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Abstract

Visual localization is of great importance in robotics

and computer vision. Recently, scene coordinate regression

based methods have shown good performance in visual lo-

calization in small static scenes. However, it still estimates

camera poses from many inferior scene coordinates. To ad-

dress this problem, we propose a novel visual localization

framework that establishes 2D-to-3D correspondences be-

tween the query image and the 3D map with a series of

learnable scene-specific landmarks. In the landmark gen-

eration stage, the 3D surfaces of the target scene are over-

segmented into mosaic patches whose centers are regarded

as the scene-specific landmarks. To robustly and accurately

recover the scene-specific landmarks, we propose the Voting

with Segmentation Network (VS-Net) to segment the pixels

into different landmark patches with a segmentation branch

and estimate the landmark locations within each patch with

a landmark location voting branch. Since the number of

landmarks in a scene may reach up to 5000, training a seg-

mentation network with such a large number of classes is

both computation and memory costly for the commonly used

cross-entropy loss. We propose a novel prototype-based

triplet loss with hard negative mining, which is able to train

semantic segmentation networks with a large number of la-

bels efficiently. Our proposed VS-Net is extensively tested

on multiple public benchmarks and can outperform state-

of-the-art visual localization methods. Code and models

are available at https://github.com/zju3dv/VS-Net.
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1. Introduction

Localization [58, 44, 40] is a pivotal technique in many

real-world applications, such as Augmented Reality (AR),

Virtual Reality (VR), robotics, etc. With the popularity and

low cost of visual cameras, visual localization has attracted

widespread attention from the research community.

Recently, scene coordinate regression based methods [8,

7, 25], which learn neural networks to predict dense scene

coordinates of a query image and recover the camera pose

through RANSAC-PnP [18], dominate visual localization

and achieve state-of-the-art localization accuracy in small

static scenes. Compared with classical feature-based visual

localization frameworks [16, 26, 61, 44] relying on iden-

tified map points from Structure-from-Motion (SfM) tech-

niques, it only requires to estimate 2D-to-3D correspon-

dences and can be benefited from high-precision sensors.

Although scene coordinates construct dense 2D-3D corre-

spondences, most of them are unable to recover reliable

camera poses. In dynamic environments, there could ex-

ist moving objects and varying lighting conditions which

raise the outlier ratio and increase the probability of choos-

ing an erroneous pose with RANSAC algorithms. In addi-

tion, even after outlier rejection with RANSAC, there might

exist inferior scene coordinates that lead to inaccurate local-

ization.

In the hope of estimating camera poses more ro-

bustly and accurately, we propose Voting with Segmenta-

tion Network (VS-Net) to identify and localize a series of

scene-specific landmarks through a Voting-by-Segmentation

framework. In contrast with scene coordinate regres-

sion methods that predict pixel-wise dense 3D scene co-

ordinates, the proposed framework only estimates a small

quantity of scene-specific landmarks (or 2D-3D correspon-

dences) that are of much higher accuracy.

Unlike feature-based visual localization methods, where

landmarks are directly extracted from the images accord-

ing to certain rules, we manually specify a series of scene-
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(a) Query Image (b) Errors of Scene Coordinates (c) Errors of Scene-Specific Landmarks

Figure 1: Reprojection errors of 2D-to-3D correspondences of scene coordinates and scene-specific landmarks. (a) The

query image. (b) The reprojection errors of dense scene coordinates predicted by the regression-only network [25]. (c) The

reprojection errors of scene-specific landmarks and their surrounding patches by the proposed method. Pixels belonging to

the same landmark are painted with the same color representing the landmark’ reprojection error. The white pixels in (c) are

filetered by our voting-by-segmentation algorithm

specific landmarks from each scene’s reconstructed 3D sur-

faces. The 3D surface of a scene is first uniformly divided

into a series of 3D patches, and we define the centers of

the 3D patches as the 3D scene-specific landmarks. Given a

new image obtained from a new viewpoint, we aim to iden-

tify the 3D scene-specific landmarks’ projections on the 2D

image. The Voting-by-Segmentation framework with the

VS-Net casts the landmark localization problem as a combi-

nation of patch-based landmark segmentation coupled with

pixel-wise direction voting problem. Each pixel in the im-

age is first segmented into one of the pre-defined patches

(landmarks) and the pixels classified into the kth landmark

are responsible for estimating the corresponding landmark’s

2D location. To achieve the goal, the proposed VS-Net

also estimates a 2D directional vector at each pixel loca-

tion, which is trained to point towards the pixel’s corre-

sponding landmark. For a given patch, such predicted di-

rectional vectors can be treated as directional votes. With a

RANSAC algorithm, for each predicted patch, the accurate

2D landmark location can be accurately estimated. In con-

trast to existing scene coordinate regression methods, in our

proposed framework, pixels or regions that are poorly seg-

mented with erroneous patch labels and directional votes

can be robustly filtered out as those pixels have low vot-

ing consistency. Therefore, this strategy ensures that the

survived landmarks are of high accuracy and the inferior

pixels would not jeopardize the accuracy of camera pose

estimation. It results in fewer landmarks with lower outlier

ratios and reprojection errors than scene coordinate regres-

sion methods (Fig. 1).

The patch-based landmark segmentation in our VS-Net

requires assigning pre-defined patch labels, i.e., landmark

IDs, to pixels. However, the number of patches or land-

marks in a scene can reach tens of thousands. Directly

adopting the conventional cross-entropy loss for multi-class

segmentation requires huge memory and computational

costs as the number of parameters in the classification layer

increases proportionally to the number of patches. We pro-

pose prototype-based triplet loss to address this problem,

which avoids computing complete label scores by devel-

oping pixel-wise triplet loss with prototypes. Moreover,

prototype-based triplet loss improves the training efficiency

by online mining informative negative prototypes.

In summary, our proposed approach has the following

major contributions: (1) We propose the novel VS-Net

framework that casts the problem of visual localization from

scene-specific landmarks as a voting-by-segmentation prob-

lem. Camera poses estimated from the proposed scene-

specific landmarks are shown to be more robust and accu-

rate. (2) We propose the prototype-based triplet loss for

patch-based landmark segmentation with a large number

of classes, which shows competitive segmentation accuracy

while saving much computation and memory. To our best

knowledge, we are the first to address the problem of a large

number of classes in image segmentation. (3) The VS-Net

significantly outperforms previous scene coordinate regres-

sion methods and representative SfM-based visual localiza-

tion methods on both the popular 7Scenes dataset and the

Cambridge Landmarks dataset.

2. Related Works

Visual Localization. Visual localization aims at esti-

mating 6-DoF camera pose in the map built beforehand

for a query image. Traditional visual localization frame-

works [4, 16, 26, 61, 44, 12] build a map by SfM tech-

niques [62, 1, 67, 46, 55] with general feature detectors and

descriptors [30, 6, 43, 35, 15, 17, 28, 41]. Given a query

image, they extract the same 2D features and match them to

the 3D features in the map via descriptors. The capability

of the feature detector and the feature descriptor is of great

importance in this framework because it affects both the
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map quality and the establishment of the 2D-3D correspon-

dences in a query image, which determines the localization

accuracy. Many feature detectors and descriptors have been

proposed, such as handcrafted features [30, 6, 31, 43, 22]

and learned features [35, 15, 17, 41, 19, 53]. In SfM-based

visual localization systems, the 3D feature points are recon-

structed with triangulation according to multiple associated

observations. They are always messy in that an ideal 3D

point may be represented by different feature points that are

not matched and merged because of large viewpoint or scale

change, which may impact the following localization.

With the development of deep learning, training a scene-

specific neural network to encode the map and localize an

image from it becomes an alternative visual localization ap-

proach. Neural pose regression [24, 23, 10, 21, 52, 59]

learns to directly predict parameters of a camera pose from

an image, which are not competitive with other visual lo-

calization frameworks in accuracy. Another method is

to predict scene coordinates [7, 8, 49, 51, 11, 9, 25, 66]

as an intermediate representation and estimate the camera

pose through a RANSAC-PnP [18, 49] algorithm, which

achieves state-of-the-art localization performance in small

and medium scenes. Recently, many works extend this

pipeline for better localization accuracy. Brachmann et

al. [7, 8] learn scene coordinate regression with differential

RANSAC. Li et al. [25] hierarchically predicts scene coor-

dinates. Zhou et al. [66] improves the regression by using

temporal information. Weinzaepfel et al. [54] propose to lo-

calize from Objects-of-Interest, which is so coarse-grained

and requires annotations.

Keypoint-based Object Pose Estimation. Keypoint is

widely utilized as an intermediate representation in ob-

ject pose estimation [38, 20, 34, 37, 50]. Many of them

showed that keypoint-based pose estimation outperforms

direct pose regression and object-customized keypoints are

better than general features. Inspired by these works, we

propose to learn to find scene-specific landmarks for visual

localization. Recently, PVNet [38] significantly improves

robustness and accuracy of object pose estimation by de-

tecting keypoints with pixel-wise votes, inspired by which,

we propose to detect scene-specific landmarks with pixel-

wise votes.

Semantic Segmentation and Large-scale Classification.

Semantic segmentation [29, 42, 60, 14, 64], which pre-

dicts pixel-wise labels according to a set of semantic cat-

egories, is a long-standing topic in computer vision and

has been widely discussed in the past decades. Unfortu-

nately, pixel-wise cross-entropy loss adopted by previous

methods devours a lot of memory and computation when

the number of categories is large. Furthermore, the classi-

fier matrix can not be learned effectively due to the large

variance of gradients [57]. Large-scale classification is

also encountered in many other tasks, such as person re-

identification [57, 63, 65, 27], face recognition [48, 56], etc.

Online instance matching (OIM) [57] loss and proxy-based

metric learning [5, 32, 39] share a similar idea that main-

tains a memory bank containing a feature prototype for each

label. However, the number of pixels in an image is quite

large, and they still compute scores between each data point

and each label, which runs into the same situation of cross-

entropy loss. To tackle this issue, we propose the prototype-

based triplet loss that simultaneously maintains a prototype

for each class and a network to predict class labels by im-

posing pixel-wise triplet loss on prototypes.

3. Method

State-of-the-art visual localization methods for small-

scale scenes are dominated by scene coordinate regression

based methods [7, 8] that establish dense 2D-to-3D corre-

spondences (scene coordinates) between each pixel in an

input query image and the 3D surface points of a scene.

However, a large portion of predicted scene coordinates

shows high re-projection errors, which increase the chance

of localization failure and deteriorate the localization accu-

racy of the follow-up RANSAC-PnP algorithms. To tackle

the issues, we propose the Voting with Segmentation Net-

work (VS-Net) to identify a series of scene-specific land-

marks (Fig. 2) and establish their correspondences to the 3D

map for achieving accurate localization. The scene-specific

landmarks are sparsely and directly defined from a scene’s

3D surfaces. Given different viewpoints of the training im-

ages, we can project the scene-specific landmarks and their

surrounding surface patches to the image planes to identify

their corresponding pixels in the images. In this way, we ob-

tain the pixels of the surrounding patches of each landmark

in the multiple training images. The problem of localizing

the scene-specific landmarks from the images can be cast

as 2D patch-based landmark segmentation and pixel-wise

landmark location voting.

During the training phase, for all pixels corresponding

to the same surrounding surface patch of a landmark, their

outputs are required to predict the same segmentation label

(landmark ID) via patch-based landmark segmentation of

the proposed VS-Net. Another landmark location branch

is introduced to make each pixel responsible for estimating

the 2D location of its corresponding landmark by outputting

the directional vectors pointing towards the landmark’s 2D

projection.

For inference, given a new input image, we obtain the

landmark segmentation map and the landmark location vot-

ing map from the VS-Net. The 2D-to-3D landmark cor-

respondences can then be established based on the land-

mark segmentation and location voting maps. Unlike out-

lier 2D-to-3D correspondences from scene coordinate re-

gression methods that can only be rejected by RANSAC

PnP algorithms, landmarks from our proposed approach
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VS-Net
Encoder Seg Decoder

Vote Decoder Vote Direction 2D-3D CorrespondencePose

Figure 2: Visual localization by VS-Net. There are two decoder branches respectively predicting a landmark segmentation

map and a pixel-wise voting map, from which we can detect the location and labels of landmarks. After establishing 2D-3D

correspondences according to the landmark labels, we can estimate the 6-DoF camera pose with a standard RANSAC-PnP.

that do not have high enough voting confidence would be

directly dropped, which prevent estimating camera poses

from poorly localized landmarks (Fig. 1). Furthermore, the

correspondences built upon scene coordinate methods can

be easily influenced by unstable predictions, while minor

disturbed votes do not deteriorate the accuracy of the voted

landmark locations in our method because they would be fil-

tered by the within-patch RANSAC intersection algorithm.

3.1. Creation of Scenespecific 3D Landmarks

Given each scene for visual localization, we can obtain

the scene’s 3D surfaces from existing 3D reconstruction al-

gorithms, such as multiview stereo [47], Kinect fusion [33],

etc. The proposed scene-specific 3D landmarks are created

based on the reconstructed 3D surfaces. We partition the

3D surfaces into a series of 3D patches with the 3D over-

segmentation algorithm, Supervoxel [36]. The center points

of the n over-segmented 3D patches {q1, . . . ,qn} ∈ R
3 are

chosen as the scene-specific landmarks for localization. As

Supervoxel produces patches of similar sizes, the generated

landmarks are mostly uniformly scattered on the 3D sur-

faces, which can provide enough landmarks from different

viewpoints and therefore benefit localization robustness.

Given the training images along with camera poses of

a scene, the 3D scene-specific landmarks q1, . . . ,qn, and

their associated 3D patches can be projected to the 2D im-

ages. For each image, we can generate a landmark segmen-

tation map S ∈ Z
H×W and a landmark location voting map

d ∈ R
H×W×2. For patch-based landmark segmentation,

each pixel i with coordinate pi = (ui, vi) is assigned the

landmark label (ID) j determined by the projection of the

3D patches. If a pixel corresponds to some region that is not

covered by the projected surfaces, such as the sky or distant

objects, a background label 0 is assigned to it to represent

that this pixel is noneffective for visual localization.

For landmark location voting, we first compute a land-

mark qj’s projected 2D location lj = P(qj ,K,C) ∈ R
2

by projecting the 3D landmark according to the camera in-
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Figure 3: Prototype-based triplet loss. (a) Given a pixel i
with its mean class embeddings Mi+ calculated with pixels

belonging to the same label i+, we find its k negative near-

est neighbors in the prototype set. (b) We formulate pixel-

wise prototype-based triplets where positive prototype is

P′
i+

and the negative prototype is sampled from the mined

K neighbors Pi− .

trinsic matrix K and the camera pose parameters C. Each

pixel i belonging to landmark j’s patch is responsible for

predicting the 2D directional vector di ∈ R
2 pointing to-

wards the j’s 2D projection, i.e.

di = (lj − pi)/||lj − pi||2, (1)

where di is a normalized 2D vector denoting the landmark

j’s direction.

After defining the ground-truth landmark segmentation

and location voting maps, S and d, we can supervise the

proposed VS-Net to predict the two maps. After training,

VS-Net can predict the two maps for a query image, from

which we can establish accurate 2D-to-3D correspondences

for achieving robust visual localization.

3.2. VotingwithSegmentation Network with
Prototypebased Triplet Loss

The proposed Voting-with-Segmentation Network (VS-

Net) consists of an image encoder to encode the image
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into visual feature maps, a segmentation decoder to predict

patch-based landmark segmentation map, and a voting de-

coder for generating the landmark voting map. The two

maps are responsible for estimating landmarks’ 2D loca-

tions as detailed below. In contrast with scene coordinate re-

gression that relies on a neural network with a small recep-

tive field to avoid overfitting, as discussed by Brachmann et

al. [25], the prediction of the pixel-wise landmark labels

and landmark directional votes can benefit from contextual

information. We use DeepLabv3 [13], which enlarges the

receptive field with atrous spatial pyramid pooling, as the

backbone of our VS-Net.

Patch-based landmark segmentation with prototype-

based triplet loss. Conventional semantic segmentation

tasks generally adopt the cross-entropy loss to supervise

complete categorical confidence vectors of all predicted

pixels. However, our landmark segmentation requires to

output segmentation maps with a large number of classes

(landmarks) to effectively model each scene. A common

scene in the 7Scenes dataset can consist of up to 5000 land-

marks. Simply supervising a 5000-class segmentation map

of size 640× 480 with the cross-entropy loss requires 34.3
GFLOPS and 5.7 GB memory, which can easily drain com-

putational resources of even modern GPUs.

To address this issue, we propose a novel prototype-

based triplet segmentation loss with online hard negative

sampling to supervise semantic segmentation with a large

number of classes. It maintains and updates a set P of learn-

able class prototype embeddings, each of which is respon-

sible for a semantic class, and Pj denotes the jth class’s

embedding. Intuitively, pixel embeddings of the jth class

should be close to Pj and be far away from other classes’

prototypes. Our proposed loss is designed based on the

triplet loss with an online negative sampling scheme.

Specifically, given a pixel-wise embedding map E out-

put by the segmentation branch of VS-Net and the class

prototype set P, the individual embeddings are first L2 nor-

malized and are then optimized to minimize the following

prototype-based triplet loss for each pixel i’s embedding Ei,

Lseg =
∑

all i

max(0,m+ sim(Ei,Pi−)− sim(Ei,Pi+)),

(2)

where sim(a, b) = a
T
b

‖b‖·‖b‖ measures the cosine similarity

between a pixel embedding and a class prototype embed-

ding, m represents the margin of the triplet loss, Pi+ de-

notes the ground-truth (positive) class’s prototype embed-

ding corresponding to pixel i, and Pi− denotes a sampled

non-corresponding (negative) class prototype embedding of

i (to be discussed below).

For each pixel i, how to determine its negative-class pro-

totype embedding Pi− in the above prototype-based triplet

loss has crucial impacts on the final performance and ran-

domly sampling negative classes would make the training

over-simplified. Given an input image, we observe that the

number of active landmarks (i.e. at least one pixel in the im-

age belonging to the landmarks) is limited. In addition, pix-

els belonging to the same patch of a landmark are spatially

close to each other and would share similar hard negative

prototypes because they have similar embeddings. We,

therefore, propose to mine representative negative classes

for each active landmark, and each pixel randomly samples

a negative class from the mined class set to form represen-

tative triplets.

Specifically, given a pixel i with an active landmark

(class) index i+, we first retrieve all pixel embeddings cor-

responding to the landmark i+ in the input image and take

their average to obtain the landmark’s mean class embed-

ding Mi+ from the current image. The mean class embed-

ding is then used to retrieve the k-nearest-neighbor negative

prototypes Pi− from the prototype embedding set. Such

kNN negative prototypes can be considered as hard nega-

tive classes. The pixel i’s single negative prototype embed-

ding Pi− to be used in the triplet loss (Eq. (2)) is uniformly

sampled from the kNN negative prototype set (Fig. 3).

The proposed prototype-based triplet loss is much more

efficient than the conventional cross-entropy loss when used

for supervising semantic segmentation as it only computes

complete class scores for active landmarks rather than for

all pixels. With an input image of size 640 × 480, the con-

ventional cross-entropy loss costs 36.9 GFLOPS and 5.7GB

memory. In contrast, if there are 100 active labels in an

image, our proposed prototype-based triplet loss costs only

26.7 MFLOPS and 3.08 MB memory, where the kNN hard

negative search costs 12.0 MFLOPS and 1.91 MB memory,

and the triplet loss itself only costs 14.7 MFLOPS and 1.17
MB memory (Tab. 1). OIM loss [57] is a popular loss for su-

pervising large-scale classification problems. However, for

each sample, it still needs to compute scores of belonging

to all classes. As each image has a large number of pix-

els, it is still impractical to adopt the OIM loss in semantic

segmentation.

Pixel-wise voting for landmark location. Given the seg-

mentation map S generated from the above-introduced seg-

mentation decoder, each pixel i in the input image is ei-

ther assigned a landmark label Si or a noneffective label 0
denoting too distant objects or regions (e.g., sky). We in-

troduce another voting decoder for determining landmarks’

projected 2D locations in the given image. The decoder out-

puts a directional voting map d, where each pixel i outputs

a 2D directional vector di (Eq. (1)) pointing towards its cor-

responding landmark’s 2D location (according to Si). The

voting decoder is supervised with the following loss,

Lvote(i) =
∑

all i

1(Si 6= 0)||d̂i − di||1, (3)
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(a) SIFT features (b) Scene-specific landmarks

(c) Landmark segmentation map (d) Landmark voting map

Figure 4: Comparison of (a) SIFT features and (b) the pro-

posed scene-specific landmarks. (c-d) The scene-specific

landmarks in (b) are obtained based on (c) landmark seg-

mentation map and (d) landmark location voting map.

where 1 denotes the indicator function, and di and d̂i are

ground-truth and predicted voting directions of pixel i.
Overall loss function. The overall loss Loverall is the com-

bination of the patch-based landmark segmentation loss and

landmark direction voting loss,

Loverall = Lseg(i) + λLvote(i), (4)

where λ weights the contributions of the loss terms.

Localization with landmark segmentation and voting

maps. In the localization stage, pixels that are predicted to

have the same landmark label in the landmark segmentation

map are grouped together and we estimate its correspond-

ing landmark location by computing the intersection of the

landmark directional votes from the predicted voting map,

which is dubbed the voting-by-segmentation algorithm.

Particularly, given the segmentation map, we first filter

out landmark patches whose sizes are smaller than a thresh-

old Ts because too small landmark segments are generally

unstable. The initial estimation of the 2D location l̂j of the

landmark j is computed from RANSAC with a vote inter-

section model [38], which generates multiple landmark lo-

cation hypotheses by computing intersections of two ran-

domly sampled directional votes and choosing the hypoth-

esis having the most inlier votes. Then, the locations are

further refined by an iterative EM-like algorithm. In the E-

step, we collect inlier directional votes for the landmark j

from the surrounding circular region of the current l̂
(t)
j . In

the M-step, we adopt the least-square method introduced by

Antonio et al. [2] to compute the updated landmark location

l̂
(t+1)
j from the votes in the circular region. During the itera-

tions, a voted landmark not supported by enough directional

votes, indicating low voting consistency, would be dropped.

There are inevitable some disturbed pixels and some dis-

ordered regions caused by environmental noise or unfaithful

cross entropy proto. triplet

Total kNN Triplet

Computation 36.9 GF 12.0 MF 14.7 MF

Memory 5.7 GB 1.91 MB 1.17 MB

Table 1: Computation and memory cost comparison. GF

and MF denotes GFLOPS and MFLOPS.

surfaces. As shown in Fig. 4, the landmarks generated by

our voting-by-segmentation algorithm achieve high accu-

racy and robustness against these distracting factors because

we can accurately detect landmark locations by filtering dis-

turbed pixel votes (pointed by the red arrow) and further

reject unstable regions (pointed by the green arrow) in ad-

vance by checking the voting consistency. In contrast, clut-

tered SIFT features can easily result in erroneous matches,

and the detected locations are easily disturbed on locally

unstable regions, e.g. trees. Finally, all the estimated 2D

landmarks in the query image naturally associate with the

3D landmarks in the scene, and the camera pose can be re-

liably estimated with standard RANSAC-PnP algorithm.

4. Experiments

In this section, we conduct a comparison with state-of-

the-art methods and perform an ablation study to investigate

individual components. Implementation details and extra

results can be found in the supplementary materials.

4.1. Dataset

We evaluate our VS-Net on two standard visual local-

ization benchmark datasets. (1) Microsoft 7-Scenes Dataset

consists of seven static indoor scenes, which provides data

recorded by a Kinect RGB-D sensor. The 3D surfaces,

along with the camera poses, are computed from Kinect-

Fusion [33]. (2) Cambridge Landmarks Dataset contains

six urban scenes. The images are collected by a smartphone

and the camera poses are recovered from SfM. The Great-

Court and the King’sCollege are two challenging scenes that

are affected by varying lighting conditions and dynamic ob-

jects. We reconstruct a dense 3D surface through multi-

view stereo for each scene with given camera poses.

4.2. Comparison with Stateofthearts

Previous visual localization systems that achieve good

performance are SfM-based frameworks [16, 26, 61, 44]

and scene coordinate regression frameworks [25, 8]. We

compare VS-Net with these two frameworks on the 7-

Scenes dataset and Cambridge Landmarks dataset. We do

not present the results of neural pose regression [24, 23,

10, 21] because their pose accuracies are not competitive

enough. There are representative SfM-based visual local-

ization methods [45, 44]. Active Search [45] utilizes SIFT

features, which is the state-of-the-art method using hand-

crafted features with a priority-based matching algorithm.
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SSL SfM Scene Coordinate

VS-Net (Ours) AS [45] HF-Net [44] HSC-Net [25] Reg [25] DSAC++ [8]

Chess 1.5cm, 0.5◦ 4cm, 1.96◦ 2.6cm, 0.9◦ 2.1cm, 0.7◦ 2.1cm, 1.0◦ 1.5cm, 0.5◦

Fire 1.9cm, 0.8◦ 3cm, 1.53◦ 2.7cm, 1.0◦ 2.2cm, 0.9◦ 2.4cm, 0.9◦ 2.0cm, 0.9◦

Heads 1.2cm, 0.7◦ 2cm, 1.45◦ 1.4cm, 0.9◦ 1.2cm, 0.9◦ 1.2cm, 0.8◦ 1.3cm, 0.8◦

Office 2.1cm, 0.6◦ 9cm, 3.61◦ 4.3cm, 1.2◦ 2.7cm, 0.8◦ 3.1cm, 0.9◦ 2.6cm, 0.7◦

Pumpkin 3.7cm, 1.0◦ 8cm, 3.10◦ 5.8cm, 1.6◦ 4.0cm, 1.0◦ 4.3cm, 1.1◦ 4.3cm, 1.1◦

Kitchen 3.6cm, 1.1◦ 7cm, 3.37◦ 5.3cm, 1.6◦ 4.0cm, 1.8◦ 4.5cm, 1.4◦ 3.8cm, 1.1◦

Stairs 2.8cm, 0.8◦ 3cm, 2.22◦ 7.2cm, 1.9◦ 3.1cm, 0.8◦ 3.8cm, 0.9◦ 9.1cm, 2.5◦

Avg 2.4cm, 0.8◦ 5.1cm, 2.5◦ 4.2cm, 1.3◦ 2.7cm, 1.0◦ 3.1cm, 1.0◦ 3.5cm, 1.1◦

GreatCourt 0.22m, 0.1◦ - 0.76m, 0.3◦ 0.28m, 0.2◦ 1.25m, 0.6◦ 0.40m, 0.2◦

KingsCollege 0.16m, 0.2◦ 0.42m, 0.55◦ 0.34m, 0.4◦ 0.18m, 0.3◦ 0.21m, 0.3◦ 0.18m, 0.3◦

OldHospital 0.16m, 0.3◦ 0.44m, 1.01◦ 0.43m, 0.6◦ 0.19m, 0.3◦ 0.21m, 0.3◦ 0.20m, 0.3◦

ShopFacade 0.06m, 0.3◦ 0.12m, 0.40◦ 0.09m, 0.4◦ 0.06m, 0.3◦ 0.06m, 0.3◦ 0.06m, 0.3◦

St.MarysChurch 0.08m, 0.3◦ 0.19m, 0.54◦ 0.16m, 0.5◦ 0.09m, 0.3◦ 0.16m, 0.5◦ 0.13m, 0.4◦

Avg 0.136m, 0.24◦ - 0.356m, 0.31◦ 0.160m, 0.28◦ 0.378m, 0.40◦ 0.194m, 0.3◦

Table 2: Visual localization accuracy of state-of-the-art methods. We evaluate the localization performance by median

positional error and angular error. The bar (-) means Active Search fails in the GreatCourt.

Figure 5: Cumulative pose error distribution of representative methods. For each dataset, we combine the poses of all scenes

together, and count the ratio of poses under an increasing error threshold.

(a) Severe Occlusion

(b) Severe Lighting Condition

Input Image DSAC++ Ours

Input Image DSAC++ Ours

Figure 6: Localization in tough environments. We quan-

titatively compare VS-Net and DSAC++ by projecting the

model into the original frames with estimated camera poses.

HF-Net [44] computes camera poses with NetVLAD [3]

and SuperPoint [15], which are learned image features

and local features, respectively. For scene coordinate re-

gression methods, we select Reg [25], DSAC++ [8], and

HSC-Net [25] for comparison. Reg [25] is a regression-

only method, which directly regresses the scene coordi-

nates from a query image. It is regarded as the baseline

in scene coordinate regression methods. DSAC++ [8] de-

signs a pose hypothesis selection algorithm based on Reg.

HSC-Net [25] is a state-of-the-art scene coordinate regres-

sion method, which predicts hierarchical scene coordinates

to improve the localization performance.

We compare the localization accuracy of VS-Net with

the above mentioned methods. Positional error and angular

error are the main metrics for evaluating pose accuracies.

Table 2 presents the median of pose errors in each indi-

vidual scene. SfM-based methods, including Active Search

and HF-Net, produce mediocre results because the general-

purpose features are not accurate enough. VS-Net achieves

better performances in all scenes. Even compared with im-

proved scene coordinate regression methods (HSC-Net and

DSAC++), VS-Net still outperforms them in most scenes.

Fig. 5 shows the cumulative distributions of overall pose

error across scenes, which illustrate that the holistic perfor-

mance of VS-Net is better than the others. Moreover, VS-

Net is able to obtain high-quality poses even though running

into challenging cases (Fig. 6) while DSAC++, an improved

scene coordinate regression method, fails.
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Cross Entropy Proto. Triplet (Avg FLOPS/Bytes)

(FLOPS/Bytes) A.L. w/o kNN w/ kNN

Chess n/a (30G/5G) 470 0.45 (0.01G/1M) 0.80 (0.06G/9M)

Fire n/a (35G/6G) 662 0.34 (0.01G/1M) 0.69 (0.10G/14M)

Heads n/a (69G/12G) 826 0.25 (0.01G/1M) 0.58 (0.21G/32M)

Office n/a (34G/6G) 409 0.4 (0.01G/1M) 0.75 (0.06G/9M)

Pumpkin n/a (32G/5G) 519 0.43 (0.01G/1M) 0.61 (0.07G/10M)

Kitchen n/a (44G/7G) 496 0.26 (0.01G/1M) 0.58 (0.09G/13M)

Stairs n/a (95G/16G) 224 0.45 (0.01G/1M) 0.68 (0.09G/13M)

Table 3: Segmentation accuracy on 7-Scenes by our VS-Net

with different segmentation losses. n/a denotes that cross

entropy loss alone already occupies too much memory even

for a single image and cannot be used in practice. A.L.

denotes the average active labels of images in the scene.

Size 1.50m 1.75m 2.00m 2.25m 2.50m 2.75m 3.00m

Num. 7418 5333 4089 3278 2603 2099 1804

Pos. 16cm 15cm 16cm 15cm 17cm 17cm 18cm

Ang. 0.3◦ 0.2◦ 0.2◦ 0.3◦ 0.3◦ 0.3◦ 0.3◦

Size 10.0cm 12.5cm 15.0cm 17.5cm 20.0cm 25.0cm 30.0cm

Num. 10918 6501 4330 3013 2280 1409 925

Pos. 1.54cm 1.52cm 1.52cm 1.52cm 1.57cm 1.58cm 1.65cm

Ang. 0.54◦ 0.53◦ 0.50◦ 0.50◦ 0.54◦ 0.54◦ 0.55◦

Table 4: Localization accuracy in King’s College (above)

and chess (below) with different patch sizes.

4.3. Ablation study

Scene-specific landmarks vs. scene coordinates. We pro-

pose a new 2D-to-3D correspondence representation, the

scene-specific landmarks, to replace the pixel-wise scene

coordinates in deep learning based methods [25, 8]. To

compare these two representations, we remove the vote de-

coder in our VS-Net and directly regress pixel-wise scene

coordinates with our segmentation decoder, which is sim-

ilar to the Reg [25], and keep other settings the same. Its

average median errors of camera poses in the Microsoft

7-Scenes dataset and Cambridge Landmark dataset are

36.5cm/16◦ and 99cm/1.7◦, while our scene-specific land-

marks achieves 2.4cm/0.8◦ and 14cm/0.24◦. It is also far

worse than Reg because the large receptive field of our VS-

Net impacts scene coordinate regression.

Localization accuracy with different patch sizes. Our

landmarks are generated through 3D surface over-

segmentation, where patch size is a hyper-parameter that

determines the number and distribution of landmarks in

VS-Net. To explore the influence of different patch sizes,

we train and evaluate VS-Net with the landmark segmenta-

tion map and pixel-wise voting map predicted with different

patch sizes. We show the corresponding landmark numbers

and median pose errors of different patch sizes in Table 4.

The best choice of patch size for King’s College and chess

are 1.75m and 15cm, respectively. Both a smaller size and

a larger size would deteriorate the localization accuracy but

do not severely impact it, which indicates that VS-Net is not

very sensitive to the patch size.

Figure 7: Localization pose errors of different methods

when a noisy occlusion block of different sizes (noise ra-

tios) is introduced into query images.

Localization with challenging occlusions. To evaluate the

robustness of visual localization systems against environ-

mental noise, we use a noisy occlusion block that contains

3-channel random noise ranging from 0 to 255 to cover a

portion of the query image randomly. The height and width

of the noise blocks are set as 10%-70% of the image, which

correspond to 1%-49% noise ratio and can indicate differ-

ent levels of noise interference. As shown in Fig. 7, we

compare the median pose error of our VS-Net with those

of HSC-Net [25] and Reg [25] under different noise ratios.

VS-Net consistently results in lower pose errors.

Landmark segmentation with prototype-based triplet

loss. To address the problem of the too large number of

landmarks in our landmark segmentation sub-task, we pro-

pose the prototype-based triplet loss for our VS-Net. We

conduct an experiment in Table 3 to compare segmenta-

tion loss functions on the 7-Scenes dataset. The conven-

tional cross entropy loss does not work for VS-Net because

it consumes much computation and memory. We present

its theoretical computational and memory costs for a single

image of size 640 × 480 in the braces. We also test us-

ing the prototype-based triplet loss for landmark segmenta-

tion but without the kNN negative mining, which is able to

train VS-Net but achieves inferior performances. Our com-

plete prototype-based triplet has low latency and computa-

tion complexity while maintaining superior performance.

5. Conclusion

In this paper, we have proposed a novel visual local-

ization framework that represents the map by patches and

landmarks, and design a neural network VS-Net to detect

the scene-specific landmarks on images. The experiments

on the public datasets demonstrate the effectiveness of the

proposed framework. Utilizing hierarchical spatial struc-

ture and temporal information has been proved beneficial in

both SfM-based methods and scene coordinate regression.

Exploring how to improve scene-specific landmarks with

these strategies will be the direction of our future work.
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