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Abstract

Motions are reflected in videos as the movement of pix-

els, and actions are essentially patterns of inconsistent mo-

tions between the foreground and the background. To well

distinguish the actions, especially those with complicated

spatio-temporal interactions, correctly locating the promi-

nent motion areas is of crucial importance. However, most

motion information in existing videos are difficult to la-

bel and training a model with good motion representations

with supervision will thus require a large amount of human

labour for annotation. In this paper, we address this prob-

lem by self-supervised learning. Specifically, we propose to

learn Motion from Static Images (MoSI). The model learns

to encode motion information by classifying pseudo motions

generated by MoSI. We furthermore introduce a static mask

in pseudo motions to create local motion patterns, which

forces the model to additionally locate notable motion ar-

eas for the correct classification. We demonstrate that MoSI

can discover regions with large motion even without fine-

tuning on the downstream datasets. As a result, the learned

motion representations boost the performance of tasks re-

quiring understanding of complex scenes and motions, i.e.,

action recognition. Extensive experiments show the con-

sistent and transferable improvements achieved by MoSI.

Codes will be soon released.

1. Introduction

Understanding motion patterns is a key challenge in

many video understanding problems such as action recogni-

tion [7], action localization [40] and action detection [55].

A suitable way to encode motions can significantly boost

the performance in those tasks [41]. Early works represent

motions using hand-crafted features [35, 46, 34] based on

dense trajectories [45] and optical flow [2]. With the suc-

cessful application of deep neural networks [14, 22, 18] and

the construction of large scale image and video datasets [5,

19], endeavors have been made to design architectures to

(b) Dribble (c) Cartwheel

(a) Unmasked MoSI (no static masks)

Static 

Image

Pseudo Motions 3D Backbone

Unmasked MoSI

FC Layer

Label Prediction

0.7

0.1

0.2

0.0

0.0

… …

Loss

Figure 1: (a) Unmasked MoSI constructs image sequences

with pseudo motions from static images. The model is

trained to encode motions by predicting the direction and

speed of the pseudo motions. For simplicity, the speed gran-

ularity here is set as K = 1 (see Sec. 3.1). (b), (c) Grad-

CAM [38] visualizations on HMDB51 videos for the conv5

pre-trained by our MoSI on ImageNet [5], where the model

locates prominent motions even without fine-tuning on the

downstream dataset (See more in Sec. 4.1).

extract meaningful motion features [16, 7, 49, 47, 54, 41].

Despite their powerful capability of modeling dynamic vari-

ations between frames, the 3D convolutional models require

a large amount of manually labeled videos to achieve a good

generalized performance [13].
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Recently, self-supervised learning has emerged as a pow-

erful technique for training the model without labeled data

in both image and video paradigm [51, 11, 20, 6, 33]. These

methods learn visual representations by exploiting inher-

ent structures of the unlabeled images or videos, for in-

stance, by predicting the correct order of spatial or tempo-

ral sequences [51, 6, 9, 24] or by predicting partial con-

tents [11, 12, 33]. Because videos naturally have an ex-

tra axis of time compared to images, some methods ma-

nipulate the temporal dimension and predict the playback

speeds [1, 52]. Although some of the efforts were able to

capture the motion information implicitly, almost none of

them aims to model motion information of videos explicitly

in a self-supervised fashion.

In this work, we seek to train the video model to di-

rectly distinguish different motion patterns. The objective

is for the model to encode meaningful motion information,

so that prominent motions can be discovered and attended

to during fine-tuning. Since directly generating predefined

motion patterns from a video set may be difficult, we lever-

age static images for motion generation. Formally, we pro-

pose a learning framework that learns motions directly from

images (MoSI). Its general structure is shown in Fig. 1.

Given the desired direction and the speed of the motions,

MoSI generates pseudo motions from static images. By cor-

rectly classifying the direction and speed of the movement

in the image sequence, models trained with MoSI is able

to well encode motion patterns. Furthermore, a static mask

(Fig. 3) is applied to the pseudo motion sequences. This

produces inconsistent motions between the masked area and

the unmasked one, which guides the network to focus on

the inconsistent local motions. We term the one with and

without static masks as MoSI and unmasked MoSI respec-

tively. Conceptually, the idea of masked MoSI is closely

related to attention learning, where the network learns to

attend more to the moving areas in videos explicitly cre-

ated by pseudo motion. Different from the attention mech-

anism [15, 25, 26], where attention is generated by care-

fully designed architectures, the attention learned by MoSI

is achieved by purely altering the training data.

To the best of our knowledge, this is the first time that

static images are used as the data source for pre-training

video models. Using MoSI, we are able to exploit large-

scale image datasets such as ImageNet [5] to train video

models. Although images contain less information about

dynamics that are intrinsic in videos, the representations

learned with MoSI can be as powerful as those learned us-

ing videos in terms of motion understanding. Extensive em-

pirical studies with HMDB51 and UCF101 further demon-

strate the effectiveness of MoSI. Compared with other pre-

viously published works, we show that the proposed MoSI

reaches new state-of-the-art results for learning video rep-

resentations using RGB modality.

2. Related Work

Motion learning by architectures. Motion information

are crucial for understanding videos. There are mainly two

popular architectures that are frequently used for extracting

video features, respectively two-stream networks [41, 8, 48,

37, 4] and 3D convolutional networks [3, 13, 44, 36, 43].

Two-stream networks extracts motions representations ex-

plicitly from optical flows, while 3D structures apply con-

volutions on the temporal dimension [36, 44] or space-time

cubics [3, 43, 13] to extract motion cues implicitly. Besides

these two architectures, different motion encodings are pro-

posed to better handle motions in videos [26, 16, 47]. Com-

pared to complicated structure designs that aim at better rep-

resenting motions, our MoSI can take any video models as

the backbone. For simplicity, structures proposed in [44]

are adopted for our experiments.

Self-supervised image representation learning. Self-

supervised learning is proven to be a powerful tool for

learning representations that are useful to down-stream

tasks without requiring labeled data. Using image as data

sources, there are patch-based approaches [6, 30, 29, 31]

that are inspired by natural language processing meth-

ods [28], and image-level pretext tasks, such as image in-

painting [33], image colorization [53], motion segment pre-

diction [32] and predicting image rotations [10]. The most

similar to our work is [32], where labels are generated by

grouping pixels that share the same movement together in

videos. There are two crucial differences: (a) the aim of

[32] is to learn pixels that belong to the same object by mo-

tion segmentation, while our MoSI is proposed to learn mo-

tion cues for understanding videos; (b) [32] exploits videos

to learn image representations, while MoSI takes advantage

of images to learn video representations.

Self-supervised video representation learning. With an

extra time dimension, videos provides rich static and dy-

namic information, and there is thus an abundant supply

of various supervision signals. A natural way is to ex-

tend patch-based context prediction to spatio-temporal sce-

narios, such as spatio-temporal puzzles [20], video cloze

procedure [27] and frame/clip order prediction [24, 51, 9].

Besides the extension of image based supervisions, recent

works propose to learn representations by predicting future

frames [11, 12]. In addition, supervision signals can be gen-

erated by purely manipulating the time axis. Representative

works include speed up prediction [1] and play back rate

prediction [52]. All previous video representation learning

methods exploit videos as the data source. Hence, the mo-

tion patterns have not yet been able to be explicitly learned

due to the difficulty of generating predefined motion pat-

terns from videos. In this work, we take images as our data

source, and generate deterministic motion patterns for di-

rectly learning motion representations.
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3. Motion Learning from Static Images

The goal of MoSI is to learn motion representations. Be-

cause directly generating predefined motions from videos

could be difficult, MoSI exploit images to generate samples

for motion learning. Specifically, MoSI generates pseudo

motions with different speeds and directions. To correctly

predict the motion pattern, the 3D video backbone is re-

quired to distinguish different motion patterns. In addition,

to mimic the actions in actual videos, where there exist in-

consistent motions between the foreground and the back-

ground, we apply a static mask to the generated pseudo mo-

tions. In this way, the network is additionally required to

locate prominent motion areas and attend less to the back-

ground. In short, there are two core components in the pro-

posed MoSI, respectively the pseudo motions and the static

masks, which will be discussed in Sec. 2 and Sec. 3.2 re-

spectively. In the following sections, we refer to the frame-

work as MoSI and unmasked MoSI respectively for the vari-

ants with and without static masks.

3.1. Pseudo Motions

The first component is the pseudo motions. The genera-

tion process is visualized in Fig. 1. Given the motion label

(x, y) sampled from the label pool L, MoSI crops an con-

tinuous sequence of images u ∈ R
N×L×L from the input

image (which we term as source image). N and L are se-

lected in accordance to the number of frames and crop size

in the downstream task. The generated pseudo motion se-

quence is then used as the input to the video backbone for

motion classification.

Label pool. The motion patterns generated by MoSI con-

sists of two axes, respectively a horizontal axis and a ver-

tical axis. The positive direction for them are respectively

toward right and down, as in Fig. 1. For each axis, there are

C = 2 × K + 1 speeds, where K denotes the granularity

of the speeds in one direction (e.g., the positive direction on

the horizontal axis). This corresponds to the motion speed

set S = {−K, ...,−1, 0, 1, ...K}, where negative values in-

dicate moving in the negative direction of the corresponding

axis. K is set to be larger than 1, since we want the network

to learn not only the existence but also the magnitude of

motions. For simplicity, we decouple the motions for two

axis, which means for each label, a non-zero speed only ex-

ists on one axis. Therefore, the total size of the label pool is

CT = 2 × C − 1 = 4 ×K + 1 with K labels for each di-

rection and 1 label denoting static sequence. The label pool

can be expressed as follows for each label index i:

L = {i : (x, y)|x ∈ S, y ∈ S, xy = 0} . (1)

Note: It is crucial to generate motions for both axes, be-

cause the motion patterns in videos can be both horizontal

and vertical. See Sec. 4.1 for the empirical results.
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Figure 2: Exemplar pseudo motion generation processes.

(a) and (b) generates motions respectively in the positive

and negative direction of the horizontal axis. The start im-

age is sampled randomly from the possible start area and

the position of the end image is calculated using the dis-

tance Dx and Dy . The possible start area is determined so

that the end image is located within the source image. N
frames are uniformly sampled between the start and the end

positions from the source image.

Pseudo motion generation. To generate the samples with

different speeds, we define the moving distance from the

start to the end of the pseudo motion sequences. For source

image with the size of H ×W , the distance
−→
D = (Dx, Dy)

for the pseudo motion of speed (x, y) ∈ L is defined as:

⎧

⎪

⎨

⎪

⎩

Dx =
(W − L)x

K
, if x �= 0 else Dx = 0

Dy =
(H − L)y

K
, if y �= 0 else Dy = 0

. (2)

Note that the value of Dx and Dy could be negative, which

denotes moving in the negative direction of an axis.

The start location
−−−→
lstart = (xstart, ystart) is randomly

sampled from a certain area which ensures the end location
−−→
lend =

−−−→
lstart +

−→
D is located completely within the source

image, as demonstrated in Fig. 2. For example, if Dx >
0, the distance between the right border of both the start

image and the source image should be at least |Dx|. For

label (x, y) = (0, 0), where the sampled image sequence

is static on both axis, the start location is selected from the

whole image with uniform distribution. N images are then

sampled with uniform gaps from the source image between

the start position
−−−→
lstart and the end position

−−→
lend.

Classification. The generated image sequence u is then fed

into a 3D backbone network and a linear classifier. Follow-

ing [1, 10], we employ the same-batch training technique,

where each batch contains all transformed image sequences

generated from the same source image. This means for

each source image, CT image sequences of pseudo motions

are generated and included in the same mini-batch. This is

found to be significantly effective for reducing the artificial

cues. The model is trained by cross entropy loss.
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Figure 3: Exemplar static mask applied on the sam-

pled image sequence. One of the images in the generated

pseudo motions is selected to replace the contents of each

image in the static area, while the contents in the moving

area are not altered. In this case, the third image (ID=2) in

the sequence is selected as the background. The green ar-

rows indicate the moving direction of the bounding boxes in

the source image. Essentially, the static mask is a filter that

only allows contents in a certain area to be kept the same

as the input. The unmasked variant (upper sequence) repre-

sents global motion. The static masks creates local motion

patterns that are inconsistent with the background.

3.2. Static Masks

By correctly classifying pseudo motions with different

directions and magnitudes, the model is able to recognize

different motion patterns. However, since for most videos,

actions occur in a constrained area rather than all the spa-

tial locations, one is expected to recognize not only global

motion patterns, but also inconsistent motions between the

foreground and the background. Another drawback for

the model to understand global motion is that the model

will possibly focus on just several pixels, as all the mo-

tion patterns (speed and direction) in the image sequences

are essentially the same. This creates an obvious artificial

cue [6, 11, 50] that hinders the true capability of the model

to understand motions. To this end, we introduce static

masks as the second core component of the proposed MoSI.

Static masks divide the spatial location into two groups,

respectively masked area and unmasked area, as in Fig. 3.

The masked area is regarded as the background and the mo-

tions within this area is thus removed, by setting the content

of this area in all images in u to the q-th image uq . On the

other hand, the original contents (i.e., the motions) are re-

tained in the unmasked area of the image sequence u. For

simplicity, the unmasked area is by default a square area

within the image, with the size of Lm × Lm. Formally,

given the masked pixels m, the content of the p-th image is

determined by:

ũp = M(up,m) =

{

uq, if (a, b) ∈ m

up, if (a, b) /∈ m

, (3)

where (a, b) is the spatial location of a certain pixel, and q
is the randomly selected static image.

By applying the static mask, the background area of the

image sequence becomes static and the foreground is mov-

ing according to the label. To perform correct classification,

the model is now required not only to recognize motion pat-

terns, but also to spot where the motion is happening. This

benefits a lot for downstream tasks such as action recogni-

tion, as the model is equipped with knowledge on where to

focus even before fine-tuning on the downstream datasets.

3.3. Instantiation

Data preparations. One advantage of the proposed MoSI

is that it can train video models on both video datasets and

image datasets. This allows for exploiting a large amount

of existing image-based datasets. For video and image

datasets, the only difference is that the source images need

to be first sampled from the videos in the video datasets,

while for image datasets, no frame-sampling step is re-

quired. Specifically, for video datasets, one frame out of

each video is randomly sampled as the source image. Us-

ing the same-batch training technique, each image gener-

ates CT samples with different labels. We alter the sampled

source frame index for different epochs for a larger variety

of visual contents. After obtaining the source images, we

resize the source image so that the length of the short side

is Ls. An Ls × Ls square area is randomly cropped from

the resized image, which means H = W = Ls in Eq. 2.

This ensures that the motion magnitude for the same speed

on both axis are the same.

Augmentations. It is shown in previous self-supervised ap-

proaches that the model tend to learn some artificial cues or

trivial solutions [6, 11, 50] that disrupts the learning of the

designed objectives. In our case, we have introduced the

static mask to avoid one possible trivial solution, where the

model only need to recognize motions in an extremely small

area for the prediction of the correct motion class. Based on

that, we further randomize the location and the size of the

unmasked area. In addition, we randomize the selection of

the background frames in the MoSI. In Sec. 4.1, we closely

investigate the effect of mask sizes and demonstrate the ben-

efit of our randomization.
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Figure 4: Grad-CAM visualization [38] of the conv-5 layer on HMDB51 over the models trained by MoSI on ImageNet

((a), (c)) and HMDB51 ((b),(d)) without fine-tuning. Red and blue areas denotes respectively highly and less activated areas.

Although no semantic meaning has been taught through MoSI, models trained by MoSI already possess the ability to locate

prominent areas according to the motions. In (a) and (b), we additionally compare with the value of optical flow calculated

with
√

x2 + y2. It can be observed that most highly activated areas corresponds to regions where motions are significant.

4. Experiments

Datasets and backbone. For pre-training with MoSI, we

employ three video datasets: UCF101 [42], HMDB51 [23],

Kinetics [19], as well as the image dataset ImageNet [5].

For evaluation of the learned representation, we use

UCF101 and HMDB51. We use R(2+1)D [44] with 10 lay-

ers as well as R-2D3D with 18 layers as our backbone, fol-

lowing the configurations in [51, 11, 12, 52].

Self-supervised pre-training. For self-supervised pre-

training, we set Ls = 320 and resize the source image to

320 × 320 by default. Image sequences of length 16 and

size 112×112 with pseudo motions are generated from each

source image and fed to the model. The number of speed on

each axis is set to 5, which is the minimal number for each

direction to have distinct speeds. The total size of our label

pool is thus 9. The side length of the unmasked area in our

static mask Lm is randomly sampled from [0.3, 0.5]× 112.

Supervised action classification. During supervised train-

ing on UCF101 and HMDB51 for action classification, we

train the network with a batch size of 128 samples per GPU

for 8 GPUs using Adam with a base learning rate of 0.002

for 300 epochs. For evaluation, we follow the standard pro-

tocal [51, 44] using 10 clips to produce the final results and

report the results on split 1 on both UCF101 and HMDB51.

Further details on both self-supervised and supervised train-

ing can be referred to the supplemental material.

4.1. Understanding MoSI.

In this section, we investigate the models trained by

MoSI. We use R-2D3D with 18 layers in this section with

the same structure as in [11]. The datasets used for pre-

training and fine-tuning are the same unless otherwise spec-

ified. For each ablation experiment, only the inspected fac-

tor is altered and the rest of the settings are kept according

to the ones described before.

What has the network learned? We first establish some

intuitive understanding of the method, by addressing the

question of what has the model learned through MoSI. The

Grad-CAM [38] visualization of the last layer in the pre-

trained model is shown in Fig. 4. Note that no fine-tuning

is performed at this stage. As can be seen, the model has

learned to pick up salient motion regions in the videos.

Especially compared to optical flow, the model trained by

MoSI highlights the region where the values of the opti-

cal flow is large. Furthermore, despite the model is only

given pseudo motions as training data, it is able to transfer

the knowledge onto real videos with more complex spatio-

temporal relations to discover locate areas with a large mo-

tion across different frames. In addition, the prior square

motion area does not constrain the model to only look for

square areas with motions. Surprisingly, given only prior

knowledge of one possible moving region, the model learns

to generalize to find multiple prominent motion areas.
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Figure 5: T-SNE visualization of clustering results on

HMDB51. The representations are generated by unmasked

MoSI for easy analysis, and without fine-tuning to directly

evaluate the learned representation.

We further cluster the learned representation on

HMDB51, as in Fig. 5. Although video data are naturally

heterogeneous and consist of complex combinations of mo-

tions, we can still observe that the movements of a large por-

tions of pixels in three of the five clusters are easily observ-

able, which are vertical, horizontal and static. The motions

in the other two clusters are hard to be uniformly described

as the multiple movements are present at the same time.

Baseline comparison. We then fine-tune the pre-trained

model on the action classification task. As in Table 1,

models trained with MoSI achieve notable improvements

on both datasets. The improvement on HMDB51 reaches

16.5% when using both axes. The performances with only

one axis are weaker compared to two axes, but they still out-

perform the baseline by a notable margin. On UCF101, the

improvement of MoSI reaches 7.3%. However, the bene-

fit of using two axes is smaller. This is partially because the

motion cue can be of less importance in classifying UCF101

videos, where even using only one image could achieve sat-

isfactory classification performance, as shown in [39].

Which parts of the representations learned using MoSI

are the most useful? We further fine-tune the pre-trained

weights with different stages of the learned representation

frozen, as in Fig. 6. By gradually freezing the representa-

tions during fine-tuning, we observe only a small drop in

the performance for the first three stages. On HMDB51,

fixing one stage even improves the accuracy. This indicate

that the models can learn a strong low-level representation

Dataset Initialization Label-X Label-Y Top1-Acc

UCF101

From scratch - - 64.5

MoSI
� � 71.8 (+7.3)

� × 71.6 (+7.1)

× � 69.9 (+5.4)

HMDB51

From scratch - - 30.4

MoSI
� � 47.0 (+16.6)

� × 44.9 (+14.5)

× � 43.1 (+12.7)

Table 1: Baseline comparison of models trained using

MoSI. Models pretrained with MoSI achieves a notable im-

provement over the baselines that are trained from scratch.

T
o
p
 1

 A
cc

u
ra

ci
es

57

60

63

66

69

72

All >s1 >s2 >s3 >s4 >s5

MoSI MoSI(All) MoSI-x MoSI-x(All) MoSI-y MoSI-y(All) RI

Finetuning on HMDB51Finetuning on UCF101

Finetuning stagesFinetuning stages

T
o
p
 1

 A
cc

u
ra

ci
es

20

26

32

38

44

50

All >s1 >s2 >s3 >s4 >s5

Figure 6: Performance of the model trained by MoSI

when the representation is frozen to a certain extent. RI

indicates training from random initialization, which is the

baseline. The trend indicates the usefulness of the low-level

feature learnt by MoSI. MoSI-x and -y indicates MoSI with

label pool of respectively only horizontal and vertical labels.

from MoSI. Because MoSI focus less on the semantic un-

derstanding of the videos, only fine-tuning the linear layer

does not have a high accuracy, which shows that the learned

high-level representations are less discriminative. It is nat-

ural since the main objective of MoSI is for the network to

attend to motions during fine-tuning. The only information

that the model receives is different motion patterns, while to

discriminate between actions, not only the motion pattern,

but also the identity of the moving object need to be rec-

ognized. Nevertheless, fine-tuning the last stage on HMDB

still gives an improvement of ∼ 5% over its random ini-

tialized baseline. Comparing between MoSI with different

label pools, we also observe a pattern similar to Table 1: On

HMDB51, the models trained using only one axis consis-

tently underperform the two-axes MoSI, while on UCF101,

there is not a clear benefit of using two axes.

4.2. Ablation Studies

Effects of mask sizes on MoSI. We then investigate the

effects of different mask sizes by altering the side length

of the unmasked area Lm. The results are visualized in

Fig. 7. In terms of the pre-training accuracy, we can see that

the MoSI task is generally easy on UCF101, with the pre-

training accuracy being 73% when Lm/L is 0.1 and reach-
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Figure 7: Effect of mask sizes for MoSI. The x-axis de-

notes the side length ratio Lm/L of the unmasked area (1.0

as no static masks). Static mask is useful especially when

the unmasked area covers a relatively small region. Random

mask sizes further improve the recognition performance.

ing 100% for 0.4. This is probably because of the numerous

similar visual contents in UCF101 that cause the network to

memorize the patterns. On the other hand, visual contents

in HMDB51 have a larger diversity, thus the pre-training ac-

curacy is lower compared to pre-training on UCF101 with

the same parameters. For mask size ratio 0.1, the model

can hardly learn to discriminate between different motions

when the mask size Lm = 0.1s. This demonstrates that the

proposed MoSI is not a trivial task that can be learned eas-

ily. Comparing different mask sizes, the validation accuracy

during pre-training generally improves with the increase of

the unmasked area. However, the high performance in our

pretext task does not always mean a higher accuracy on the

downstream task, which is also observed in [21]. There-

fore, a suitable mask size is crucial to ensure a high quality

of the representations. We then randomize the unmasked

area within the range of Lm = [0.3, 0.5] × Ls and observe

an improvement upon the variants with fixed mask sizes.

Effects of the speed granularity and the number of

frames on MoSI. As in Table 2a and 2b, compared to the

default setting, reducing the number of class to 3 hurt the

performance in that the model is not able to distinguish dif-

ferent motion patterns, which shows the importance of the

speed granularity. On the other hand, further increasing the

# Class Acc-PT Acc-FT

3 79.7 43.0

5 96.1 47.0

7 96.3 44.6

9 96.6 44.5

(a) # Classes on HMDB51.

# Class Acc-PT Acc-FT

3 81.4 70.1

5 98.2 71.8

7 99.1 70.9

9 99.4 71.3

(b) # Classes on UCF101.

# Frames Acc-PT Acc-FT

8 93.7 45.6

12 95.0 44.9

16 96.1 47.0

24 94.5 44.6

32 91.7 45.5

(c) # Frames on HMDB51.

# Frames Acc-PT Acc-FT

8 98.1 71.7

12 98.3 71.0

16 98.2 71.8

24 98.1 71.1

32 99.6 70.0

(d) # Frames on UCF101.

Table 2: Ablation studies on action recognition task with

models trained by MoSI. Acc-PT and -FT denotes pre-

training and fine-tuning top-1 accuracies respectively. For

# Classes, all parameters are kept the same except for the

number of classes. For # Frames, only the source image

size changes with the number of frames to keep the mo-

tion magnitude unchanged. Bold and underlined numbers

denotes the best and the second-best performance.

# Samples 3(4%) 5(7%) 7(10%) 9(13%) 11(16%) 13(19%) Full

BASELINE 4.5 6.7 8.1 10.4 11.7 14.8 30.4

MoSI 8.1 12.5 17.4 22.2 24.1 25.4 46.9

Diff +3.6 +5.8 +9.3 +11.8 +12.4 +10.6 +16.5

Table 3: Low-shot fine-tuning on HMDB51. Top-1 accu-

racy is used for comparison with the baseline (trained from

random initialization).

granularity on top of 5 does not have a visible improvement

as well. This means it is sufficient for the model to possess

the basic ability to distinguish different speeds. For differ-

ent frames, we fix the frame-wise distances for each label

and alter the sizes of source images so that the only factor

changed is the number of frames. Table 2c and 2d show that

using 16 frames to pre-train MoSI achieves the best perfor-

mance. One possible reason is that the downstream task

also uses 16 frames for fine-tuning.

Few/low shot fine-tuning. We also evaluate MoSI under

a few/low-shot setting, where we randomly sample 3, 5, 7,

9, 11 and 13 videos from each class of the split 1 training

set of HMDB51 as the training set for fine-tuning. This

corresponds to using only around 4% to 20% of the original

dataset. The results are demonstrated in Table 3. Pre-trained

using MoSI, the model is consistently better than the ran-

dom initialized counterpart by a large margin. This shows

the effectiveness of MoSI on few-shot video classification.

Training on ImageNet. Since MoSI is able to train video

models from static images, we additionally use ImageNet

as the data source for pre-training. We only use a small

portion of the original ImageNet data because the motion
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Dataset-PT Acc-PT Dataset-FT Acc-FT

UCF101 98.2

UCF101

71.8

ImageNet-S5 83.1 71.1

ImageNet-S10 87.8 70.5

ImageNet-S20 96.9 71.2

ImageNet-S30 97.7 71.9

HMDB51 96.1

HMDB51

47.0

ImageNet-S5 83.1 47.3

ImageNet-S10 87.8 47.8

ImageNet-S20 96.9 48.0

ImageNet-S30 97.8 47.6

Table 4: Pre-training models using MoSI on ImageNet.

S5, 10, 20, 30 denote randomly sample 5, 10, 20, 30 from

each class respectively. Training video models on ImageNet

with MoSI further increases the recognition accuracy on

downstream datasets.

Initialization Supervised fine-tuning

Method Arch. Dataset UCF101 HMDB51

OPN [24] VGG UCF 59.6 23.8

DPC [11] R-2D3D K400 75.7 35.7

MemDPC [12] R-2D3D K400 78.1 41.2

3D-RotNet [17] R3D K400 62.9 33.7

ST-Puzzle [20] R3D K400 65.8 33.7

VCP [27] C3D UCF/HMDB 68.5 32.5

VCOP [51] R(2+1)D UCF 72.4 30.9

PRP [52] R(2+1)D K400 72.1 35.0

SpeedNet [1] S3D-G K400 81.1 48.8

MoSI (Ours) R-2D3D UCF/HMDB 71.8 47.0

MoSI (Ours) R-2D3D K400 70.7 48.6

MoSI (Ours) R(2+1)D UCF/HMDB 82.8 51.8

Table 5: State-of-the-art comparisons.

patterns can already be well learned on HMDB51 using

only 5k videos. As in Table 4, we further validate that

the performance in the pretext task largely depends on the

number of data. Increasing the training data results in a

higher validation accuracy before it saturates. In terms of

the downstream task, the fine-tuning performance generally

increases when the number of pre-training data increases

before it saturates. Overall, the models pre-trained on Ima-

geNet outperforms the ones trained on respective datasets.

4.3. Comparison with video-based methods

In Table 5, we demonstrate the performance compari-

son with the state-of-the-art video self-supervised training

methods that only use RGB modality. Overall, MoSI per-

forms competitively against other methods on both UCF101

and HMDB51. Compared to DPC [11] and MemDPC [12]

with the same architecture MoSI achieves a much stronger

performance on HMDB51. Note that DPC and MemDPC

uses a 34-layer R-2D3D model with 224 × 224 as in-

put, while MoSI uses an 18-layer R-2D3D with 112 ×
112 as input. Using a stronger backbone R(2+1)D, we

achieve the state-of-the-art performance on both UCF101

and HMDB51 datasets.

(a)

(b)

Figure 8: Failure cases. (a) Square activation patterns orig-

inated from the prior encoded by MoSI that the motion ar-

eas have a square shape. (b) The movement in the back-

ground causes confusion for the network. Examples show

the model is confused by the movement of the shadow in

the background and the scene respectively.

4.4. Discussions

Previous sections have shown that the proposed MoSI

framework can train the model to focus on a local area

with prominent motions. Despite that the models trained

by MoSI achieves a satisfactory improvement on the action

recognition task by learning to attend to motions, there are

certain limitations. (A) Because of the square shape of the

prior unmasked motion area in MoSI, in some cases, the

model is somewhat biased toward attending to a square area

as visualized in Fig. 8(a). (B) Because no semantic infor-

mation is encoded during MoSI training (see Sec. 4.1), ma-

jor movements in the background could also confuse the

model, as in Fig. 8(b).

Conclusion. This work proposes MoSI, a simple frame-

work for the video models to learn motion representations

from images. It is shown that MoSI can discover and attend

to prominent motions in videos, thus yielding a strong rep-

resentation for the downstream action recognition task. We

also demonstrate the possibility of using MoSI to train video

models on image datasets. It is hoped that this research can

inspire further study in understanding how motions can be

encoded into video representations.
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