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Abstract

Dense depth estimation plays a key role in multiple appli-

cations such as robotics, 3D reconstruction, and augmented

reality. While sparse signal, e.g., LiDAR and Radar, has

been leveraged as guidance for enhancing dense depth es-

timation, the improvement is limited due to its low density

and imbalanced distribution. To maximize the utility from

the sparse source, we propose Sparse Signal Superdensity

(S3) technique, which expands the depth value from sparse

cues while estimating the confidence of expanded region.

The proposed S3 can be applied to various guided depth

estimation approaches and trained end-to-end at different

stages, including input, cost volume and output. Extensive

experiments demonstrate the effectiveness, robustness, and

flexibility of the S3 technique on LiDAR and Radar signal.

1. Introduction

Dense depth estimation is crucial in the field of 3D re-

construction [14], 3D object detection [44, 47], and robotic

vision [25, 28]. Many works have proposed to estimate

depth from RGB images or stereo pairs. Yet, the stereo es-

timation could be unreliable on homogeneous planes, large

illumination changes, and repetitive textures [38, 43]; while

monocular depth estimation is an ill-posed problem [11]

and inherently ambiguous and unreliable [20, 24]. To at-

tain a higher level of robustness and accuracy, modern so-

lutions commonly leverage raw sparse signal, such as Li-

DAR [2, 34, 24] and Radar [5, 29], to improve depth estima-

tion results or object detection for the challenging outdoor

scenes, termed guidance in this paper.

Despite the success of those sparse-guidance methods,

however, we still find two big problems with sparse sig-

nal. First, raw sparse signal can be ignored by networks

when it is largely different from depth predicted with RGB

(shown in Figure 1a). This situation stems from the low

density property of the sparse signal, which is a common

problem in many large-scale dataset. For example, KITTI

dataset [12] wraps up an average density of 4.0% and
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Figure 1: Major problems of sparse depth signal. (a)

The network tends to ignore the low density hint if depth

from RGB is hugely different from sparse signal. (b) Im-

balanced signal distribution would make the guidance to be

not equally distributed. We can observe the trace of the 4

scanning lines of LiDAR (yellow circle). Our proposed S3

method successfully overcome the two problems. The noise

in the top example is removed, and the guided result in the

bottom example is smoother and closer to the ground truth.

Best viewed in zoomed digital.

nuScenes dataset [4] has an average of less than 50 Radar

points over a 900 × 1600 image. Actually, the guidance

module tends to ignore the accurate but sparse signals when

they strongly disagree with the original prediction.

Furthermore, imbalance guidance is also the main prob-

lem. As shown in Figure 1b, the algorithms only focus

on the small region with high signal density while barely

correct the low-density region between scanning lines and

cause non-smoothing result. However, these low-density

parts neither implicate less importance nor less confidence.
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In fact, there could be important objects like cars at these

parts, and the imbalanced guidance stems from the uneven

signal distribution of sensing devices in space. For exam-

ple, LiDAR signals are mostly localized on the scanning

lines with the same polar angles in the spherical coordinate,

and the azimuth resolution of Radar signals is poor [10, 37].

As a result, for previous methods that conduct experiments

under the assumption of uniformly distributed signal can be

unreliable for real-world imbalanced cases.

To tackle the critical low density and imbalanced distri-

bution problems, we propose a novel framework, Sparse

Signal Superdensity (S3), to enhance the density and mit-

igate imbalanced sparse signal for guided depth estimation.

S3 consists of two components: (1) sparse signal expan-

sion (2) confidence weighting. For sparse signal expan-

sion, S3 first estimates the expanded area for each sparse

signal based on the RGB image, and then assigns appro-

priate depth value to the expanded region. For confidence

weighting, S3 measures the confidence of the assigned

depth to control the amount of influence to the sparse-

guidance methods. Our method effectively utilizes confi-

dence weighting to increase the density of the sparse signal.

S3 framework, implemented with a light-weight net-

work, can be applied to existing sparse-guidance depth es-

timation methods. For instance, embedding it in existing

depth networks and trained in an end-to-end fashion. Losses

are developed to allow S3 network to learn sparse signal ex-

pansion and confidence weighting from data either for pre-

training purposes or training jointly with depth networks.

We conduct qualitative experiments to show the effective-

ness of S3 network on LiDAR and Radar guidance meth-

ods. The experimental results show that using our proposed

S3 can solve the low density and imbalanced distribution

problems. Our method can highly increase the utility of the

sparse signal and make substantial improvements on four

typical sparse-guidance schemes on KITTI [13, 27, 41] and

nuScenes [4] dataset.

To sum up, our contributions are highlighted as follows,

• The first work to point out the defective properties of

the sparse signal and the subsequent influence to the

depth estimation results.

• The novel and general framework Sparse Signal Super-

density (S3) enhances the density of sparse signal, mit-

igates the imbalanced distribution problem, and pro-

vides extra confidence cues for depth estimation.

• S3 largely increases the robustness and accuracy on

depth estimation tasks using sparse signals, e.g., Li-

DAR and Radar.

2. Related Work

In this section, we will introduce guided depth estimation

approaches and review related ideas about signal expansion.

Guided Mono Estimation. Previous works guide

monocular depth estimation networks with external active

sensors to address the technically ill-posed problem [11]

and improve performance [50, 17, 24, 23, 39, 52, 41]

known as Depth Completion. Cheng et al. [8] fuse the

sparse depth as input and propagate the information to

the surrounding pixels. Cadena et al. [3] concatenate the

features of the cross-modality data to learn an auto-encoder

for completing the partial or noisy depth. Ma and Kara-

man [24] fuse different modalities in the first convolution

layer to generate high-resolution depth. The methods aim

at completing the depth from sparse depth signal and an

image.

Guided Stereo Estimation. Previous works guide stereo

matching results with external sparse signal for better pre-

dicted results [21, 2, 30, 38, 9]. Stereo matching lever-

ages epipolar geometry to match pixels across image pairs

and produce disparity [51], which can be transformed to

depth by triangulation. PSMNet [6] and GANet [48] are

renowned stereo backbones. Poggi et al. [32] propose

guided techniques on cost volume to alleviate the domain

shift. Yet, their method assumes sparse signal to be uni-

formly distributed, which does not consider imbalanced sig-

nal problem. You et al. [47] propose a graph-based depth

correction algorithm to refine the stereo results in 3D do-

main with cheap LiDAR sensors. Nonetheless, their algo-

rithm design does not take the imbalanced signal issue into

account. Wang et al. [43] propose input fusion and regular-

ize batch normalization conditioning on LiDAR signal. The

above methods utilize the raw sparse signal for guidance or

correction, which puts little emphasis on the inherent prob-

lems of the sparse signal mentioned.

Signal Expansion. The expansion idea has shown in tasks

like superpixel segmentation [1, 42, 46, 36], depth comple-

tion, and depth sampling [15, 22, 45]. Superpixel aggre-

gates pixels with similar semantics, but they do not imply

similar depth values. Depth completion and depth sampling

complete the sparse depth, but most of the previous works

do not measure the confidence of the expanded depth and

rely on heavily computational resources.

Shivakumar et al. [38] propose promotion of the depth

signal to the neighboring pixels in the cost volume to im-

prove depth estimation. The incentive to promote the sparse

signal is close to our application on cost volume. However,

their methods are only applicable to Semi Global Match-

ing [16] algorithm. Furthermore, there are lots of hand-
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Figure 2: Sparse Signal Superdensity (S3) overview. The top pipeline illustrates the details of S3 framework to expand

sparse signal and generate the final expanded depth and confidence map (Section 3.2). The bottom demonstrates the applica-

tion of our module to guide on different stages of depth estimation (Section 4).

tuned hyper-parameters and assumptions, like promotion

with Gaussian, which may not hold for real data.

3. Method

3.1. Intuition of Sparse Signal Superdensity

To solve the issues of low density and imbalanced distri-

bution, we propose expanding the sparse cues to the neigh-

bor region. Our idea is that neighboring pixels with similar

color intensities belong to the same image structure or ob-

ject and thus have similar depth values.

Intuitively, the ad-hoc method is to expand points by

color thresholds inspired by cross-based support window

method [49]. To be specific, let I , G and Gexp be the color

intensity map, sparse signal map and expanded map. Given

a central pixel (i, j) (the coordinate of the source point), we

greedily expand from the central value G(i, j) to its neigh-

bor pixels (i′, j′) and fill in the expanded pixels Gexp(i
′, j′)

with G(i, j) as shown in Figure 3. The expansion stops un-

til the maximum of color intensity differences is larger than

a threshold or the expansion size reaches the limit.

Although the expanded map Gexp can substitute the

sparse G to perform any guidance techniques in depth es-

timation, the expanded points may provide false guidance

to the estimating process, especially for occlusions or pix-

els across object boundary. As a result, instead of applying

the same level of guidance to all pixels, we provide a con-

fidence map C to measure the reliability of the expanded

value in Gexp and the level of guidance to apply for depth

estimation.
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7 4 5 5 8

10 2 3 3 4

10 9 10 1 3

Vertical	Expansion Horizontal	ExpansionRGB	Values
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0 0 0 0 51

0 0 50 0 0
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0 50 50 0 51

50 50 50 50 0

0 0 50 50 50

0 52 0 0 51

Sparse	Disparity
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0 0 50 0 0
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Figure 3: Intuition for sparse signal expansion by ad-hoc

method. Sparse depth map (right) is expanded according

to RGB image (left) presented in one channel here. Zero in

the sparse map means no signal. The example expands the

center signal according to difference of color intensity with

threshold = 2.

3.2. Learnable Sparse Signal Superdensity

We propose leveraging a neural network to learn how

to expand sparse signals and the corresponding confidence

with the concept of sparse signal expansion and confidence

weighting from Section 3.1. We expand each sparse signal

to a patch by a S3 network and aggregate all the expanded

patches to form the final output.

To be specific, we predict how confident the sparse depth

G(i, j) can expand from the center pixel (i, j) to the neigh-

boring pixel (i′, j′) with S3 network. We set the expansion

space to be a square patch of size 2L + 1 for each sparse

signal, where |(i, j)−(i′, j′)| ≤ L. The input of the S3 net-

work is a crop of the intensity map I(i− L : i+ L, j − L :
j + L). The output is a confidence patch of the same size

and saved in Ck(i − L : i + L, j − L : j + L) ∈ [0, 1],
where k is the index of k’th sparse depth signal and Ck = 0
for other pixels out of the patch. Then, we aggregate the

confidence patches to be the expanded depth map Gexp by
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the following interpolation equation:

Gexp(i
′, j′) =

1

|Sk|

∑

k∈Sk

Ck(i
′, j′) ·G(ik, jk), (1)

where (ik, jk) is the pixel coordinate of the k’th sparse sig-

nal and Sk is the set of indices of the sparse signal. The

operation means that a pixel with no signal from depth sen-

sors is assigned with an interpolated depth value from its

nearby sparse signal values. Consequently, the more confi-

dent S3 network considers the source signal to be, the more

likely the assigned depth value is to be. Finally, we aggre-

gate the confidence maps by taking the maximum among

the confidence patches.

C(i′, j′) = max
k∈Sk

Ck(i
′, j′). (2)

Note that C(i′, j′) = 0 if (i′, j′) has no expanded signal.

Gexp(i
′, j′) = G(i′, j′) and C(i′, j′) = 1 if (i′, j′) =

(ik, jk) for a k ∈ Sk.

We formulate a general method to learn S3 network

along with any depth backbone. Here, the confidence value

can act as the weights between the guided depth Gexp and

the original estimated depth from monocular estimation or

stereo matching D. That is,

Dout = Gexp · C +D · (1− C). (3)

With the depth ground truth D∗, the supervised loss on the

output depth Dout can be formed as Lsup = ‖D∗ −Dout‖.
We also supervise Gexp with D∗ and add regularization

LS3 = λ1 · C · ‖D
∗ −Gexp‖+ λ2 · ‖C‖. (4)

The first term in Equation 4 means the more confident the

expanded depth is, the more accurate it should be. The sec-

ond term prevents excessive confidence for pretraining. In

practice, the gradient of C of the first term is detached, oth-

erwise, C = 0 can be a bad local minimum. The model is

trained end-to-end so that the expansion process is learned

from data. The main difference between having and not

having S3 is that S3 increases the density of the sparse sig-

nal by providing an additional confidence map to tell the

subsequent depth estimation algorithms how reliable the ex-

panded depth is.

4. Application of S3

S3 network can learn to expand different modality data,

including the most widely used LiDAR and Radar. Fur-

thermore, S3 works on both depth and disparity represen-

tation, allowing users to use our module in various applica-

tions. For instance, disparity is preferred for robotic tasks

due to the need to provide higher accuracy in the nearby

region [43].

Many works have proposed signal-guidance schemes to

enhance depth estimated from RGB as addressed in Sec-

tion 1 and 2. These methods can be divided into three cat-

egories: (1) Guidance on Input and Output (2) Guidance

on Cost Volume (3) Guidance on 3D Space. We will in-

troduce how to apply our module for each type of methods

(overview in Figure 2) in the following.

4.1. Guidance on Input and Output

For guidance on input, the most intuitive way is to con-

catenating these external sparse signal as one of the input to

the neural network. This strategy is widely used in dense

depth estimation domain for either monocular [50, 23, 24]

or stereo [43] depth estimation. For these approaches, we

can simply replace the original raw sparse signal as our ex-

panded signal along with the confidence map.

For guidance after the output of the depth prediction net-

work, a naive way is to add the accurate but sparse signal

to the predicted depth. Similar schemes are used by Chen

et al. [7], called shortcut connection in the paper, and You

et al. [47], who ignores the sparse signals largely different

from stereo results to avoid numerical error and add those

signals back to the corrected depth. We modify the naive

method by interpolation with Equation 3 so that more pix-

els are guided with the expanded Gexp and confidence C.

4.2. Guidance on Cost Volume

Many practices have tried to modify the cost volume,

an intermediate representation of matching relationships be-

tween pixels, either guidance with external cues [32, 40, 38]

or confidence measure [33] in the field of stereo matching.

The cost volume in the stereo network consists of 3D fea-

tures with geometric and contextual information that allows

the subsequent convolution to regress the disparity proba-

bility [18, 6, 48]. Here, we take Guided Stereo Matching

(GSM) [32] as an example to explain how S3 framework is

applied to cost volume. Another example, CCVNorm [43],

is presented in the supplementary materials.

GSM [32] peaks the correlated features of the cost vol-

ume suggested from the sparse signal with Gaussian func-

tion to provide guidance to the network. Specifically, let

G ∈ R
H×W be external sparse but accurate data, V spec-

ifies a binary mask whether G has signal on pixel coordi-

nate (i, j), and the cost volume is CV ∈ R
H×W×Dmax×F ,

where Dmax is the max disparity and F is the feature num-

ber. Given the pixel coordinate (i, j) and disparity value

G(i, j) from external cue G, they apply Gaussian function

fGSM (i, j, d) = h · e−
(d−G(i,j))2

2w2 (5)

on the features CV (i, j, d)← ((1− V (i, j)) · 1 + V (i, j) ·
fGSM (i, j, d))·CV (i, j, d) of the cost volume, where h and

w are hyper-parameters to control the height and width of
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Figure 4: Application of S3 on cost volume. We show

the slice of the cost volume along a horizontal line. The d-

axis denotes the disparity value and c-axis is the cost value.

Given a guiding point (red), (a) GSM [32] guides the fea-

tures of the point on cost volume. (b) We expand the dis-

parity hint to its neighbors and guide more features with

transformed Gaussian based on confidence.

the Gaussian, ∀d ∈ {0, 1, · · · , Dmax − 1}. The function

fGSM enlarges the feature values having positive relation

to sparse cues, while suppressing others.

We propose fusing the expanded disparity map Gexp and

the correspondent confidence map C in a novel approach:

fOurs(i, j, d) = C ·

(

h · e−
(d−Gexp(i,j))2

2w2

)

+ s. (6)

The shift range s preserves the minimum feature value when

(d − Gexp(i, j))
2 is large or C = 0. When s is positive,

value in cost volume CV (i, j, d) will not be suppressed to

zero so that the gradient of network would not be blocked

during back-propagating. s can be a learnable parameter

for training. The confidence value C acts as a switch to

control how much guidance should be applied according to

the expanded guidance Gexp.

The largest difference between our approach and others

are learnable and confidence-based expansion, which is vi-

sualized in Figure 4. Additionally, GSM is a subset of ours.

Lastly, our module is flexible to apply to other guidance-

based approaches like CCVNorm [43] on cost volume.

4.3. Guidance on 3D Space

In addition to using sparse signal information on input

or cost volume, performing sparse signal guidance on 3D

space is an intuitive alternative. Take Graph-based Depth

Correction (GDC) algorithm proposed by You et al. [47]

as an example, the algorithm first projects the dense depth

estimated from monocular or stereo network to 3D space.

Then, it forms a neighborhood-relation graph considering

depth value via k-nearest neighbor.

W = argmin
W
‖Z −WZ‖22, (7)

where Z denotes the depth vector, and W denotes the edge

weight between two points. Given the sparse 3D point cloud

data, it then corrects the projected points with the relation

graph in an optimization manner.

Z ′ = argmin
Z′

‖Z ′ −WZ ′‖2, (8)

where Z ′

1:n = G. The first n points are set to their correct

depth value from the hint of the sparse signals, and the al-

gorithm corrects the rest of points Z ′

n+1: by minimizing the

reconstruction loss. The algorithm corrects the neighbors of

the sparse signal points via the relation built from W , and

the neighbors of the neighbors would also be corrected. The

algorithm would propagate the correct depth value via the

graph relation for the sparse signals in the long run.

We improve the algorithm with the expanded depth Gexp

and confidence C in the following approach. Suppose there

are ne expanded points and m points to be corrected, we

first built the graph in Equation 7, and then minimize the

reconstruction error considering the confidence.

Z ′ = argmin
Z′

‖(C ′Gexp + (I − C ′)Z ′)−

W (C ′Gexp + (I − C ′)Z ′)‖2. (9)

Here C ′ ∈ R
(n+ne+m)×(n+ne+m) is a diagonal matrix,

where C ′

kk = 1 for k ∈ {1, · · · , n}, C ′

kk = C for

k ∈ {n + 1, · · · , n + ne}, and C ′

kk = 0, otherwise. The

modification differs from Equation 8 in that Z ′

n+1:n+ne
is

interpolated to the suggested value Gexp with confidence

C. For C close to 0, the influence of the guidance value is

negligible. For C close to 1, the guidance value is as con-

fident as the one from sparse signal. Such modification not

only allows more points to be corrected by the algorithm,

but also takes the magnitude of guidance into consideration.

5. Experiment

5.1. Experimental Setting

Dataset. We use SceneFlow [26], KITTI Stereo

2012 [13], and 2015 [27] to conduct experiments for

LiDAR sparse signal, and NuScenes v1.0 dataset [4] for

Radar sparse signal. SceneFlow [26] dataset is a large-scale

synthetic stereo dataset mainly for pretraining purpose.

KITTI Stereo 2012 [13] and KITTI Stereo 2015 [27]

datasets contain stereo and LiDAR data with an application

to autonomous driving. Due to no dense depth ground

truth provided on NuScenes, we accumulate consecutive

frames of LiDAR signals (5 before and 5 after the frame of

interest) for evaluation as KITTI dataset did [13].

The sparse signal for KITTI Stereo datasets is obtained

according to the original paper. For Guided Stereo Match-

ing (GSM) [32] experiments, we sub-sample 15% of pix-

els from the semi-dense disparity maps. For Graph-based
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Depth Correction (GDC) [47] experiments, we obtain the

4-beam LiDAR signal by slicing point clouds into separate

lines by an elevation step of 0.4◦.

Training Protocol. For GSM [32], we pretrain on Scene-

Flow, fine-tune on the training set of KITTI Stereo 2012,

and test on the training set of KITTI Stereo 2015, follow-

ing the protocols in the original paper. We also fine-tune

on KITTI Stereo 2015, and test on KITTI Stereo 2012. For

GDC [47], we use the officially released SceneFlow pre-

training from PSMNet [6] and fine-tune on the training sets

of KITTI Stereo 2012 and 2015, and test on 2015 and 2012,

respectively. For monocular depth estimation on nuScenes

dataset, the network is trained supervisedly with L1 loss on

LiDAR signal and guided with two algorithms: (1) Guid-

ance on Output in Section 4.1 (2) GDC in Section 4.3.

Implementation Detail. We implement the proposed

methods with PyTorch [31] framework. The architecture of

S3 network is a light-weight version of U-Net [35] structure

with patch size 32 with the last Sigmoid layer to normalize

the confidence map. The number of parameters for S3 net-

work is 0.7M and only takes 11% of the depth network like

PSMNet [6]. The inference time of the module is 0.14ms

per patch for a single thread on one NVIDIA TESTLA

V100 GPU with batch size 512, which can be sped up by

parallelism of patch operations. S3 network is pretrained on

SceneFlow for 8000 iterations end-to-end with PSMNet [6]

optimized with Adam [19] and 0.001 learning rate. Follow-

ing previous works [6, 48], we randomly crop 256 by 512
for training and pad to full resolution for testing on Scene-

Flow and KITTI datasets. For nuScenes, we rescale input

images to 288 by 512 and train sparse-to-dense [23] monoc-

ular backbone from scratch for 35k iterations. Then, the

depth is guided by S3 network pretrained from SceneFlow.

Evaluation Metric. We follow standard metrics to eval-

uate the results. For disparity maps, we use average pixel

error (Avg) and n-pixel error rate (> n). The “Avg” is de-

fined as 1
N

∑

|Dpred −Dgt| , where N denotes the number

of pixels included in valid ground truth disparity map. The

“> n” represents the percentage of disparity error that is

greater than n. We evaluate depth maps with root mean

squared (RMS) error, mean absolute relative error (REL),

and δi. The δi means the percentage of the relative error

within a threshold of 1.25i. Except for δi, the other metrics

are the smaller the better.

5.2. Guidance Experiment

5.2.1 Guidance on Input and Output.

In Table 1, even though our input guidance simply concate-

nating the superdensity as input, our approach can still im-

Model
Avg Disp

Error ↓
> n Disp Error Rate (%) ↓
> 1 > 2 > 3 > 4 > 5

In 0.891 22.72 6.12 3.02 2.09 1.63

In + Ours 0.851 21.93 5.98 2.77 1.78 1.34

Out 0.935 26.37 8.29 3.98 2.59 1.94

Out + Ours 0.418 8.90 1.97 1.05 0.73 0.55

Table 1: Guidance on Input (In) and Output (Out) Ex-

periments on KITTI Stereo 2015. (Section 5.2.1)

Dataset Model Avg > 2 > 3 > 4 > 5

KITTI
2015

GANet [48] 1.949 20.72 12.43 8.78 6.73

+ GSM 1.698 15.84 9.30 6.68 5.25

+ GSM + Ours 1.027 6.65 2.86 1.92 1.51

KITTI
2015
(ft)

PSMNet [6] 1.200 6.34 3.12 2.18 1.75

+ GSM 0.763 2.74 1.83 1.51 1.34

+ GSM + Ours 0.443 1.65 0.96 0.71 0.57

KITTI
2012

GANet [48] 1.640 17.41 11.32 8.28 6.45

+ GSM 1.370 12.26 7.90 5.92 4.74

+ GSM + Ours 0.836 4.70 2.27 1.54 1.18

KITTI
2012
(ft)

PSMNet [6] 1.010 7.19 4.77 3.65 2.96

+ GSM 0.526 2.68 1.76 1.34 1.10

+ GSM + Ours 0.342 1.37 0.86 0.65 0.52

Table 2: Experiments on GSM [32]. “ft” refers to fine-

tuning on another KITTI Stereo dataset. (Section 5.2.2)

prove upon the guided results with PSMNet. On the other

hand, we contribute the huge gain of our output guidance to

the density of the sparse signal, since the only difference is

that more pixels are guided by expanded signal. Also, the

improvement strengthens our idea that neighboring pixels

of the sparse signal have similar depth and are able to be

modeled with confidence by the center depth value.

5.2.2 Guidance on Cost Volume

In Table 2, applying our method in Section 4.2 on GSM

can boost a large gap of performance. In the visualization

results of Figure 5, GSM does not correct much depth pixel

from the stereo output, but it does when applying S3. This

tells that the network tends to ignore sparse signal when

the density is not high enough, which consents to the low

density problem and our motivation of solution. Note that

we use GANet [48] as the backbone for no fine-tuning cases

because we fail to reproduce GSM results on PSMNet [6].

5.2.3 Guidance on 3D Space

In Table 3, the results show consistent improvement when

applying our method in Section 4.3. The performance gain

of GDC is smaller than GSM because the number of points

of 4-beam LiDAR is less than the sub-sampled one from
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Figure 5: Visualization on KITTI Stereo Datasets with Methods GSM [32] and GDC [47]. We show the original depth

color map and the zoomed one (visually enhanced) to compare results with (5th column) and without (4th column) our

method, which is best viewed in zoomed digital and color. The first row shows that our S3 can fix the unreliable matches

on the distant cars which is the low density region. The second row demonstrates that the noise from domain shift cannot

completely be removed without our method. The third row illustrates that S3 reduces the imbalanced signal distribution

problem, which the scanning lines of LiDAR are obvious in the results of GDC [47]. The last example shows that the edge

of cars are better preserved with our method.

Model Fine-tune
KITTI Stereo 2012 KITTI Stereo 2015

Avg > 1 > 2 > 3 > 4 > 5 Avg > 1 > 2 > 3 > 4 > 5

PSMNet [6] 8.156 89.54 78.83 68.04 57.71 48.21 8.568 86.32 73.02 60.07 48.66 38.97

+ GDC 7.995 84.56 74.82 65.14 55.60 46.66 8.566 83.87 71.25 58.94 47.85 38.32

+ GDC + Ours 7.776 80.32 71.27 62.34 53.45 45.01 8.479 81.84 69.60 57.78 47.03 37.74

PSMNet [6] X 1.039 17.82 7.37 4.82 3.66 2.96 1.028 23.58 6.75 3.46 2.44 1.96

+ GDC X 0.950 15.65 6.75 4.46 3.41 2.77 0.952 21.08 6.06 3.19 2.27 1.82

+ GDC + Ours X 0.904 14.53 6.31 4.20 3.22 2.62 0.915 20.07 5.76 3.05 2.17 1.75

Table 3: Experiments on GDC Algorithm Proposed in Pseudo-LiDAR++ [47]. (Section 5.2.3)

GSM. The visualization in the fourth row of Figure 5 illus-

trates the imbalanced signal distribution problem is reduced

with our method. The results are presented in the dispar-

ity domain, since the Pseudo-LiDAR point cloud [44] orig-

inates from stereo matching. Also, we evaluate on the task

of depth estimation instead of object detection because the

focus of this paper is to improve depth estimation results.

5.3. Radar Guidance

We test the effectiveness of our module for Radar signal

on nuScenes [4] dataset, which is one of the first datasets

containing Camera, Radar, and LiDAR in diverse scenes

and weather conditions. We choose guidance on output

and guidance on 3D (GDC [47]) to improve the prediction

of monocular depth estimation shown in Table 4. The im-

provement of “GDC + Ours” on LiDAR modality is signifi-

cant compared to Table 3 because the LiDAR source here is

32-beam instead of 4-beam. The improvement from Radar

modality is minor compared to LiDAR because the num-

ber of Radar point cloud is extremely sparse due to small

elevation degree. However, with the help of S3, the perfor-

mance gain can be amplified. The experiment demonstrates

the success of our proposed S3 framework on both Radar

Guide Modal +Ours Rel ↓ RMS ↓ δ1 ↑ δ2 ↑ δ3 ↑

None - 0.161 6.79 79.71 92.05 96.15

Out Radar 0.161 6.79 79.71 92.05 96.15

Out Radar X 0.161 6.77 79.80 92.10 96.17

GDC Radar 0.161 6.79 79.71 92.06 96.15

GDC Radar X 0.160 6.76 79.96 92.13 96.17

Out LiDAR 0.154 6.63 80.36 92.41 96.38

Out LiDAR X 0.090 4.59 89.63 95.74 98.05

GDC LiDAR 0.150 6.62 80.60 92.42 96.37

GDC LiDAR X 0.055 3.64 95.97 97.87 98.79

Table 4: Experiments of Radar Signal on NuScenes [4]

Dataset. “Out” means guidance on output and GDC is

graph-based depth correction [47]. We demonstrate the

ability of our method to gain improvement even on ex-

tremely sparse Radar signal. (Section 5.3)

and LiDAR sparse signals.

5.4. Ablation Study

Effectiveness of Each Component. We decompose our

module with the expansion part and the confidence part.
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Model Avg > 1 > 2 > 3 > 4 > 5

No Correction 1.010 16.87 7.19 4.77 3.65 2.96

+ Sparse Signal 0.526 6.45 2.68 1.76 1.34 1.10

+ Expansion 0.383 4.90 1.90 1.19 0.88 0.71

+ Confidence 0.342 3.83 1.37 0.86 0.65 0.52

Table 5: Ablation Study of GSM [32] on KITTI 2012.

The best combination is to add both Expansion and Confi-

dence on Sparse Signal. “No Correction” refers to the raw

stereo output. (Section 5.4)

In Table 5, the main improvement comes from the expan-

sion design, which realizes our arguments that expanding

the sparse signal before guidance can improve. When con-

sidering the confidence of the expanded signal, S3 network

is allowed to learn the fine-grained magnitude of influence

to the guidance and bring better results.

Sparsity Expansion. We discuss on how to expand the

sparse signal in Table 6. Two baseline models closely re-

lated to the idea of expansion are chosen for the experiment:

(1) The ad-hoc method mentioned in Section 3.1. (2) A su-

perpixel algorithm, SLIC [1], which iteratively clusters the

neighbor pixels based on color and distance. Confidence

weighting is applied to the baselines by considering the in-

verse distance of the expanded point to the source point, i.e.,

expanded depth closer to the source has higher confidence.

In Table 6, performing expansion on the sparse signal

is better than no expansion for no fine-tuning case. This

tells that increasing the density of the external signal can

help reduce the domain shift problem, where a network is

initially trained on a synthetic dataset and tested on real im-

agery when real data is insufficient. This also meets the

goal of improving the overall accuracy without retraining

mentioned in GSM [32].

For fine-tuning case, simple expansion by color thresh-

olds, like ad-hoc expansion, is worse than no expansion.

This implies the stereo network can learn to leverage the

sparse signal better than simple expansion techniques. Nev-

ertheless, our proposed S3 can jointly learn with the depth

network to achieve better results.

The assumption of the confidence weighting for baseline

methods may not hold all the time. The expansion of base-

lines can enlarge the guided field, but it would also provide

false guidance to disparity discontinuous areas, where dis-

parity changes sharply. The ablation study results demon-

strate the learnable confidence weighting can avoid the ill

assumption and improve performance.

Robustness. We also test the robustness of S3 by sam-

pling different density of the external signal in Figure 6.

Surprisingly, our method with merely 0.28% of sparse data

Expansion Model Avg Error Avg Error (Fine-tune)

No Expansion 1.370 0.526

Ad-hoc Method 1.155 0.582

SLIC [1] 1.027 0.489

Ours 0.836 0.342

Table 6: Ablation Study of Different Expansion Methods

on KITTI 2012 Applied with GSM [32]. (Section 5.4)

Figure 6: Density vs Performance. The figure stresses the

robustness of S3 for extremely low signal density.

beats GSM with 20 times denser, which strongly supports

the idea to increase density of sparse data for guidance. In

addition, our prediction suffers little performance drop until

the external cue is extremely sparse, which emphasizes the

robustness of S3 to work under extreme environment.

6. Conclusion

In the paper, we propose S3 framework to improve depth

estimation results by considering the defective property of

sparse signals. Our idea is deployable to existing sparse-

guidance methods. Extensive experiments show consistent

improvement among guidance approaches, and strengthen

the idea that expansion on sparse signal can solve low den-

sity and imbalanced distribution problem. Our S3 frame-

work could become an important reference for future ex-

ploration on sparse-guidance methods.
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