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Abstract

In one-shot NAS, sub-networks need to be searched from

the supernet to meet different hardware constraints. How-

ever, the search cost is high and N times of searches are

needed for N different constraints. In this work, we pro-

pose a novel search strategy called architecture genera-

tor to search sub-networks by generating them, so that

the search process can be much more efficient and flexi-

ble. With the trained architecture generator, given target

hardware constraints as the input, N good architectures

can be generated for N constraints by just one forward

pass without re-searching and supernet retraining. More-

over, we propose a novel single-path supernet, called uni-

fied supernet, to further improve search efficiency and re-

duce GPU memory consumption of the architecture gener-

ator. With the architecture generator and the unified super-

net, we propose a flexible and efficient one-shot NAS frame-

work, called Searching by Generating NAS (SGNAS). With

the pre-trained supernt, the search time of SGNAS for N dif-

ferent hardware constraints is only 5 GPU hours, which is

4N times faster than previous SOTA single-path methods.

After training from scratch, the top1-accuracy of SGNAS

on ImageNet is 77.1%, which is comparable with the SO-

TAs. The code is available at: https://github.com/

eric8607242/SGNAS.

1. Introduction

It is time-consuming and difficult to manually design

neural architectures under specific hardware constraints.

Neural architecture search (NAS) [30][2][1] aiming at au-

tomatically searching the best neural architecture is thus

highly demanded. However, how to efficiently and flexi-

bly determine the architectures conforming to various con-

straints is still very challenging [4].

The earliest NAS methods were developed based on rein-

forcement learning (RL) [33][1] or the evolution algorithm

[30]. However, extremely expensive computation is needed.

Figure 1. Overview of SGNAS. Given the target hardware con-

straint as the input, the architecture generator can generate archi-

tecture parameters instantly within the inference time of one for-

ward pass. With the generated parameters, the specific architec-

tures can be sampled from the unified supernet.

For example, 2,000 GPU days are needed by an RL method

[1], and 3,150 GPU days are needed by the evolution algo-

rithm [30].

To improve searching efficiency, one-shot NAS methods

[2][26][5][37] were proposed to encode the entire search

space into an over-parameterized neural network, called a

supernet. Once the supernet is trained, all sub-networks

in the supernet can be evaluated by inheriting the weights

of the supernet without additional training. One-shot NAS

methods can be divided into two categories: differentiable

NAS (DNAS) and single-path NAS.

In addition to optimizing the supernet, DNAS

[16][26][37][38][28] utilizes additional differentiable

parameters, called architecture parameters, to indicate

the architecture distribution in the search space. Because

DNAS couples architecture parameters optimization

with supernet optimization, for N different hardware

constraints, the supernet and the architecture parameters

should be trained jointly for N times to find N different

best architectures. This makes DNAS methods inflexible.

In contrast, single-path methods [18][10][9][40] decou-

ple supernet training from architecture searching. For su-

pernet training, only a single path consisting of one block in
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each layer is activated and is optimized in one iteration. The

main idea is to simulate discrete neural architectures in the

search space and save GPU memory consumption. Once

the supernet is trained, different search strategies, like the

evolution algorithm [40][18], can be used to search the ar-

chitecture under different constraints without retraining the

supernet. Single-path methods are thus more flexible than

DNAS. However, re-executing the search strategy N times

for N different constraints is costly and not flexible enough.

On top of one-shot NAS, we especially investigate ef-

ficiency and flexibility. For efficiency, we mean that, when

the supernet is available, the time required to search the best

architecture for a specific hardware constraint. For flexibil-

ity, we mean that, when N different hardware constraints

are to be met, how much total time required to search for N
best architectures. As a comparison instance, GreedyNAS

[40] takes almost 24 GPU hours to search for the best neural

architecture under a specific constraint. Totally 24N GPU

hours are required for N different constraints.

In this work, we focus on improving efficiency and flex-

ibility of the search strategy of the single-path method. The

main idea is searching the best architecture by generating

it. First, we decouple supernet training from architecture

searching and train the supernet as a single-path method.

After obtaining the supernet, we propose to build an archi-

tecture generator to generate the best architecture directly.

Given a hardware constraint as input, the architecture gen-

erator can generate the architecture parameter within the

inference time of one forward pass. This method is ex-

tremely efficient and flexible. The total search time for var-

ious hardware constraints of the architecture generator is

only 5 GPU hours. Moreover, we do not need to re-execute

search strategies or re-train the supernet once the architec-

ture generator is trained. When N different constraints are

to be met, the search strategy only needs to be conducted

once, which is more flexible than N searches required in

previous single-path methods [10][40][9].

The aforementioned idea is on top of a trained supernet.

However, we notice that searching on a single-path supernet

still requires a lot of GPU memory and time because of the

huge number of supernet parameters and complex supernet

structure. Previous single-path NAS methods [18][40][9]

determine a block for each layer, and there may be different

candidate blocks with various configurations. For example,

GreedyNAS [40] has 13 types of candidate blocks for each

layer, and thus size of the search space is 13L, where L de-

notes the total number of layers in the supernet. Inspired

by the fine-grained supernet in AtomNAS [28], we propose

a novel single-path supernet called unified supernet to re-

duce GPU memory consumption. In the unified supernet,

we only construct a block called unified block in each layer.

There are multiple sub-blocks in the unified block, and each

sub-block can be implemented by different operations. By

combining sub-blocks, all configurations can be described

in a block. In this way, the number of parameters of the uni-

fied supernet is much fewer than previous single-path meth-

ods.

The contributions of this paper are summarized as fol-

lows. With the architecture generator and the unified super-

net, we propose Searching by Generating NAS (SGNAS),

which is a flexible and efficient one-shot NAS framework.

We illustrate the process of SGNAS in Fig. 1. Given various

hardware constraints as the input, the architecture genera-

tor can generate the best architecture for different hardware

constraints instantly in one forward pass. After training the

best architecture from scratch, the evaluation results show

that SGNAS achieves 77.1% top-1 accuracy on the Ima-

geNet dataset [14] at around 370M FLOPs, which is compa-

rable with the state-of-the-arts of the single-path methods.

Meanwhile, SGNAS outperforms SOTA single-path NAS

in terms of efficiency and flexibility.

2. Related Work

Recently, one-shot NAS [26][37][18] has received much

attention because of reduced search cost brought by super-

net. To futher reduce the search cost, a number of methods

have been proposed, which can be roughly divided into two

types: efficient NAS and flexible NAS.

2.1. Efficient NAS

For efficiency, many methods were proposed to improve

the supernet training strategy or redesign the supernet ar-

chitecture. Stamoulis et al. [32] proposed a single-path

supernet to encode architectures with shared convolutional

kernel parameters, which reduce search cost of differen-

tial NAS. To reduce the huge cost when training on large-

scale datasets, training supernet and searching on proxy

datasets like CIFAR10 or part of ImageNet was proposed in

[37][36][21][26][39][26]. PC-DARTS [38] only sampled a

small part of the supernet for training in each iteration to

reduce computation cost. DA-NAS [12] designed a data-

adaptive pruning strategy for efficient architecture search.

2.2. Flexible NAS

For flexibility, in OFA [4] a single full network is care-

fully trained. Sub-networks inherit weights from the net-

work and can be directly deployed without training from

scratch. An accuracy predictor is trained after training su-

pernet to guide the process for searching a specialized sub-

network. FBNetV3 [13] trained a predictor on a proxy

dataset. The accuracy predictor estimates performance of a

candidate sub-network. However, it is still time-consuming

to train an accuracy predictor.

In this work, we focus on improving the search strat-

egy in terms of both efficiency and flexibility. Note that our
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search strategy can be incorporated with the methods men-

tioned above.

3. Searching by Generating NAS

3.1. Background

Given a supernet A represented by weights w, to find

an architecture that achieves the best performance while

meeting a specific hardware constraint, we need to find the

best sub-network a∗ from A which achieves the minimum

validation loss Lval(a,w). Sampling a from A is a non-

differentiable process. To optimize a by the gradient de-

scent algorithm, DNAS [37][5][26] relaxes the problem as

finding a set of continuous architecture parameters α, and

computes the weighted sum of outputs of candidate blocks

by the Gumbel softmax function [22]:

xl+1 =
∑

i

mi
l · b

i
l(xl), (1)

mi
l =

exp(αi
l + gil/τ)∑K

k=1 exp(α
k
l + gkl /τ)

, (2)

where xl is the input tensor of the lth layer, bil is the ith
block of the lth layer, and thus bil(xl) denotes the output of

the ith block. The term αi
l is the weight of the ith block

in the lth layer. The term gil is a random variable sampled

from the Gumbel distribution Gumbel(0, 1) and τ is the

temperature parameter. The value mi
l is the weight for the

output bil(xl).
After relaxation, DNAS can be formulated as a bi-level

optimization:

α
∗ = min

α

Lval(w
∗,α) (3)

s.t. w∗ = argmin
w

Ltrain(w,α) (4)

where Ltrain(w,α) is the training loss.

Because of the bi-level optimization of w and α, the best

architecture α
∗ sampled from the supernet is only suitable

to a specific hardware constraint. With this searching pro-

cess, for N different hardware constraints, the supernet and

architecture parameters should be retrained for N times.

This makes DNAS less flexible.

In contrast, single-path methods [18][10][9][8] decouple

supernet training from architecture searching. For supernet

training, only a single path consisting of one block in each

layer is activated and is optimized in one iteration to simu-

late discrete neural architecture in the search space. We can

formulate the process as:

w
∗ = argmin

w

Ea∼Γ(A)(Ltrain(w(a))) (5)

where w(a) denotes the subset of w corresponding to the

sampled architecture a, and Γ(A) is a prior distribution of

a ∈ A. The best weights w∗ to be determined are the ones

yielding the minimum expected training loss. After train-

ing, the supernet is treated as a performance estimator to all

architectures in the search space. With the pretrained super-

net weights w∗, we can search the best architecture a∗:

a∗ = argmin
a∈A

Lval(w
∗(a)). (6)

Single-path methods are more flexible than DNAS, because

supernet training and architecture search are decoupled.

Once the supernet is trained, for N different constraints,

only architecture search should be conducted for N times.

In this work, we propose to decouple supernet training

from architecture searching and train supernet as in single-

path NAS (Eq. (5)). After supernet training, we search the

best architecture by the gradient descent algorithm as in

DNAS (Eq. (3)). Instead of training architecture parameters

for one specific hardware constraint, we propose a novel

search strategy called architecture generator to largely in-

crease flexibility and efficiency.

3.2. Architecture Generator

3.2.1 Essential Idea

Given the target hardware constraint C, the architecture

generator can generate the best architecture parameters for

the hardware constraint C. The process of the architec-

ture generator can be described as α = G(C) such that

Cost(α) < C. With the architecture generator G, the ob-

jective function of the architecture searching in Eq. (3) can

be reformulated as :

G∗ = min
G

Lval(w
∗,α). (7)

To make G∗ generate the best architecture parameters for

different hardware constraints accurately, we propose the

hardware constraint loss LC as:

LC(α, C) = (Cost(α)− C)2, (8)

where the cost yielded by the generated architecture

Cost(α) is estimated by:

Cost(α) =
∑

l

∑

i

mi
l · Cost(bil). (9)

The term Cost(bil) is the constant cost of the ith block in the

l layer and mi
l is the weight of different blocks described in

Eq. (2). The cost Cost(α) is differentiable with respect

to mi
l and α, similarly in [37][21]. Note that Eq. (9) is

also highly correlated with latency, as mentioned in [37] and

[21]. By combining the hardware constraint loss LC and the

cross entropy loss Lval defined in Eq. (7), the overall loss

of the architecture generator LG is:

LG = Lval(w
∗,α) + λLC(α, C). (10)

where λ is a hyper-parameter to trade-off the validation loss

and hardware constraint loss.
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3.2.2 Accurate Generation with Random Prior

In practice, we found that the architecture generator easily

overfits to a specific hardware constraint. The reason is that

it is too difficult to generate complex and high-dimensional

architecture parameters based on a given simple integer

hardware constraint C.

To address this issue, a prior is given as input to stabilize

the architecture generator. We randomly sample a neural

architecture from the search space, and encode the neural

architecture into a one-hot vector to be the prior knowledge

of architecture parameters. We name it as a random prior

B = B1, ..., BL. Formally, Bl = one hot(al), l = 1, ..., L,

where al is the lth layer of the neural architecture a ran-

domly sampled from A, and L is the total number of layers

in the supernet. With the random prior, the architecture gen-

erator is to learn the residual from the random prior to the

best architecture parameters, making training architecture

generator more stable and accurately (blue line in Fig. 7(a)),

and the process of the architecture generator can be refor-

mulated as α = G(C,B) such that Cost(α) < C.

3.2.3 The Generator Training Algorithm

We illustrate the algorithm of architecture generator training

in Algorithm 1. In each iteration, given the target constraint

and the random prior, the architecture generator can gener-

ate the architecture parameters α (as illustrated in Fig. 1).

With α, the corresponding cost Cα can be calculated by

Eqn. (9). We can predict ŷ based on the pretrained super-

net N with α. The total loss is given by Eqn. (10). No

matter what constraint is given, the architecture generator

generates architecture parameters to get the best prediction

results. Therefore, training the generator is equivalent to

searching the best architectures for various constraints in

the proposed SGNAS.

3.2.4 The Architecture of the Generator

Fig. 2 illustrates the architecture of the generator. We set

the channel size of all convolutional layers as 32 and set the

stride as 1, making sure the output shape same as the shape

of the random prior. Please refer to supplementary materials

for detailed configurations of the architecture generator and

random prior representations.

3.3. Unified Supernet

Previous single-path NAS [10][9][18][40] adopts the

MobilenetV2 inverted bottleneck [31] as the basic building

block. Given the input tensor X , the corresponding output

Yout is obtained by

Yout = P c3,c2(DK×K(P c2,c1(X))), (11)

Algorithm 1 Training Architecture Generator

Require: B: Random prior; N : Unified supernet; G: Gen-

erator; [CL, CH ]: Pre-define hardware constraint inter-

val; Dval: Validation dataset; T : Max iterations;

1: for t = 1, ..., T do;

2: Get a data batch X and y from Dval

3: Randomly sample Ctarget from [CL, CH ]
4: α = G(B,Ctarget)
5: Cα = Cost(α)
6: ŷ = N(X,α)
7: Ltotal = Lval(y, ŷ) + λLC(Ctarget, Cα)
8: Calculate gradients from Ltotal

9: Update G from gradients

10: end for

Figure 2. Structure of the architecture generator. Given the input

target hardware constraint, the expansion layer expands the input

to a tensor with shape same as the random prior.

where P cj ,ci denotes the pointwise convolution with the

input channel size ci and output channel size cj , DK×K

denotes the depthwise convolution with K × K kernel

size. Eq. (11) represents that X of c1 channels is first ex-

panded to a tensor of c2 channels, which can be described as

c2 = e×c1, and then a depthwise convolution is conducted.

The term e denotes the expansion rate of the inverted bottle-

neck. After that, the tensor of c2 channels is embedded into

the output tensor of c3 channels. Because one basic build-

ing block can only represent one configuration with one ker-

nel size and one expansion rate, previous single-path NAS

[5][9][10] needs to construct blocks of various configura-

tions in each layer, which leads an exponential increase in

parameter numbers and complexity of the supernet.

In this work, we propose a novel single-path supernet

called unified supernet to improve efficiency and flexibility

of the architecture generator. The only type of block, i.e.,

unified block, is constructed in each layer. The unified block

is built with only the maximum expansion rate emax, i.e.,

c2 = emax × c1.

Fig. 3 illustrates the idea of a unified block. To make

the unified block represent all possible configurations, we

replace the depthwise convolution D by emax sub-blocks,

and each sub-block can be implemented by different op-

erations or skip connection. The output tensor of the first

pointwise convolution Y1 is equally split into emax parts,
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Figure 3. Illustration of a unified block. Given the input, the

first pointwise convolution expands the input channel size to emax

times. The channel split layer splits the tensor into emax parts and

feeds to each sub-block, respectively.

Figure 4. Different expansion rates can be simulated by sub-blocks

with different operations. For example, the expansion rate 6 can be

simulated if no skip connection is implemented, and the expansion

rate 2 can be simulated if four skip connections are implemented.

Y1,1, Y1,2, ..., Y1,emax
. With the sub-blocks di and split ten-

sors Y1,i, we can reformulate DK×K in Eq. (11) as:

d1(Y1,1) ◦ d2(Y1,2) ◦ · · · ◦ demax
(Y1,emax

), (12)

where ◦ denotes the channel concatenation function.

With the sub-blocks implemented by different opera-

tions, we can simulate blocks with various expansion rates,

as shown in Fig. 4. The unified supernet thus can signifi-

cantly reduce the parameters and GPU memory consump-

tion. It is interesting that the MixConv in MixNet [35] is a

special case of our search space if different sub-blocks are

implemented by different kernel sizes.

3.3.1 Large Variability of BNs Statistics

As in [28], [41], and [3], we suffer from the problem of

unstable running statistics of batch normalization (BN). In

the unified supernet, because one unified block would rep-

resent different expansion rates, the BN scales change more

dramatically during training. To address the problem, BN

recalibration [28][41][3] is used to recalculate the running

statistics of BNs by forwarding thousands of training data

after training. On the other hand, shadow batch normaliza-

tion (SBN) [8] or switchable batch normalization [42] are

used to stabilize BN. In this work, we utilize SBN to ad-

dress the large variability issue, as illustrated in Fig. 4. In

our setting, there are five different expansion rates, i.e., 2,

3, 4, 5, and 6. We thus take five BNs after the second point-

wise convolution block to capture the BN statistics for dif-

ferent expansion rates. With SBN, we can capture different

statistics and make supernet training more stable.

3.3.2 Architecture Redundancy

Denote two sub-blocks as b1 and b2. In the unified supernet,

for example, the case of b1 using 3×3 kernel size and b2 us-

ing skip connection is distinct from the case of b1 using skip

connnection and b2 using 3× 3 kernel size. However these

two cases actually correspond to the same sub-network, and

thus the architecture redundancy problem arises. This re-

dundancy makes the unified supernet more complex and

hard to train. To address this issue, we force that skip con-

nection can only be used in sub-blocks with higher index.

For example, if we want to train a unified block with expan-

sion rate 3, only the last three sub-blocks can be skip con-

nection. We call this strategy forced sampling (FS). Please

refer to supplementary materials for details of architecture

redundancy and forced sampling.

4. Experiments

4.1. Experimental Settings

We adopt the macro structure of supernet (e.g., channel

size of each layer and layer number) same as [10] and [5],

but utilize the proposed unified blocks to reduce GPU mem-

ory consumption and the number of parameters. Each sub-

block in the unified blocks can be realized based on convo-

lutional kernel sizes 3, 5, or 7, or the skip connection. We

set the minimum and maximum expansion rates as 2 and 6,

respectively. The size of our search space is 8019. Please

refer to supplementary materials for more details.

For experiments on the ImageNet dataset [14], we train

the unified supernet for 50 epochs using batch size 256

and adopt the stochastic gradient descent optimizer. The

learning rate is decayed with the cosine annealing strat-

egy [27] from the initial value 0.045. After supernet train-

ing, the architecture generator is trained for 50 epochs by

the Adam optimizer with the learning rate 0.001. After

searching/generating the best architecture under hardware

constraints, we adopt the RMSProp optimizer with 0.9 mo-

mentum [33] to train the searched architecture from scratch.

Learning rate is increased from 0 to 0.16 in the first 5 epochs

with batch size 256, and then decays 0.03 every 3 epochs.

4.2. Experiments on ImageNet

4.2.1 Comparison with Baselines

Li and Talwalkar [23] presented that a random search ap-

proach usually achieves satisfactory performance. To make

comparison, we randomly select 1,000 candidate architec-

tures with FLOPs under 320 millions (320M) from the uni-

fied supernet and pick the architecture yielding the high-

est top-1 accuracy, as mentioned in [23]. Besides, we also

search the network with FLOPs under 320M by the evolu-

tion algorithm [18] as another baseline.
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Table 1. Performance comparison with baselines.

Search Strategy
Search Time

(GPU hrs)

FLOPs

(M)

Top-1

(%)

Random search 34N 322 74.63

Evolution algorithm 34N 318 74.67

SGNAS 5 324 74.87

Table 2. Comparison with the SOTAs for different hardware con-

straints. †: training with AutoAugment [11]. ‡: searching on a

proxy dataset. The unit of search time and train time is GPU hours.

Method
FLOPs

(M)

Top-1

(%)

Train

time

Search

time

MobileNetV2 [31] 300 72.0 – –

EfficientNet B0 [34] 390 76.3 – –

MixNet-M [35] 360 77.0 – –

MixPath-A [8] 349 76.9 240 –

AtomNAS-C [28] 363 77.6 0 816N
PC-DARTS [38] 597 75.8 0 91N
ScarletNAS-A [9] 365 76.9 240 48N
GreedyNAS-A [40] 366 77.1 168 ∼ 24N
SGNAS-A (Ours) 373 77.1 280 5

FBNetV2-L1 [36] 325 77.2 0 600N‡

Proxyless-R [5] 320 74.6 0 200N
FairNAS-C [10] 325 76.7† 240 48N
ScarletNAS-B [9] 329 76.3 240 48N
SPOS [18] 326 74.5 288 ∼ 24N
GreedyNAS-B [40] 324 76.8 168 ∼ 24N
SGNAS-B (Ours) 326 76.8 280 5

MobileNetV3-L [19] 219 75.2 – –

ScarletNAS-C [9] 280 75.6 240 48N
GreedyNAS-C [40] 284 76.2 168 ∼ 24N
SGNAS-C (Ours) 281 76.2 280 5

Table 1 shows the comparison results. As can be seen,

with around 320M FLOPs, the proposed SGNAS achieves

the highest top-1 accuracy. Both baselines take around 34

GPU hours to complete the search. For N different hard-

ware constraints, the search strategy should be re-executed

for N times, and the search time of each of two baselines

is 34N GPU hours totally. In contrast, SGNAS only takes

5 GPU hours totally for N different hardware constraints,

which is much more efficient and flexible than the baselines.

4.2.2 Comparison with SOTAs

This section is dedicated to compare with various SOTA

one-shot NAS methods that utilize the augmented tech-

niques (e.g., Swish activation function [29] and Squeeze-

and-Excitation [20]). We directly modify the searched ar-

chitecture by replacing all ReLU activation with H-Swish

[19] activation and equip it with the squeeze-and-excitation

module as in AtomNAS [28].

For comparison, similar to the settings in ScarletNAS [9]

and GreedyNAS [40], we search architectures under 275M,

320M, and 365M FLOPs, and denote the searched archi-

tecture as SGNAS-C, SGNAS-B, and SGNAS-A, respec-

tively. The comparison results are shown in Table 2. The

column “Train time” denotes that the time needed to train

the supernet, and the column “Search time” denotes that

the time needed to search the best architecture based on

the pre-trained supernet. Because DNAS couples architec-

ture searching with supernet optimization, we list the time

needed for the entire pipeline in the “Search time” column.

As can be seen, our SGNAS is competitive with SOTAs in

terms of top-1 accuracy under different FLOPs. For exam-

ple, SGNAS-A achieves 77.1% top-1 accuracy, which out-

performs ScarletNAS [9] by 0.2%, outperforms MixNet-M

[35] by 0.1%, outperforms MixPath-A [8] by 0.2%, and is

comparable with GreedyNAS-A [40].

More importantly, SGNAS achieves much higher search

efficiency. With the architecture generator and the unified

supernet, even for N different architectures under N dif-

ferent hardware constraints, totally only 5 GPU hours are

needed for SGNAS on a Tesla V100 GPU. However, Fair-

NAS [10], GreedyNAS [40], and ScarletNAS [9] need 48N ,

24N , and 48N GPU hours, respectively, because of the

cost of re-executing search. Supernet retraining is needed

for FBNetV2 [36] and AtomNAS [28], which makes search

very inefficient.

Note that after finding the best architecture, training from

scratch is required in most methods in Table 2 (including

SGNAS, except for AtomNAS [28]). However, training a

supernet that can be directly deployed to many constraints

(like AtomNAS) needs expensive computation. Even with

the time for training from scratch, SGNAS is still more ef-

ficient and flexible than AtomNAS.

4.3. Experiments on NAS­Bench­201

To demonstrate efficiency and robustness of SGNAS

more fairly, we evaluate it based on a NAS benchmark

dataset called NAS-Bench-201 [17]. NAS-Bench-201 in-

cludes 15,625 architectures in total. It provides full infor-

mation of the 15,625 architectures (e.g., top-1 accuracy and

FLOPs) on CIFAR-10, CIFAR-100, and ImageNet-16-120

datasets [7], respectively.

Based on the search space defined by NAS-Bench-201,

we follow SETN [15] to train the supernet by uniform sam-

pling. After that, the architecture generator is applied to

search architectures on the supernet. We search based on

the CIFAR-10 dataset and look up the ground-truth perfor-

mance of the searched architectures on CIFAR-10, CIFAR-

100, and ImageNet-16-120 datasets, respectively. This pro-

cess is run for three times, and the average performance

is calculated as in Table 3. We see that the architectures

searched by SGNAS outperform previous methods on both

CIFAR-10 and ImageNet16-120. It is worth noting that,
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Table 3. Performance comparison on different datasets in the NAS-Bench-201 benchmark.

Method
Search Time

(GPU hrs)

CIFAR-10 CIFAR-100 ImageNet-16-120

Val Test Val Test Val Test

optimal N/A 91.61 94.37 73.49 73.51 46.77 47.31

RSPS [23] 2.6 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88

DARTS [26] 2.2N 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

SETN [15] 7.9N 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07

GDAS [16] 6.6N 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90

SGNAS (Ours) 2.5 90.18±0.31 93.53±0.12 70.28±1.2 70.31±1.09 44.65±2.32 44.98±2.10

(a) (b) (c)

Figure 5. Search results of SGNAS on the CIFAR10, CIFAR100,

and ImageNet16-120 datasets. (a) Result on CIFAR-10; (b) Result

on CIFAR100; (c) Result on ImageNet16-120.

Table 4. Performance comparison on the COCO object detection.
†: Our implementation result. ∗ reported in [9][10].

Model FLOPs(M) Top-1 (%) mAP (%)

MobileNetV2∗ [31] 300 72.0 28.3

MixNet-M∗ [35] 360 77.0 31.3

FairNAS-A∗ [10] 392 77.5 32.4

Scarlet-A∗ [9] 365 76.9 31.4

MobileNetV2† 300 72.0 29.4

SGNAS-A (Ours) 373 77.1 33.9

with the supernet training strategy same as SETN [15], our

result greatly surpasses SETN [15] on all three datasets.

Moreover, the required search time of SGNAS is only 2.5

GPU hours even for N different hardware constraints.

We show the 15,625 architectures in NAS-Bench-201 on

each dataset as gray dots in Fig. 5, and draw the architec-

tures searched by the architecture generator under different

FLOPs as blue rectangles. After searching once, the archi-

tecture generator can generate all blue rectangles directly

without re-searching. Moreover, various generated archi-

tectures approach the best among all choices.

4.4. Performance on Object Detection

To verify the transferability of SGNAS on object detec-

tion, we adopt the RetinaNet [24] implemented in MMDe-

tection [6] to do object detection, but replace its backbone

by the network searched by SGNAS. The models are trained

and evaluated on the MS COCO dataset [25] (train2017

and val2017, respectively) for 12 epochs with batch size 16

[10][9]. We use the SGD optimizer with 0.9 momentum and

0.0001 weight decay. The initial learning rate is 0.01, and

is multiplied by 0.1 at epochs 8 and 11. Table 4 shows that

SGNAS has better transferability than the baselines, espe-

cially in terms of mAP.

(a) (b)

Figure 6. (a) Top-1 validation accuracy of randomly sampled ar-

chitectures (blue dots) and the architectures searched by SGNAS

(red rectangles). Performance of other variants is also shown. (b)

The relationship between the number of supernet parameters and

the number of candidate operations in each layer.

Table 5. Comparison in terms of of GPU memory consumption

and search time of the architecture generator.

Unified

Supernet

Search

Space

Batch

Size

Search Time

(GPU hrs)

Memory Cost

(GPU)

× 6
19 32

11
10.5GB

128 40 GB

X 80
19 32

5
9GB

128 28GB

5. Ablation Studies

5.1. Analysis of SGNAS

In Fig. 6(a), we randomly sample 360 architectures from

the search space and illustrate the corresponding top-1 val-

idation accuracies as blue dots. Moreover, we draw the ar-

chitectures searched by SGNAS under different hardware

constraint as red rectangles. As can be seen, the architec-

tures searched by SGNAS are almost always the best.

5.2. Analysis of Unified Supernet

5.2.1 Efficiency of Unified Supernet

To show efficiency of the proposed unified supernet, we re-

port the relationship between the total number of parame-

ters in the (unified) supernet and the number of candidate

operations per layer in Fig. 6(b). For fair comparison, we

calculate the number of parameters of different supernets

all based on 19 layers. As can be seen, the number of pos-

sible operations of the unified supernet in each layer is 7
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times larger than GreedyNAS [40] and ScarletNAS [9], but

the number of parameters needed to represent this unified

supernet is only 1/6 times of them. The number of possible

operations is 13 times larger than FairNAS [10] and Proxy-

lessNAS [5], but the number of supernet parameters for the

unified supernet is only half of them. To compare under the

same size of search space, we estimate the number of re-

quired supernet parameters in previous single-path methods

[10][40][9][5] when the number of possible operations in

each layer increases to 25, 50, 60, and 80, and show them

by green squares. Fig. 6(b) shows that the required param-

eters are significantly boosted when the number of possible

operations increases, while the unified supernet avoids this

intractability. Under the same size of search space, the num-

ber of needed parameters to represent the unified supernet

is only 1/35 times of estimated supernets.

Table 5 shows the comparison in terms of GPU memory

consumption and search time of the architecture generator

when it works based on the unified supernet or based on the

previous single-path supernet [10][5]. Based on the unified

supernet, the GPU memory consumption reduces to 12 GB

and the search time is only 0.45 times of that based on the

previous supernet.

5.2.2 Training Stabilization

Although the unified supernet largely reduces supernet pa-

rameters, the large search space makes the supernet hard

to train. To study the effect of force sampling (FS) and

shadow batch normalization (SBN) [8] on supernet training,

we train the supernet based on different settings, including

baseline, with FS, with SBN, and with both FS and SBN.

After training the supernet, we randomly sample 360 archi-

tectures from the search space and show the corresponding

top-1 accuracies in Fig. 6(a). Without FS and SBN, because

of large variability and complex architecture, the baseline

supernet is hard to train. After utilizing SBN, variability can

be well characterized, and the performance becomes more

stable. After applying FS, complexity of the supernet is

greatly reduced by reducing architecture redundancy. Per-

formance is largely boosted when redundancy is reduced.

With both FS and SBN, the unified supernet can more con-

sistently represent architectures with better performance.

5.3. Study of Random Priors

To enable the generator to generate architectures under

various hardware constraints accurately, random prior is

given as the input of the generator. In Fig. 7(a), we show

the correlation between the target FLOPs and the FLOPs

of the generated architectures. With the random prior, the

generator can generate architectures much more accurately.

With the random prior, the Kendall tau correlation between

the target FLOPs and the generated is 1, while the Pearson

(a) (b)

Figure 7. (a) The relationship between target FLOPs and the

FLOPs of generated architecture. (b) Performance of the archi-

tectures randomly sampled from the unified supernet (blue dots)

and those generated by the architecture generator trained based on

four random priors.

correlation is 0.99, which are significantly positive.

We randomly sample four sub-networks A, B, C, and D

from the unified supernet as four priors to train the archi-

tecture generator. Inherited from the weights of the unified

supernet, the top-1 validation accuracy of these four sub-

networks are 58.02%, 63.36%, 66.48%, and 68.48%, re-

spectively. Fig. 7(b) shows that, no matter starting from

good priors or bad priors, the corresponding trained ar-

chitecture generators are able to generate the architecture

yielding the best performance. This shows that random pri-

ors are not to improve the top-1 accuracy, but to give rea-

sonable priors to make the architecture generator generate

good architectures under the target constraints.

6. Conclusion

To improve efficiency and flexibility of finding best sub-

networks from the supernet under various hardware con-

straints, we propose the idea of architecture generator that

searches the best architecture by generating it. This ap-

proach is very efficient and flexible for that only one for-

ward pass is needed to generate good architectures for vari-

ous constraints, comparing to previous one-shot NAS meth-

ods. To ease GPU memory consumption and boost search-

ing, we propose the idea of unified supernet which consists

of a stack of unified blocks. We show that the proposed

one-shot framework, called SGNAS (searching by generat-

ing NAS), is extremely efficient and flexible by comparing

with state-of-the-art methods. We further comprehensively

investigate the impact of architecture generator and unified

supernet from multiple perspectives. Please refer to supple-

mentary materials for the limitation of SGNAS.
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