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Abstract

We study joint learning of Convolutional Neural Network

(CNN) and Transformer for vision-language pre-training

(VLPT) which aims to learn cross-modal alignments from

millions of image-text pairs. State-of-the-art approaches

extract salient image regions and align regions with words

step-by-step. As region-based visual features usually repre-

sent parts of an image, it is challenging for existing vision-

language models to fully understand the semantics from

paired natural languages. In this paper, we propose SOHO

to “Seeing Out of tHe bOx” that takes a whole image as

input, and learns vision-language representation in an end-

to-end manner. SOHO does not require bounding box anno-

tations which enables inference 10 times faster than region-

based approaches. In particular, SOHO learns to extract

comprehensive yet compact image features through a visual

dictionary (VD) that facilitates cross-modal understanding.

VD is designed to represent consistent visual abstractions

of similar semantics. It is updated on-the-fly and utilized

in our proposed pre-training task Masked Visual Modeling

(MVM). We conduct experiments on four well-established

vision-language tasks by following standard VLPT settings.

In particular, SOHO achieves absolute gains of 2.0% R@1

score on MSCOCO text retrieval 5k test split, 1.5% accu-

racy on NLVR2 test-P split, 6.7% accuracy on SNLI-VE test

split, respectively.

1. Introduction

With the success of Transformer and self-supervised

learning, we have recently witnessed a boosting number

of research works on cross-modal learning, especially on

vision-language pre-training (VLPT) [7, 22, 23, 27, 34, 37,

48]. VLPT models learn better cross-modal representa-

tion with large-scale easy-accessible image-text pairs. They

have established state-of-the-art results in many vision-
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shore next to a boat on the sea.
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Q: What are the people doing?

Baseline: Boating.

Ours: Chatting.
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Figure 1: Comparisons of SOHO and region-based meth-

ods by top-1 image-to-text retrieval (TR) and visual ques-

tion answering (VQA) results. Baselines lack global con-

text and fail to understand the image. SOHO discovers vi-

sual clues out of region boxes and infers correct human ac-

tivities. [Best viewed in color.]

language tasks, such as visual question answering (VQA)

[3], image-text retrieval [25], natural language for visual

reasoning (NLVR) [35], etc.

Visual representation plays an important role in VLPT

models. The recent success of VLPT models has been ac-

companied by the usage of region-based image features,

which are extracted by object detectors pre-trained on the

Visual Genome dataset [2]. However, there are three chal-

lenges to directly utilize region-based image features for

vision-language understanding. Firstly, regions focus on

objects inside bounding boxes while neglecting the contex-

tual information out of the boxes, which is important for

relation understanding and reasoning. For example in Fig-

ure 1, we can easily detect “man”, “woman” and “boat” in

the image. However, without the contextual information out

of these boxes, a model will misunderstand the relation as

“people boating” and result in an incorrect answer for ei-

ther text retrieval or VQA. Secondly, visual understanding

of images will be limited to the pre-defined categories for

regions. Thirdly, most region-based image features are ex-

tracted by a detection model, which will suffer from low

quality, noise, and over-sampling [2] and rely on large-scale

boxes annotation data. Although some works try to train

detection model[38, 46] with weakly-supervised, the per-

formance is far below the requirements. Recently, some
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works challenge that grid-based convolutional features are

also effective to learn visual representations [9, 16, 17, 32].

Among them, Jiang et al. show that grid features can be

equally effective as region features for VQA [17]. Sariy-

ildiz et al. and Desai et al. use image-text data to train

visual backbone for recognition tasks (e.g., image classifi-

cation) [9, 32]. These models are designed either for spe-

cific vision-language task [17] or vision task [9, 32]. In this

paper, we focus on VLPT and propose one of the first end-

to-end VLPT model without relying on region features.

To overcome the limitation of region-based image fea-

tures and better utilize image-text pairs for cross-modal

understanding, we propose SOHO, an end-to-end vision-

language pre-training framework to directly learn image

embedding, language embedding, and their semantic align-

ment from image-text pairs. Compared with existing VLPT

works, SOHO adopts a simple pipeline that does not require

a complicated visual backbone for pre-training and releases

the design effort for VLPT tasks. Without the requirement

of laborious annotated categories or boxes, SOHO can en-

rich visual semantics by directly optimizing visual repre-

sentations by a wider range of image-text data.

End-to-end learning for vision and language raises chal-

lenges by different representations of the two modalities.

Visual representation at pixel-level is much more diverse

and dense than language embedding. And the lack of ex-

plicit supervision for pixel-level language adds the difficulty

to alignment learning. To tackle the above problems, we

introduce a visual dictionary (VD) which represents more

comprehensive and compact semantics in visual domain.

To learn the visual dictionary, we design a moving-averaged

encoder to group visual pixels with similar visual semantics.

VD can be dynamically updated through our trainable CNN

backbone directly from visual-language data during pre-

training. For pre-training tasks, we propose a novel Masked

Vision Modeling (MVM) based on the learned visual dictio-

nary besides two commonly used tasks, Masked Language

Modeling (MLM) and Image-Text Matching (ITM).

Our contributions are summarized as follows: (i) We

propose SOHO, one of the first end-to-end VLPT models

to learn cross-modal representation directly with image-text

pairs. Without the need of extracting bounding boxes, our

model can achieve at least 10 times speedup for inference.

(ii) To better align visual features and language tokens,

we propose a novel dynamic-updated visual dictionary that

represents a visual abstraction of similar semantics in im-

ages. (iii) We conduct extensive experiments on four well-

established downstream tasks. Experimental results show

that SOHO can improve the SOTA performance with abso-

lute gains of 2.0% R@1 score on MSCOCO text retrieval

5k test split, 1.5% accuracy on NLVR2 test-P split, 6.7%

accuracy on SNLI-VE test split, and 0.56% VQA score on

VQA2.0 test-std split. We will release both model and code

to facilitate the research community1.

2. Related Work

2.1. Visual Representation for Vision-Language

Visual representation learning for vision-language un-

derstanding is a long-standing research topic. Early works

use CNN classification models pre-trained on ImageNet to

extract visual features [8, 24, 26, 28, 44, 45]. Later on, An-

derson et al. propose a Bottom-Up and Top-Down Attention

(BUTD) detection model [2] pre-trained on Visual Genome

dataset to extract salient region features as visual inputs for

VQA and image captioning tasks. The BUTD features are

adopted by many vision-language works [2, 20, 33, 35] and

pre-training works [7, 19, 37]. Recently, some works pro-

pose to directly learn visual representations in the form of

grid features with convolutional networks in specific vision-

language tasks [17] or vision recognition tasks [9, 32].

Our work shares a similar format of visual representation

with [17] while we focus on the area of vision-language

pre-training and propose the first end-to-end VLPT model

without relying on the box annotations.

VideoBERT [36] and the bag of words [13] literature

also use vector quantization to represent visual information.

The key difference between VD and related works is that we

dynamically update the VD-based embedding with the out-

put of a trainable visual encoder, instead of pre-computed

input features. The dynamic updating mechanism for VD

can capture text-guided semantics from the vision-language

dataset. Thus the model can be directly optimized with

high-level semantics for VL understanding and alignment.

2.2. Pre-training for Vision-Language

Many vision-language pre-training (VLPT) works have

been proposed to learn cross-modal representations [7, 22,

23, 27, 34, 36, 37, 48]. They can be categorized as two-

stream or single-stream models. The two-stream models

process visual and language information respectively and

fuse them afterward by another Transformer layer [27, 37].

Contrarily, the single-stream models use BERT [10] to learn

a bi-directional joint distribution over the detection bound-

ing box feature and text embedding feature [1, 7, 22, 23, 34,

48]. Both types use the Transformer-based model to learn

vision-language joint embedding features. While they ne-

glect that visual representation learning is also important to

vision-language tasks.

The key differences between our SOHO and existing

VLPT works are 1) SOHO adopts a simple VLPT pipeline.

Our vision backbone only uses ImageNet pre-trained pa-

rameters, and achieves even higher performance than ex-

isting VLPT works using VG features on five downstream

tasks. 2) SOHO uses the least annotations to achieve SOTA

1https://github.com/researchmm/soho

12977



(b) Text

Embedding

(e) Trainable

Visual Encoder

(f) VD-based

Embedding

(c) Cross-modal

Conca ation

(g) Pre- ining

Pipeline

(f) Visual Dic nary (VD)-based Embedding

VD-based

Embedding Fea es

(g) Pre-training Pipeline

cls

w

...

w

w

sep

v

...

v

v

cls

w

...

w

w

sep

v

...

v

v

T
ra

n
s
fo

rm
e
rs

Im
g
-T

xt 
M

a
tch

M
a
ske

d
 

L
M

M
a
ske

d
 

V
M

Encoder 

Ou

(a) Te

(d) Image

cls

w

...

w

m

sep

v

...

m

v

cls

w

...

w

m

sep

v

...

m

v

cls

w

...

w

m

sep

v

...

m

v

cls

w

...

w

m

sep

v

...

m

v

“A yellow dog meets a car 

coming down the road”

Encoder

Query

Mapping

Index Ma ix

2 4
Visual d tionary

k

M
a

sk
 G

e
n

e
ra

tio
n

id:

for ard backward

SOHO: End-to-End Vision-Language Pre-training Framework

Figure 2: The framework of the proposed end-to-end pre-training model SOHO. For an input text (a), we use the text

embedding operation (b) to extract the textual embedding features. For an input image (d), we propose to use a trainable CNN-

based encoder (e) to extract visual representations. To further transform image features to consistent semantics, we apply a

visual dictionary-based image embedding (f) to the image encoder outputs. Finally, we apply multi-layer Transformers to the

output of multi-modal concatenation (c) with three pre-training tasks. Note that the index matrix in (f) will be used as labels

in the masked VM task in (g). [Best viewed in color.]

performances. 3) SOHO enriches visual semantics by di-

rectly optimizing visual inputs for target language tasks.

3. Approach

The overall architecture of our proposed vision-language

pre-training framework SOHO is shown in Figure 2. SOHO

is an end-to-end framework, which consists of a trainable

CNN-based visual encoder, a visual dictionary (VD) em-

bedding module, and a multi-layer Transformer. The visual

encoder takes an image as input and produces the visual

features. VD embedding module is designed to aggregate

diverse visual semantic information into visual tokens with

a proposed visual dictionary. The Transformer is adopted

to fuse features from visual and language modalities, and

produce task-specific output. SOHO can be end-to-end pre-

trained by Masked Vision Modeling (MVM), Masked Lan-

guage Modeling (MLM), and Image-Text Matching (ITM)

tasks. SOHO can also be easily adapted to several down-

stream tasks including Image-Text Retrieval, VQA, NLVR,

and Visual Entailment.

3.1. Trainable Visual Encoder

Most recent vision-language researches follow Bottom-

up and Top-Down attention [2] to extract region-level vi-

sual features by a Faster R-CNN [31] detector which is pre-

trained on the Visual Genome [20] dataset. The represen-

tation ability of such extracted region-based features will

be limited by the pre-defined object and attribute categories

(i.e. 1, 600 objects and 400 attributes). Besides, some con-

textual information out of the regions is important for VL

understanding, while being neglected because they are out

of the pre-defined categories. Even though considering the

whole image as a region and extract its feature as global

representation is an improved solution, the detector can not

guarantee the feature quality because such global regions

are unseen in the training stage. Despite that, most recent

VLPT models adopt pre-extracted region-level visual fea-

tures because it is complicated to end-to-end fine-tune an

object detector in VL tasks. Besides, the extracted region-

level visual features have a semantic gap with the language

domain, while existing works try to bridge such domain gap

by only one or several fully-connected layers.

To keep all visual information, we propose to use a train-

able CNN visual encoder, which takes the whole image as

input and produces image-level visual features instead of

region-level features. Without the limitation of bounding

boxes, the visual encoder can be end-to-end learned and up-

dated from pre-training losses or downstream task-specific

losses, and further optimize the cross-modal learning in

turn. Given an input image I, we get its feature V by:

V = E(I, θ) ∈ R
l×c, (1)

where E(·, θ) is the visual feature encoder with parameter
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θ. l denotes the number of embedded feature vectors, and

c is the embedded dimension. We adopt ResNet [15] pre-

trained on ImageNet [8] followed by a 1 × 1 convolutional

layer and a 2 × 2 max pooling layer as the architecture of

the encoder E. For simplicity, we use vi to denote the ith

feature vector of V for the rest of this paper.

3.2. Visual Dictionary

The visual feature V extracted by visual feature encoder

is more diverse and dense than language word tokens, which

will bring difficulty to the learning of cross-modal under-

standing. To bridge its representation gap from language

tokens, we propose a visual dictionary (VD) to tokenize the

visual features by aggregating similar visual semantic into

the same image feature.

Visual Dictionary Embedding. We define a visual dictio-

nary (VD) as a matrix D ∈ R
k×c which contains k em-

bedding vectors with c-dim. The jth embedding vector is

denoted as dj . For visual feature vi, we compute it map-

ping index by searching nearest neighbor in D, denoted as:

hi = argminj‖vi − dj‖2. (2)

We define visual dictionary embedding as a mapping func-

tion f , which maps vi to D by:

f(vi) = dhi
, (3)

which uses the nearest embedding vector to represent the

visual feature. We denote f−1(j) as an inverse mapping

function, which maps the index j back to a group of visual

features. We use |f−1(j)| to represent the inverse mapping

group size, and use f(V) to represent the encoding features.

Momentum Learning for Visual Dictionary Update. The

visual dictionary D is randomly initialized, and further up-

dated by a moving average operation in one mini-batch,

which is denoted as:

d̂j = γ ∗ dj + (1− γ) ∗

∑
hi=j vi

|f−1(j)|
,

(4)

where d̂j indicates the updated embedding vector of dj , and

γ is a momentum coefficient whose value range is [0, 1].
Note that Eqn. 4 will only be applied when |f−1(j)| �= 0.

Gradient Back Propagation. Since the argmin operation

is not differentiable, the gradient back propagation will be

stopped by the visual dictionary. To make the visual feature

encoder trainable, we follow [39] to update f(vi) by:

f(vi) = sg[dhi
− vi] + vi, (5)

where sg[·] is the stop gradient operator.

The visual dictionary performs an online clustering on

visual feature maps based on feature similarity, and repre-

sents each feature vector by its cluster center. Feature vec-

tors sharing similar semantics will be aggregated into the

same cluster, and the clustered index can be considered as

a virtual visual semantic label. Since the clustering can be

affected by the vision-language learning tasks, the learned

semantics of each embedding vector is more suitable for

cross-modal understanding and alignment.

The visual dictionary faces a cold-start problem, where

directly copying the gradient from randomly initialized em-

bedding vectors to visual feature maps will lead to incorrect

model optimization direction (i.e., mode collapse). There-

fore, we freeze the parameters of ResNet in the visual fea-

ture encoder in the first 10 training epochs.

3.3. Pre-training Pipeline

We apply a multi-layer Transformer to learn cross-modal

representations with the fusion of visual and language fea-

tures. In order to learn a universal representation for vision

and language-related tasks, we apply the self-supervised

method to pre-train the model on a large aggregated dataset.

We follow the existing works [7, 22, 27, 34, 37, 48] to

adopt Masked Language Modeling (MLM) and Image-Text

Matching (ITM) pre-training tasks. Besides, we propose

a novel Masked Visual Modeling (MVM) pre-training task

based on the virtual visual semantic labels produced by the

visual dictionary.

Cross-Modal Transformer. For visual representation, we

utilize 2-D position embedding computed by sine function

to encode spatial information of visual tokens following

other works [6, 11, 29]. For the input sentence, we follow

BERT [10] to tokenize it, and then represent the tokens by

embedding vectors W . We use wi to denote the ith embed-

ding vector in W . The word embedding and the VD em-

beddings share the dimension c on their outputs. We con-

catenate the VD embeddings and word embedding vectors

together to form an input sequence for cross-modal learn-

ing. Similar to other VLPT models, we add two special

tokens [CLS] and [SEP] into the input sequence to indicate

classification position and the end of a text, respectively. A

multi-layer Transformer is adopted to take the joint vision-

language input, and outputs the attended features.

Masked Language Modeling. We follow [7] and adopt

Masked Language Modeling (MLM) to encourage the

model to build the mapping between language tokens and

visual contents. The goal of MLM is to predict the masked

word tokens based on other word tokens W\i and all image

features f(V) by minimizing the negative log-likelihood.

The learning target can be formulated as:
LMLM = −E(W,f(V))∼D log p(wi|W\i, f(V)), (6)

where D indicate hereinafter the whole training dataset. We

adopt the same masking strategy used in BERT [10].

Masked Visual Modeling. We propose Masked Visual

Modeling (MVM) by visual dictionary, which is a symme-

try to the MLM. We randomly mask the image features be-

fore feeding them into the Transformer. The learning target

of MVM is denoted as:

LMVM = −E(W,f(V))∼D log p(f(vj)|W, f(V)\j). (7)

The goal of MVM is to predict the masked image fea-

tures based on their surrounding image features f(V)\j and
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Table 1: Statistics of different tasks. Notation “*” denotes Karpathy split [18]. Notation “-” denotes not applicable. Detailed

train/test image and text numbers can be found in the supplementary material.

Task Dataset Train Split Test Split Metric

Pre-training
VG [20] train - -

MSOCO [25] train+restval* - -

Image-Text Retrieval
MSCOCO [25] train+restval* test*

Recall@1,5,10
Flickr30K [30] train test*

Visual Question Answering VQA2.0 [14] train+val test-dev/test-std VQA-score [14]

Visual Reasoning NLVR2 [35] train dev/test-P Top-1 Accuracy

Visual Entailment SNLI-VE [42] train val/test Top-1 Accuracy

all language tokens W by minimizing the negative log-

likelihood. MVM can encourage the model to infer visual

knowledge from the contextual visual information as well

as language. When an image feature vi is masked, its map-

ping index hi in VD is considered as its label. In visual

feature maps, neighbor features may have similar values,

and thus share the same mapping index. This will cause the

model to directly copy the label from surrounding features

as predictions in a lazy way. To prevent this, in the mask-

ing stage, we first randomly select an existing label index

j, then replace all visual embedding vectors in f−1(j) with

the special [MASK] token embedding vector.

Image-Text Matching. To enhance the cross-modal match-

ing, we adopt Image-Text Matching (ITM) task for pre-

training as in previous works [7]. We apply a binary clas-

sifier φ(·) on the joint embedding feature of [CLS] token to

predict whether the input image and text are matched or not.

ITM task is driven by the following loss function:

LITM = −E(W,f(V))∼D log p(y|φ(W, f(V))), (8)

where y ∈ {0, 1} indicates whether the image and text is

matched (y = 1) or not (y = 0).

The visual feature encoder, VD-based image embed-

ding module and the cross-modal Transformer is end-to-end

jointly trainable. We assign equal loss weight to the three

pre-training objectives, and thus the full pre-training objec-

tive of SOHO is:

LPre-training = LMLM + LMVM + LITM. (9)

3.4. Pre-training Datasets

Several large-scale datasets have been proposed to fa-

cilitate VL pre-training. According to typical settings in

UNITER [7], these datasets can be categorized into two

classes: “in-domain” and “out-domain”. In our work, we

use “in-domain” as a pre-training dataset as most VL pre-

training tasks are built on them [7, 23, 37]. We construct

our pre-training datasets with MSCOCO [25] and VG [20].

To avoid data leak, we only use the train and restval

splits of MSCOCO dataset, and the train and val splits of

VG dataset in the training stage. The detailed statistic of

our pre-training datasets can be found in Table 1. Detailed

comparisons of pre-training dataset usage of most VLPT

works, including our train/test image and text numbers, are

included in our supplementary material.

4. Experiment

4.1. Implementation Details

For the language processing, we follow BERT to use

the WordPiece tokenizer [41] to split each text into language

tokens. For the visual processing, as most previous works

adopt feature extractor which uses 600× 1000 as input res-

olution, we also adopt setting to resize the shorter edge of

input images to 600, and limit the longer edge to be lower

than 1000 for a fair comparison. We use pre-trained models

based on public accessible ImageNet [8] and BERT [10] to

initialize the parameters of our visual backbone and Trans-

former architecture, respectively. Specifically, we adopt

the widely-used ResNet-101 backbone and 12-layer Trans-

former to fairly compare with other works, while we adopt

a lightweight ResNet-18 backbone and 3-layer Transformer

in our ablation studies to reduce experiment cost. We will

use RX to denote X-layer ResNet architecture in the rest

of this paper for simplicity (e.g. R101 denotes ResNet-

101). Since the visual backbone and Transformer favor dif-

ferent kinds of optimizers [47], we follow the suggestion

of Zhang et al. [47] to use SGD and AdamW optimizers

for visual backbone and Transformer respectively. We use

SGD with learning rate 1e−2 and weight decay 5e−4 for

the visual backbone, and apply AdamW with learning rate

1e−4 and weight decay 1e−2 for Transformer. We pre-train

our model with 32 NVIDIA Tesla V100 GPUs with a batch

size of 4, 096 image-text pairs. The training process takes

40 epochs until convergence and we empirically decay the

learning rate by 10 times at 25th and 35th epoch.

We adopt mixed-precision training to reduce memory

cost and speed up training procedure. An image will be

paired with four texts in each batch during pre-training, in-

cluding two positive pairs and two negative pairs. We only

apply MLM and MVM on the positive image-text pairs.

4.2. Downstream Tasks and Results

We test the performance of SOHO on four well-

established downstream tasks, include image-text retrieval,

visual question answering (VQA), natural language for

visual reasoning(NLVR), and fine-grained visual reason-

ing (Visual Entailment, or VE). Image-text retrieval task

includes two sub-tasks, i.e., image-to-text retrieval (TR)
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Table 2: Evaluation of image-to-text retrieval (TR) and text-to-image retrieval (IR) task on MSCOCO Dataset. ”-” indicates

the detail is not reported.

Model Backbone
TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

1K Test set 5K Test set

VSE++[12] R152 64.6 90.0 95.7 52.0 84.3 92.0 41.3 71.1 81.2 30.3 59.4 72.4

SCAN[21] R101 72.7 94.8 98.4 58.8 88.4 94.8 50.4 82.2 90.0 38.6 69.3 80.4

Unicoder-VL[22] - 84.3 97.3 99.3 69.7 93.5 97.2 62.3 87.1 92.8 46.7 76.0 85.3

UNITER[7] R101 - - - - - - 64.4 87.4 93.1 50.3 78.5 87.2

SOHO (ours) R101 85.1 97.4 99.4 73.5 94.5 97.5 66.4 88.2 93.8 50.6 78.0 86.7

Table 3: Evaluation of image-to-text retrieval (TR) and text-

to-image retrieval (IR) on Flickr30K dataset. ”-” indicates

the detail is not reported.

Model Backbone
TR IR

R@1 R@5 R@10 R@1 R@5 R@10

VSE++[12] R152 52.9 80.5 87.2 39.6 70.1 79.5

SCAN[21] R101 67.4 90.3 95.8 48.6 77.7 85.2

ViLBERT[27] R101 - - - 58.2 84.9 91.5

Unicoder-VL[22] - 86.2 96.3 99.0 71.5 90.9 94.9

UNITER[7] R101 85.9 97.1 98.8 72.5 92.4 96.1

SOHO (ours) R101 86.5 98.1 99.3 72.5 92.7 96.1

and text-to-image retrieval (IR), and are conducted on

Flickr30K [43] and MSCOCO [25] datasets. The tasks of

VQA, NLVR, and VE are conducted on datasets of VQA

2.0 [14], NLVR2 [35] and SNLI-VE [42] respectively. Ta-

ble 1 summarizes the statistics of all our downstream tasks.

We compare our approach with several task-specific

methods and pre-training models. Most pre-training models

adopt Transformer-like architectures [40] with BERT-like

objectives [10] to learn cross-modal representations [7, 22,

23, 27, 34, 37, 48]. For downstream tasks, we find that using

input features of the VD module for visual representation

is better than directly applying VD embedding. We adopt

the former setting in our experiment. This shows that VD

suits visual representation learned with a very large scale

of semantics while dense features provide more details in a

relatively small dataset.

4.2.1 Task I: Image-Text Retrieval

Image-text retrieval requires a model to retrieve the most

relevant caption from candidate images, or vice versa. It is

one of the most typical tasks in the field of vision-language

learning which enables a broad range of applications (e.g.,

image searching). Image-text retrieval includes two sub-

tasks of image-to-text retrieval (TR) and text-to-image re-

trieval (IR). During training, we construct aligned and un-

aligned pairs inside of a mini-batch like most image-text

retrieval models. We randomly sample t aligned image-

caption pairs from ground truth annotations to form a mini-

batch. All the other t− 1 captions are used as the unaligned

captions for each image. To encourage the model to predict

the right labels for both the aligned and unaligned pairs, we

Table 4: Evaluation of VQA on VQA 2.0 dataset. ”-” indi-

cates the detail is not reported. X101 denotes ResNeXt-101

architecture [43].

Model Backbone test-dev test-std

MUTAN[4] R152 60.17 -

BUTD[2] R101 65.32 65.67

Unified VLP [48] X101 70.50 70.70

ViLBERT[27] R101 70.55 70.92

VisualBERT[23] R152 70.80 71.00

VLBERT[34] R101 71.79 72.22

LXMERT[37] R101 72.42 72.54

UNITER[7] R101 72.70 72.91

SOHO (Ours) R101 73.25 73.47

consider the retrieval task as a binary classification problem.

In our implementation, we use the joint embedding rep-

resentation of the [CLS] token from Transformers to predict

whether an image-caption pair is aligned or not. Since the

objective of image-text retrieval task is consistent with the

image-text matching (ITM) task in pre-training stage, the

pre-trained parameters can well be inherited for fine-tuning.

We adopt AdamW optimizer with 1e−4 learning rate and

1e−2 weight decay. The mini-batch size t is set to 24. We

train 20 epochs until convergence and decay the learning

rate by half at 3rd, 5th , 9th and 13th epoch empirically.

We conduct experiments on MSCOCO [25] and

Flickr30k [30], and the results are shown in Table 2 and

Table 3 respectively. It worth noting that UNITER addi-

tionally uses out-of-domain datasets and the results are ex-

pected to be better than merely use in-domain datasets as

they reported [7]. Unicoder-VL [22] adopts merely out-of-

domain datasets, which is also not directly comparable to

our SOHO. Nevertheless, SOHO outperforms the most re-

cent VLPT works under most metrics on both MSCOCO

and Flickr30k. The performance improvements indicate

that SOHO learns better image-text embeddings by our end-

to-end pre-training architecture, and exploits comprehen-

sive yet compact visual semantic abstraction by the pro-

posed visual dictionary.

4.2.2 Task II: Visual Question Answering

Visual Question Answering (VQA) requires a model to take

an image and a question as input and output an answer.
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Table 5: Evaluation of Visual Reasoning on NLVR2 dataset.

Model Backbone dev test-P

Image Only[35] R152 51.60 51.90

CNN+RNN[35] R152 53.50 52.40

MaxEnt[35] R152 54.10 54.80

VisualBERT[23] R152 67.40 67.00

LXMERT[37] R101 74.90 74.50

UNITER[7] R101 75.85 75.80

SOHO (Ours) R101 76.37 77.32

This task requires machines to act like humans and reason

across vision and language, which is approaching intelligent

AI. We model VQA as a classification problem by learning

multi-layer perception from the [CLS] token. We follow

[19] to treat is as a 3, 192-way classification problem, and

optimize the model via binary cross-entropy loss. We fine-

tune for 18 epochs with a batch size of 256 until conver-

gence. We set the optimizer the same as in the pre-training

stage. The initial learning rates are also set the same as pre-

training, and we decay the learning rate by 10 at the 12th

and 16th epochs empirically.

Results are presented in Table 4. The most direct compa-

rable baseline to our SOHO is LXMERT [37], which adopts

the same backbone and pre-training dataset as our SOHO.

SOHO obtains 0.83% and 0.93% absolute improvements

on test-dev and test-std split over LXMERT respectively.

It is worth noting that SOHO outperforms UNITER [7]

even under an inferior experimental setting, where UNITER

additionally uses out-domain datasets in the pre-training

stage. The promising results of SOHO on VQA demon-

strate that our end-to-end pre-training approach enables in-

telligent question answering on visual contents.

4.2.3 Task III: Visual Reasoning

Visual Reasoning with Natural Language (NLVR) requires

a model to predict whether a text is related to a given

pair of images. Compared with VQA, NLVR addresses

the challenge of compositional visual reasoning on rela-

tions, comparisons, and quantities. We conduct this task

on NLVR2 dataset [35]. In our implementation, we fol-

low LXMERT [37] and UNITER [7] to input two pairs of

image-text to Transformer and get two embedding vectors

from [CLS] tokens. Then we learn a classifier on the con-

catenation of the embedding vectors over “true” or “false”

by a cross-entropy loss. The settings of the optimizer, epoch

number, and learning rate are the same as VQA settings.

Since the number of input images for NLVR2 is twice as

VQA, the batch size of NLVR2 is half of VQA.

We mainly compare with the SOTA results provided by

LXMERT [37] and UNITER [7] under the same settings

for fair comparisons. From the results shown in Table 5, we

observe 0.52% and 1.52% absolute gains of SOHO against

UNITER on dev and test-P split respectively. This result

Table 6: Evaluation of Visual Entailment on SNLI-VE.

Model Backbone val test

EVE-Image[42] R101 71.56 71.16

UNITER[37] R101 78.59 78.28

SOHO (Ours) R101 85.00 84.95

validates that SOHO also has advantages when applying to

compositional visual reasoning tasks.

4.2.4 Task IV: Visual Entailment

Visual Entailment (VE) is a fine-grained visual reasoning

task to predict whether an image semantically entails a text.

In pursuit of visual intelligence, the relationship between

an image and a text pair in the VE task is more fine-grained

than VQA and NLVR, which can be true (entailment), false

(contradiction) or neutral. SNLI-VE dataset [42] is pro-

posed for the VE task and is constructed based on Stanford

Natural Language Inference (SNLI) [5] and Flickr30K [30]

datasets. We follow UNITER [7] to treat the VE task as a

three-way classification problem and predict the scores of

each class by a fully-connected layer on the representation

of the [CLS] token from the output of the Transformer. We

fine-tune the model for 6 epochs with batch size 128 until

convergence. The learning rate is initialized as 1e-4, and

decay to 1e-5 after four epoch empirically.

We compare SOHO with a VLPT work UNITER [7] and

a task-specific method EVE-Image [42]. As reported in Ta-

ble 6, SOHO achieves 85.00% and 84.95% accuracy on

val and test split respectively. The results significantly out-

perform the SOTA results provided by UNITER [7], where

6.41% and 6.67% absolute accuracy improvements are ob-

tained on the val and test split respectively. The results in-

dicate the advantage of our end-to-end framework for refin-

ing the CNN backbone together with the cross-modal Trans-

former to facilitate thorough vision-language alignment.

4.3. Ablation Study

We perform ablation studies to validate the effectiveness

of the visual dictionary (VD) on all downstream tasks. We

first establish a baseline model without VD, then incorpo-

rate VD with the baseline and further evaluate the influence

of the embedding vector size (VD size) k.

Results are presented in Table 7. Generally, we observe

that for most tasks, a VD size of 2048 or 4096 achieves the

best results among four sizes ranging from 1024 to 8192.

This is reasonable as VD is designed to aggregate similar

visual semantics into the same image feature. With such de-

sign, the bigger VD could learn to group more fine-grained

and complete visual semantics, which benefits the VL align-

ment as expected. However, too fine-grained visual seman-

tics being grouped into different image features may de-

teriorate the abstraction of visual semantics, which conse-

quently is harmful to VL alignment. We empirically find
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Table 7: Ablation study on the effectiveness of Visual Dictionary (VD) and the embedding vector size of VD. Results

are obtained under the settings of a ResNet-18 backbone and a 3-layer Transformer architecture. Image-text Retrieval is

conducted on the MSCOCO 1k test set. The top-1 and top-2 results of each metric are highlighted in bold and underlined

respectively. Notation ∆ indicates the performance gains of 2048 VD size results over baseline results without VD.

VD size
Text Retrieval Image Retrieval VQA NLVR2 SNLI-VE

R@1 R@5 R@10 R@1 R@5 R@10 test-dev test-std dev test-P val test

w/o VD - 72.80 93.20 96.90 58.22 88.32 94.40 66.08 66.33 62.62 62.61 82.28 82.16

w/ VD

1024 73.40 92.10 97.00 58.55 88.84 94.70 66.75 66.95 63.32 64.60 82.47 82.55

2048 75.50 93.50 97.30 59.03 88.88 94.84 66.69 67.09 64.62 65.32 82.56 82.54

4096 71.20 93.20 97.30 58.50 88.92 94.96 66.76 66.91 63.60 64.80 82.53 82.55

8192 72.10 92.30 96.50 58.01 88.08 94.70 66.65 67.10 63.15 64.49 82.29 82.69

∆ 2048 2.70↑ 0.30↑ 0.40↑ 0.81↑ 0.56↑ 0.44↑ 0.61↑ 0.76↑ 2.0↑ 2.71↑ 0.28↑ 0.38↑

that k = 2048 works the best in most cases, thus we adopt

k = 2048 as our default setting.

When compared with the baseline without VD, our pro-

posed method with VD enjoys better performances under

almost all metrics with a wide range of k (i.e., 1024, 2048,

and 4096). It validates the effectiveness of VD and shows

that VD is generally applicable to a broad range of tasks.

4.4. Visualization of Visual Dictionary

To share insights on what the proposed Visual Dictionary

(VD) learned, we visualize some representative VD indices

in Figure 3. As introduce in Sec 3.2, a VD index is corre-

lated with many visual features, where each visual feature

corresponds to an image patch. We randomly sample some

indices from VD and visualize their corresponding image

patches. As shown in Figure 3, the VD groups meaningful

and consistent image patches into different indices, which

reflects an abstraction of visual semantics. The visualiza-

tion shows the strong capability of the learned VD. More

cases can be found in supplementary materials.

4.5. Inference Time

BUTD-based methods mainly include three inference

stages: CNN forwarding, region feature generation, and

Transformer forwarding [2]. In contrast, SOHO only in-

cludes two inference stages of CNN and Transformer for-

warding. To compare the inference efficiency of SOHO

and BUTD-based methods, we set up an experiment on a

V100 GPU with 600×1000 input resolution, a ResNet-101

backbone, a 12-layer Transformer, 100 boxes, 16 sentence

padding length. The average inference time for extracting

BUTD features on ResNet-101 is 21ms. The input sequence

length of the Transformer for BUTD-based methods and

SOHO are 100 + 16 = 116 and ⌈600/64� ∗ ⌈1000/64� +
16 = 176, respectively. Thus the inference time of Trans-

former is 17ms and 23ms for BUTD-based methods and

SOHO, respectively. For BUTD-based methods, in addition

to a 420ms time cost of region feature generation , the main

time cost, however, comes from the non-maximum suppres-

sion which s required to be applied to all 1, 600 categories.

Consequently, the 44ms time cost of SOHO for an infer-

ence step is about 10 times faster than the 464ms time cost

Id=191 Id=1074Id=191 Id=1074

Figure 3: Visualization of VD. The left and right indices re-

flect the semantic of “head” and “building” with consistent

visual patterns, respectively.

of BUTD-based methods. Therefore, our highly-efficient

SOHO could be better applied to real applications.

5. Conclusion

In this paper, we show a new perspective for vision-

language model design. Particularly, we propose SOHO,

one of the first end-to-end vision-language pre-training

models that learns comprehensive yet compact visual repre-

sentation for cross-modal understanding. To generate visual

features that can be fused with language tokens, we propose

a novel visual dictionary to transform an image to concrete

semantics. Three pre-training tasks are conducted to build

connections between images and languages. Performances

on four downstream tasks show the superiority of SOHO

over pre-training models with region-based image features.

Moreover, we relieve the requirement for bounding box an-

notations, and reduce heavy human labeling costs. This

end-to-end framework also shows the merit of accelerating

the inference time in vision-language tasks about 10 times,

which enables more online vision-language applications. In

the future, we will further explore vision-language genera-

tion tasks, and study the utilization of large-scale unpaired

multi-modal data for cognition-level visual understanding.
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