ v
}
∣

∣ > τ , (1)

where NN denotes the nearest-neighbour operator w.r.t. its

second argument, ‖·‖2 is the Euclidean norm, |·| is the set

cardinality, and v is a tolerance that depends on the point

density.2 Contrary to previous work [49, 20], where the

threshold to even attempt the alignment is typically τ >0.3,

we are interested in low-overlap point clouds with τ > 0.1.

Fragments with different overlap ratios are shown in Fig. 4.

3.2. Encoder

We follow [35] and first down-sample raw point clouds

with a voxel-grid filter of size V , such that P and Q have

reasonably uniform point density. In the shared encoder,

2For efficiency, v is in practice determined after voxel-grid down-

sampling of the two point clouds.
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a) overlap ratio = 0.1 b) overlap ratio = 0.3 c) overlap ratio = 0.5

Figure 4: Fragments with different overlap ratios. Overlap

is computed relative to the source fragment (orange).

a series of ResNet-like blocks and strided convolutions ag-

gregate the raw points into superpoints P′ ∈ R
N ′×3 and

Q′ ∈ R
M ′×3 with associated features XP′ ∈ R

N ′×b and

XQ′ ∈ R
M ′×b. Note that superpoints correspond to a fixed

receptive field, so their number depends on the spatial ex-

tent of the input point cloud and may be different for the

two inputs.

3.3. Overlap attention module

So far, the features XP′

, XQ′

in the bottleneck encode

the geometry and context of the two point clouds. But XP′

has no knowledge of point cloud Q and vice versa. In order

to reason about their respective overlap regions, some cross-

talk is necessary. We argue that it makes sense to add that

cross-talk at the level of superpoints in the bottleneck, just

like a human operator will first get a rough overview of the

overall shape to determine likely overlap regions, and only

after that identifies precise feature points in those regions.

Graph convolutional neural network: Before connect-

ing the two feature encodings, we first further aggregate

and strengthen their contextual relations individually with

a graph neural network (GNN) [42]. In the following, we

describe the GNN for point cloud P′. The GNN for Q′ is

the same. First, the superpoints in P′ are linked into a graph

in Euclidean space with the k-NN method. Let xi ∈ R
b de-

note the feature encoding of superpoint p′i, and (i, j) ∈ E
the graph edge between superpoints p′i and p′j . The encoder

features are then iteratively updated as

(k+1)xi = max
(i,j)∈E

hθ

(

cat[(k)xi,
(k)xj − (k)xi]

)

, (2)

where hθ(·) denotes a linear layer followed by instance nor-

malization [38] and a LeakyReLU activation [25], max(·)
denotes element-/channel-wise max-pooling, and cat[·, ·]
means concatenation. This update is performed twice with

separate (not shared) parameters θ, and the final GNN fea-

tures xGNN
i ∈ R

db are obtained as

xGNN
i = hθ(cat[(0)xi,

(1)xi,
(2)xi]) . (3)

Cross-attention block: Knowledge about potential over-

lap regions can only be gained by mixing information about

both point clouds. To this end we adopt a cross-attention

block [32] based on the message passing formulation [14].

First, each superpoint in P′ is connected to all superpoints

in Q′ to form a bipartite graph. Inspired by the Transformer

architecture [39], vector-valued queries si ∈R
b are used to

retrieve the values vj ∈ R
b of other superpoints based on

their keys kj ∈R
b, where

kj = Wkx
GNN
j vj = Wvx

GNN
j si = Wsx

GNN
i (4)

and Wk, Wv , and Ws are learnable weight matrices. The

messages are computed as weighted averages of the values,

mi← =
∑

j:(i,j)∈E

aijvj , (5)

with attention weights aij = softmax(sTi kj/
√
b) [32]. I.e.,

to update a superpoint p′i one combines that point’s query

with the keys and values of all superpoints q′j . In line with

the literature, in practice we use a multi-attention layer with

four parallel attention heads [39]. The co-contextual fea-

tures are computed as

xCA
i = xGNN

i +MLP(cat[si,mi←]) , (6)

with MLP(·) denoting a three-layer fully connected net-

work with instance normalization [38] and ReLU [26] ac-

tivations after the first two layers. The same cross-attention

block is also applied in reverse direction, so that informa-

tion flows in both directions, P′→Q′ and Q′→P′.

Overlap scores of the bottleneck points: The above up-

date with co-contextual information is done for each su-

perpoint in isolation, without considering the local context

within each point cloud. We therefore, explicitly update

the local context after the cross-attention block using an-

other GNN that has the same architecture and underlying

graph (within-point cloud links) as above, but separate pa-

rameters θ. This yields the final latent feature encodings

FP′∈R
N ′×b and FQ′∈R

M ′×b, which are now conditioned

on the features of the respective other point cloud. Those

features are linearly projected to overlap scores oP′∈R
N ′

and oQ′ ∈ R
M ′

, which can be interpreted as probabilities

that a certain superpoint lies in the overlap region. Addi-

tionally, one can compute soft correspondences between su-

perpoints and from the correspondence weights predict the

cross-overlap score of a superpoint p′i, i.e., the probability

that its correspondence in Q′ lies in the overlap region:

õP
′

i := wT
i o

Q′

, wij := softmax
(1

t
〈fP′

i , fQ
′

j 〉
)

, (7)

where 〈·, ·〉 is the inner product, and t is the temperature

parameter that controls the soft assignment. In the limit t→
0, Eq. (7) converges to hard nearest-neighbour assignment.

3.4. Decoder

Our decoder starts from conditioned features FP′

, con-

catenates them with the overlap scores oP′

, õP′

, and out-

puts per-point feature descriptors FP∈R
N×32 and refined
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per-point overlap and matchability scores oP,mP ∈ R
N .

The matchability can be seen as a ”conditional saliency”

that quantifies how likely a point is to be matched correctly,

given the points (resp. features) in the other point cloud Q.

The decoder architecture combines NN-upsampling with

linear layers, and includes skip connections from the corre-

sponding encoder layers. We deliberately keep the overlap

score and the matchability separate to disentangle the rea-

sons why a point is a good/bad candidate for matching: in

principle a point can be unambiguously matchable but lie

outside the overlap region, or it can lie in the overlap but

have an ambiguous descriptor. Empirically, we find that

the network learns to predict high matchability mostly for

points in the overlap; probably reflecting the fact that the

ground truth correspondences used for training, naturally,

always lie in the overlap. For further details about the ar-

chitecture, please refer to Appendix and the source code.

3.5. Loss function and training

PREDATOR is trained end-to-end, using three losses w.r.t.

ground truth correspondences as supervision.

Circle loss: To supervise the point-wise feature descrip-

tors we follow3 [3] and use the circle loss [34], a variant

of the more common triplet loss. Consider again a pair of

overlapping point clouds P and Q, this time aligned with

the ground truth transformation. We start by extracting the

points pi ∈Pp ⊂P that have at least one (possibly multi-

ple) correspondence in Q, where the set of correspondences

Ep(pi) is defined as points in Q that lie within a radius rp
around pi. Similarly, all points of Q outside a (larger) ra-

dius rs form the set of negatives En(pi). The circle loss is

then computed from np points sampled randomly from Pp:

LP
c =

1

np

np
∑

i=1

log
[

1 +
∑

j∈Ep

eβ
j
p(d

j

i
−∆p) ·

∑

k∈En

eβ
k
n(∆n−d

k
i )
]

,

(8)

where dji = ||fpi
− fqj

||2 denotes distance in feature space,

and ∆n,∆p are negative and positive margins, respectively.

The weights βj
p=γ(dji−∆p) and βk

n=γ(∆n−dki ) are deter-

mined individually for each positive and negative example,

using the empirical margins ∆p := 0.1 and ∆n := 1.4 with

hyper-parameter γ. The reverse loss LQ
c is computed in the

same way, for a total circle loss Lc =
1
2 (LP

c + LQ
c ).

Overlap loss: The estimation of the overlap probability is

cast as binary classification and supervised using the over-

lap loss Lo=
1
2 (LP

o + LQ
o ), where

LP
o =

1

|P|

|P|
∑

i=1

opi
log(opi

) + (1− opi
) log(1− opi

). (9)

3Added to the repository after publication, not mentioned in the paper.

a) Input point clouds b) Inferred overlap region c) Estimated registration

3
D

M
a
tc

h
M

o
d

e
lN

e
t4

0
o

d
o

m
e
tr

y
K

IT
T

I

Figure 5: Example results of PREDATOR that succeeds in

attending to the overlap region to enable robust registration.

The ground truth label opi
of point pi is defined as

opi
=

{

1, ||TQ
P(pi)− NN(TQ

P(pi),Q)||2 < ro

0, otherwise
, (10)

with overlap threshold ro. The reverse loss LQ
o is computed

in the same way. The contributions from positive and neg-

ative examples are balanced with weights inversely propor-

tional to their relative frequencies.

Matchability loss: Supervising the matchability scores

is more difficult, as it is not clear in advance which are

the right points to take into account during correspondence

search. We follow a simple intuition: good keypoints are

those that can be matched successfully at a given point dur-

ing training, with the current feature descriptors. Hence,

we cast the prediction as binary classification and generate

the ground truth labels on the fly. Again, we sum the two

symmetric losses, Lm = 1
2 (LP

m + LQ
m), with

LP
m=

1

|P|

|P|
∑

i=1

mpi
log(mpi

) + (1−mpi
) log(1−mpi

),

(11)

where ground truth labels mpi
are computed on the fly via

nearest neighbour search NNF(·, ·) in feature space:

mpi
=

{

1, ||TQ
P(pi)−NNF(pi,Q)||2<rm

0, otherwise.
(12)

Implementation and training: PREDATOR is imple-

mented in pytorch and can be trained on a single RTX 3090

GPU. At the start of the training we supervise PREDATOR

only with the circle and overlap losses, the matchability loss
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Figure 6: Distribution of the relative overlap ratio before

and after filtering the points with the inferred overlap scores,

3DLoMatch (left) and 3DMatch (right).

is added only after few epochs, when the point-wise features

are already meaningful (i.e., >30% of interest points can

be matched correctly). The three loss terms are weighted

equally. For more details, please refer to Appendix.

4. Experiments

We evaluate PREDATOR and justify our design choices

on real point clouds, using 3DMatch [49] and 3DLoMatch

(§ 4.1). Additionally, we compare PREDATOR to direct reg-

istration methods on the synthetic, object-centric Model-

Net40 [44] (§ 4.2) and evaluate it on large outdoor scenes

using odometryKITTI [13] (§ 4.3). More details about the

datasets and evaluation metrics are available in the App-

ndix. Qualitative results are shown in Fig. 5.

4.1. 3DMatch

Dataset: [49] is a collection of 62 scenes, from which we

use 46 scenes for training, 8 scenes for validation and 8 for

testing. Official 3DMatch dataset considers only scan pairs

with >30% overlap. Here, we add its counterpart in which

we consider only scan pairs with overlaps between 10 and

30% and call this collection 3DLoMatch4.

Metrics: Our main metric, corresponding to the actual

aim of point cloud registration, is Registration Recall (RR),

i.e., the fraction of scan pairs for which the correct trans-

formation parameters are found with RANSAC. Following

the literature [49, 17, 8], we also report Feature Match Re-

call (FMR), defined as the fraction of pairs that have >5%

”inlier” matches with <10 cm residual under the ground

truth transformation (without checking if the transformation

can be recovered from those matches), and Inlier Ratio (IR),

the fraction of correct correspondences among the putative

matches. Additionally, we use empirical cumulative dis-

tribution functions (ECDF) to evaluate the relative overlap

ratio. At a specific overlap value, the (1−ECDF) curve

shows the fraction of fragment pairs that have relative over-

lap greater or equal to that value.

4Due to a bug in the official implementation of the overlap computation

for 3DMatch, a few (<7%) scan pairs are included in both datasets.

a) heatmap b) interest points c) estimated registration
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Figure 7: Top-k (om) sampling yields clustered interest

points, whereas the points obtained with prob. (om) sam-

pling are more scattered and thus enable a more robust esti-

mation of the transformation parameters.

3DMatch 3DLoMatch

# Samples (k) 5000 2500 1000 500 250 5000 2500 1000 500 250

Inlier ratio (%)

rand 43.6 41.5 36.7 31.9 25.9 15.7 14.7 12.8 10.9 8.7

top-k (om) 61.0 67.3 71.8 73.1 73.1 26.0 31.4 36.0 37.4 38.0

prob. (om) 49.9 50.3 49.2 46.3 41.8 20.0 20.8 21.0 20.2 19.0

Registration Recall (%)

rand 83.9 82.9 81.5 79.9 69.9 39.3 38.8 36.9 30.3 23.2

top-k (om) 81.6 84.3 80.2 72.6 60.3 54.6 52.4 45.7 38.1 28.9

prob. (om) 88.3 88.3 89.0 88.4 84.7 54.2 55.8 56.7 56.1 50.7

Table 1: Performance of PREDATOR with different interest

point sampling strategies; om denotes the product of over-

lap score and matchability score.

Relative overlap ratio: We first evaluate if PREDATOR

achieves its goal to focus on the overlap. We discard points

with a predicted overlap score oi < 0.5, compute the over-

lap ratio, and compare it to the one of the original scans.

Fig. 6 shows that more than half of the low-overlap pairs

are pushed over the 30% threshold that prior works consid-

ered the lower limit for registration. On average, discarding

points with low overlap scores almost doubles the overlap

in 3DLoMatch (98% increase). Notably, it also increases

the overlap in standard 3DMatch by, on average, >35%.

Interest point sampling: PREDATOR significantly in-

creases the effective overlap, but does that improve regis-

tration performance? To test this we use the product of the

overlap scores o and matchability scores m to bias inter-

est point sampling. We compare two variants: top-k (om),

where we pick the top-k points according to the multiplied

scores; and prob. (om), where we instead sample points with

probability proportional to the multiplied scores.

For a more comprehensive assessment we follow [3] and

report performance with different numbers of sampled in-

terest points. Tab. 1 shows that any of the informed sam-

pling strategies greatly increases the inlier ratio, and as
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Figure 8: An extreme case where the overlap is insufficient for registration even with the proposed attention mechanism.

3DMatch 3DLoMatch

# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Registration Recall (%)

3DSN [16] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0

FCGF [8] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8

D3Feat [3] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1

Predator 88.3 88.3 89.0 88.4 84.7 54.2 55.8 56.7 56.1 50.7

bigPredator 88.4 89.9 88.8 88.7 85.0 58.0 58.3 57.7 56.8 51.8

Table 2: Results on the 3DMatch and 3DLoMatch datasets.

a consequence also the registration recall. The gains are

larger when fewer points are sampled. In the low-overlap

regime the inlier ratios more than triple for up to 1000

points. We observe that, as expected, high inlier ratio does

not necessarily imply high registration recall: our scores are

apparently well calibrated, so that top-k (om) indeed finds

most inliers, but these are often clustered and too close to

each other to reliably estimate the transformation parame-

ters (Fig. 7). We thus use the more robust prob. (om) sam-

pling, which yields the best registration recall. It may be

possible to achieve even higher registration recall by com-

bining top-k (om) sampling with non-maxima suppression.

We leave this for future work.

Comparison to feature-based methods: We compare

PREDATOR to recent feature-based registration methods:

3DSN [17], FCGF [8] and D3Feat [3], see Tab. 2. Even

though PREDATOR can not solve all the cases (cf . Fig. 8),

it greatly outperforms existing methods on the low-overlap

3DLoMatch dataset, improving registration recall by 10-20

percent points (pp) over the closest competitor—variously

FCGF or 3DFeat. Moreover, it also consistently reaches the

highest registration recall on standard 3DMatch, showing

that its attention to the overlap pays off even for scans with

moderately large overlap. In line with our motivation, what

matters is not so much the choice of descriptors, but finding

interest points that lie in the overlap region – especially if

that region is small. Additionally, we show that a larger net-

work (see bigPREDATOR in Tab. 2, with 2× bigger network

width) can further boost the performance.

Comparison to direct registration methods: We also

tried to compare PREDATOR to recent methods for direct

registration of partial point clouds. Unfortunately, for both

PRNet [41] and RPM-Net [48], training on 3DMatch failed

to converge to reasonable results, as already observed in [6].

overlap attention 3DMatch 3DLoMatch

ov. ×ov. cond. FMR IR RR FMR IR RR

96.4 39.6 82.6 72.2 14.5 38.9

✓ 96.2 47.2 86.9 71.8 18.0 50.9

✓ ✓ 96.1 47.8 87.3 69.5 15.8 48.4

✓ ✓ 95.5 46.4 87.1 73.0 17.6 54.4

✓ ✓ ✓ 96.6 49.9 88.3 71.7 20.0 54.2

Table 3: Ablation of the network architecture. ov. denotes

upsampling the overlap scores; cond. denotes conditioning

the bottleneck features on the respective other point cloud;

×ov. denotes upsampling the cross overlap scores.

It appears that their feature extraction is specifically tuned

to synthetic, object-centric point clouds. Thus, in a further

attempt we replaced the feature extractor of RPM-Net with

FCGF. This brought the registration recall on 3DMatch to

54.9%, still far from the 85.1% that FCGF features achieve

with RANSAC. We conclude that direct pairwise registra-

tion is at this point only suitable for geometrically simple

objects in controlled settings like ModelNet40.

Ablations study: We ablate our overlap attention mod-

ule in Tab. 3. We first compare PREDATOR with a base-

line model, in which we completely remove the proposed

overlap attention module. That baseline, combined with

random sampling, achieves the 2nd-highest FMR on both

benchmarks, but only reaches 82.5%, respectively 38.9%

RR. By adding the overlap scores, RR greatly increases by

4.3, respectively 12.0 pp on 3DMatch and 3DLoMatch. Ad-

ditionally upsampling conditioned feature scores or cross

overlap scores further improves performance, especially on

3DLoMatch. All three parts combined lead to the best over-

all performance. For further ablation studies, see Appendix.

4.2. ModelNet40

Dataset: [44] contains 12,311 CAD models of man-made

objects from 40 different categories. We follow [48] to

use 5,112 samples for training, 1,202 samples for valida-

tion, and 1,266 samples for testing. Partial scans are gen-

erated following [48]. In addition to ModelNet which has

73.5% pairwise overlap on average, we generate Model-

LoNet which lower (53.6%) average overlap. For more de-

tails see Appendix.

Metrics: We follow [48] and measure the performance us-

ing the Relative Rotation Error (RRE) (geodesic distance
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Figure 9: Improved relative overlap ratio after filtering the

points with the inferred overlap scores on 8862 ModelNet

partial scans(left). Owing to the improved overlap ratio,

PREDATOR is robust to the changes of partial value pv ,

while the performance of RPM-Net drops rapidly (right).

rand and prob. denote the random and prob. (om) biased

sampling of 450 interest points, respectively.

ModelNet ModelLoNet

Methods RRE RTE CD RRE RTE CD

DCP-v2 [40] 11.975 0.171 0.0117 16.501 0.300 0.0268

RPM-Net [48] 1.712 0.018 0.00085 7.342 0.124 0.0050

Ours (rand) 2.923 0.034 0.00122 11.585 0.181 0.0104

Ours (prob. (om)) 1.856 0.019 0.00088 5.462 0.133 0.0079

Table 4: Evaluation results on ModelNet and ModelLoNet.

450 points are sampled for RANSAC with rand / prob..

between estimated and GT rotation matrices), the Relative

Translation Error (RTE) (Euclidean distance between the

estimated and GT translations), and the Chamfer distance

(CD) between the two registered scans.

Relative overlap ratio: We again evaluate if PREDATOR

focuses on the overlap region. We extract 8,862 test pairs

by varying the completeness of the input point clouds from

70 to 40%. Fig. 9 shows that PREDATOR substantially in-

creases the relative overlap and reduces the number of pairs

with overlap <70% by more than 40 pp.

Comparison to direct registration methods: To be able

to compare PREDATOR to RPM-Net [48] and DCP [40], we

resort to the synthetic, object-centric dataset they were de-

signed for. We failed to train PRNet [41] due to random

crashes of the original code (also observed in [6]).

Remarkably, PREDATOR can compete with methods

specifically tuned for ModelNet, and in the low-overlap

regime outperforms them in terms of RRE, see Tab. 4.

Moreover, we observe a large boost by sampling points with

overlap attention (prob. (om)) rather than randomly (rand).

Fig. 9 (right) further underlines the importance of sampling

in the overlap: PREDATOR is a lot more robust in the low

overlap regime (≈8◦ lower RRE at completeness 0.4).

4.3. odometryKITTI

Dataset: [13] contains 11 sequences of LiDAR-scanned

outdoor driving scenarios. We follow [8] and use sequences

0-5 for training, 6-7 for validation, and 8-10 for testing. In

line with [8, 3] we further refine the provided ground truth

Method RTE [cm] ↓ RRE [◦] ↓ RR ↑
3DFeat-Net [47] 25.9 0.57 96.0

FCGF [8] 9.5 0.30 96.6

D3Feat* [3] 7.2 0.30 99.8

PREDATOR (rand) 8.9 0.36 99.6

PREDATOR (prob. (om)) 6.8 0.27 99.8

Table 5: Evaluation of PREDATOR on odometryKITTI, fol-

lowing the evaluation protocol employed by D3Feat [3].

poses using ICP [4] and only use point cloud pairs that are

at most 10 m away from each other for evaluation.

Comparision to the SoTAs: We compare PREDATOR to

3DFeat-Net [47], FCGF [8] and D3Feat* [3]5 As shown in

Tab. 5, PREDATOR performs on-par with the SoTA. The re-

sults also corroborate the impact of our overlap attention

which again outperforms the random sampling baseline.

Computational complexity: With O(n2) complexity the

cross-attention module represents the memory bottleneck of

PREDATOR. Furthermore, n cannot be selected freely but

results from the interplay of (i) the resolution of the initial

voxel grid, (ii) the network architecture (number of strided

convolution layers), and (iii) the spatial extent of the scene.

Nevertheless, by executing the cross-attention at the super-

point level, with greatly reduced n, we are able to apply

PREDATOR to large outdoor scans like odometryKITTI on

a single GPU. For even larger scenes, a simple engineer-

ing trick could be to split them into parts, as often done for

semantic segmentation.

5. Conclusion

We have introduced PREDATOR, a deep model designed

for pairwise registration of low-overlap point clouds. The

core of the model is an overlap attention module that en-

ables early information exchange between the point clouds’

latent encodings, in order to infer which of their points are

likely to lie in their overlap region.

There are a number of directions in which PREDATOR

could be extended. At present it is tightly coupled to fully

convolutional point cloud encoders, and relies on having a

reasonable number of superpoints in the bottleneck. This

could be a limitation in scenarios where the point density

is very uneven. It would also be interesting to explore how

our overlap-attention module can be integrated into direct

point cloud registration methods and other neural architec-

tures that have to handle two inputs with low overlap, e.g.

in image matching [32]. Finally, registration in the low-

overlap regime is challenging and PREDATOR cannot solve

all the cases. A user study could provide a better under-

standing of how PREDATOR compares to human operators.

Acknowledgements. This work was sponsored by the
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5We find that the released D3Feat code fails to reproduce the results in

the paper, possible due to hyper-parameter changes.
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