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Abstract

This paper addresses the video rescaling task, which

arises from the needs of adapting the video spatial reso-

lution to suit individual viewing devices. We aim to jointly

optimize video downscaling and upscaling as a combined

task. Most recent studies focus on image-based solutions,

which do not consider temporal information. We present

two joint optimization approaches based on invertible neu-

ral networks with coupling layers. Our Long Short-Term

Memory Video Rescaling Network (LSTM-VRN) leverages

temporal information in the low-resolution video to form

an explicit prediction of the missing high-frequency infor-

mation for upscaling. Our Multi-input Multi-output Video

Rescaling Network (MIMO-VRN) proposes a new strategy

for downscaling and upscaling a group of video frames si-

multaneously. Not only do they outperform the image-based

invertible model in terms of quantitative and qualitative re-

sults, but also show much improved upscaling quality than

the video rescaling methods without joint optimization. To

our best knowledge, this work is the first attempt at the joint

optimization of video downscaling and upscaling.

1. Introduction

With the increasing popularity of video capturing de-

vices, a tremendous amount of high-resolution (HR) videos

are shot every day. These HR videos are often downscaled

to save storage space and streaming bandwidth, or to fit

screens with lower resolutions. It is also common that the

downscaled videos need to be upscaled for display on HR

monitors [11, 16, 21, 2, 28].

In this paper, we address the joint optimization of video

downscaling and upscaling as a combined task, which is

*Both authors contributed equally to this work.
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Figure 1. Comparison of video rescaling frameworks according to

the downscaling and upscaling strategies: (a) single-input single-

output (SISO) for both operations, (b) SISO for downscaling and

multi-input single-output (MISO) for upscaling, and (c) multi-

input multi-output (MIMO) for both operations (the proposed

method).

referred to as video rescaling. This task involves downscal-

ing an HR video into a low-resolution (LR) one, followed

by upscaling the resulting LR video back to HR. Our aim

is to optimize the HR reconstruction quality while regular-

izing the LR video to offer comparable visual quality to

the bicubic-downscaled video for human perception. It is

to be noted that the rescaling task differs from the super-

resolution task; at inference time, the former has access to

the HR video while the latter has no such information.

One straightforward solution to video rescaling is to

downscale an HR video by predefined kernels and upscale

the LR video with super-resolution methods [14, 17, 31, 25,

3, 6, 1, 22, 19, 10, 24, 30, 8, 15, 9]. With this solution,
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the downscaling is operated independently of the upscal-

ing although the upscaling can be optimized for the cho-

sen downscaling kernels. The commonly used downscaling

(e.g. bicubic) kernels suffer from losing the high-frequency

information [20] inherent in the HR video, thus creating a

many-to-one mapping between the HR and LR videos. Re-

constructing the HR video by upscaling its LR represen-

tation becomes an ill-posed problem. The independently-

operated downscaling misses the opportunity of optimizing

the downscaled video to mitigate the ill-posedness.

The idea of jointly optimizing downscaling and upscal-

ing was first proposed for image rescaling [11, 16, 21, 2].

It adds a new dimension of thinking to the studies of learn-

ing specifically to upscale for a given downscaling method

[14, 17, 31, 25, 3, 6]. Recognizing the reciprocality of the

downscaling and upscaling operations, IRN [28] recently

introduced a coupling layer-based invertible model, which

shows much improved HR reconstruction quality than the

non-invertible models.

These jointly optimized image-based solutions

(Fig. 1(a)) are not ideal for video rescaling. For example, a

large number of prior works [1, 22, 19, 10, 24, 30, 8, 15, 9]

for video upscaling have adopted the Multi-Input Single-

Output (MISO) strategy to reconstruct one HR frame from

multiple LR frames and/or previously reconstructed HR

frames (Fig. 1(b)). They demonstrate the potential for

recovering the missing high-frequency component of a

video frame from temporal information. However, image-

based solutions do not consider temporal information. In

addition, two issues remain widely open as (1) how video

downscaling and upscaling could be jointly optimized and

(2) how temporal information could be utilized in the joint

optimization framework to benefit both operations.

In this paper, we present two joint optimization ap-

proaches to video rescaling: Long Short-Term Memory

Video Rescaling Network (LSTM-VRN) and Multi-Input

Multi-Output Video Rescaling Network (MIMO-VRN).

The LSTM-VRN downscales an HR video frame-by-frame

using a similar coupling architecture to [28], but fuses

multiple downscaled LR video frames via LSTM to es-

timate the missing high-frequency component of an LR

video frame for upscaling (Fig. 1(b)). LSTM-VRN shares

similar downscaling and upscaling strategies to the tradi-

tional video rescaling framework. In contrast, our MIMO-

VRN introduces a completely new paradigm by adopting

the MIMO strategy for both video downscaling and upscal-

ing (Fig. 1(c)). We develop a group-of-frames-based (GoF)

coupling architecture that downscales multiple HR video

frames simultaneously, with their high-frequency compo-

nents being estimated also simultaneously in the upscaling

process. Our contributions include the following:

• To the best of our knowledge, this work is the first at-

tempt at jointly optimizing video downscaling and up-
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Figure 2. Taxonomy of the prior works on image/video rescal-

ing. The SISO, MISO and MIMO indicate the strategies (i.e. the

input/output format) for downscaling and upscaling. SISR and

VSR stand for single image super-resolution and video super-

resolution, respectively. CAR [21] and IRN [28] are joint opti-

mization schemes for image rescaling.

scaling with invertible coupling architectures.

• Our LSTM-VRN and MIMO-VRN outperform the

image-based invertible model [28], showing signifi-

cantly improved HR reconstruction quality and offer-

ing LR videos comparable to the bicubic-downscaled

video in terms of visual quality.

• Our MIMO-VRN is the first scheme to introduce the

MIMO strategy for video upscaling and downscaling,

achieving the state-of-the-art performance.

2. Related Work

This section surveys video rescaling methods, with a par-

ticular focus on their downscaling and upscaling strategies.

We regard the image-based rescaling methods as possible

solutions for video rescaling. Fig. 2 is a taxonomy of these

prior works.

2.1. Upscaling with Predefined Downscaling

The traditional image super-resolution [14, 17, 31, 25, 3,

6] or video super-resolution [1, 22, 19, 10, 24, 30, 8, 15, 9]

methods are candidate solutions to video upscaling. The

former is naturally a single-input single-output (SISO) up-

scaling strategy, which generates one HR image from one

LR image. The latter usually involves more than one LR

video frame in the upscaling process, i.e. the MISO upscal-

ing strategy, in order to leverage temporal information for

better HR reconstruction quality. Most of the approaches

in this category adopt a SISO downscaling strategy with a

pre-defined kernel (e.g. bicubic) chosen independently of

the upscaling process. Therefore, they are unable to adapt

the downscaled images/videos to the upscaling.

2.2. Upscaling with Jointly Learned Downscaling

To mitigate the ill-posedness of the image upscaling task,

some works learn upscaling and downscaling jointly by
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Figure 3. The detailed downscaling operation of IRN [28]. The

model performs ×4 downscaling with two downscaling modules,

each of which comprises a 2-D Haar transform and eight coupling

layers. Each downscaling module halves the horizontal and verti-

cal resolutions of the input image.

encoder-decoder architectures [11, 16, 21, 2]. They turn

the fixed downscaling method into a learnable model in or-

der to adapt the LR image to the upscaling process that is

learned jointly. The training objective usually requires the

LR image to be also suitable for human perception. Re-

cently, IRN [28] introduces an invertible model [4, 5, 13]

to this joint optimization task. It is able to perform image

downscaling and upscaling by the same set of neural net-

works configured in the reciprocal manner. It provides a

means to model explicitly the missing high-frequency in-

formation due to downscaling by a Gaussian noise.

2.3. Invertible Rescaling Network

IRN [28] is an invertible model designed specifically for

image rescaling. The forward model of IRN comprises a

2-D Haar transform and eight coupling layers [4, 5, 13], as

shown in Fig. 3. By applying the 2-D Haar transform, an

input image x ∈ R
C×H×W is first decomposed into one

low-frequency band y′ ∈ R
C×H

2
×W

2 and three other high-

frequency bands z′ ∈ R
3C×H

2
×W

2 . These two components

y′, z′ are subsequently processed via the coupling layers in

a way that the output y becomes a visually-pleasing LR im-

age and the z encodes the complementary high-frequency

information inherent in the input HR image x. In theory,

the inverse coupling layers can recover x losslessly from y
and z because the model is invertible. In practice, z is un-

available for upscaling at inference time. The training of

IRN requires z to follow a Gaussian distribution so that at

inference time, a Gaussian sample ẑ can be drawn as a sub-

stitute for the missing high-frequency component.

Although IRN achieves superior results on the image

rescaling task, it is not optimal for video rescaling. Essen-

tially, IRN is an image-based method. This work presents

the first attempt at jointly optimizing video downscaling and

upscaling with an invertible coupling architecture (Fig. 3).

3. Proposed Method

Given an HR video composed of N video frames

{xt}Nt=1, where xt ∈ R
C×H×W , the video rescaling task

involves (1) downscaling every video frame xt to its LR

counterpart yt ∈ R
C×H

4
×W

4 , where the quantized ver-

sion ŷt of which forms collectively an LR video {ŷt}Nt=1,

and (2) upscaling the LR video to arrive at the recon-

structed HR video {x̂t}Nt=1. Unlike most video super-

resolution tasks, which focus primarily on learning upscal-

ing for a given downscaling method, this work optimizes

jointly the downscaling and upscaling as a combined task. It

has been shown in many traditional video super-resolution

works [1, 22, 19, 7, 23, 24, 10, 30, 9, 15, 8] that the

extra temporal information in videos allows the lost high-

frequency component of a video frame due to downscaling

to be recovered to some extent. This work makes the first

attempt to explore how such temporal information could as-

sist downscaling in producing an LR video that can be up-

scaled to offer better super-resolution quality in an end-to-

end fashion. In a sense, our focus is on both downscal-

ing and upscaling. The objective is to minimize the dis-

tortion between {x̂t}Nt=1 and {xt}Nt=1 in such a combined

task while the LR video {ŷt}Nt=1 is regularized to offer com-

parable visual quality to the bicubic-downscaled video for

human perception. It is to be noted that the LR video is

not meant to be exactly the same as the bicubic-downscaled

video since doing so may not lead to the optimal downscal-

ing and upscaling in our task.

The reciprocality of the downscaling and upscaling op-

erations motivates us to choose an invertible network for

our task. With the superior performance of coupling layer

architectures in recovering high-frequency details of LR im-

ages [28], we develop our downscaling and upscaling net-

works, especially for video, using a similar invertible archi-

tecture (Sec. 2.3) as the basic building block.

We propose two approaches, LSTM-VRN and MIMO-

VRN, to configure or extend these building blocks for joint

learning of video downscaling and upscaling. Their overall

architectures are depicted in Fig. 4, with detailed operations

given in the following sections.

3.1. LSTMbased Video Rescaling Network

Like most video super-resolution techniques, the LSTM-

VRN (Fig. 4(a)) adopts the SISO strategy to downscale HR

video frames {xt}Nt=1 individually to their LR ones {ŷt}Nt=1

by the forward model of the invertible network. The oper-

ation is followed by the MISO-based upscaling, which de-

parts from the idea of drawing an input-agnostic Gaussian

noise [28] for complementary high-frequency information.

Specifically, we fuse the current LR frame ŷt and its neigh-

bouring frames {ŷt−i, ŷt+i}Li=1 by a LSTM-based predic-

tive module to form an estimate ẑt of the missing high-

frequency component zt at inference time. The resulting
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Figure 4. Overview of the proposed LSTM-VRN and MIMO-VRN for video rescaling. Both schemes involve an invertible network with

coupling layers for video downscaling and upscaling. In part (a), LSTM-VRN downscales every video frame xt independently and forms

a prediction ẑt of the high-frequency component zt from the LR video frames {ŷi}
t+L
i=t−L by a bi-directional LSTM that operates in a

sliding window manner. In part (b), MIMO-VRN downscales a group of HR video frames {xi}
t+g

i=t into the LR video frames {ŷi}
t+g

i=t

simultaneously. The upscaling is also done on a group-by-group basis, with the high-frequency components {zi}
t+g

i=t estimated from the

{ŷi}
t+g

i=t by a predictive module.

ẑt is fed to the inverse model together with the ŷt for re-

constructing the HR video frame x̂t. The fact that zt needs

to be estimated from multiple LR frames {ŷi}t+L
i=t−L deter-

mines what information should remain in the LR video to

facilitate the prediction. This connects the upscaling pro-

cess tightly to the downscaling process, stressing the impor-

tance of their joint optimization. In addition, we rely on the

inter-branch pathways of the coupling layer in the forward

model to correlate zt and yt in such a way that zt could be

better predicted from ŷt and its neighbors {ŷt−i, ŷt+i}Li=1.

The predictive module plays a key role in fusing in-

formation from ŷt and {ŷt−i, ŷt+i}Li=1. We incorporate

Spatiotemporal-LSTM (ST-LSTM) [26] for propagating

temporal information in both forward and backward direc-

tions, in view of its recent success in video extrapolation

tasks. Eq. (1) details the forward mode of the predictive

module for time instance t:

hf
t = ST -LSTM(ft−1, h

f
t−1)

hy
t = ResidualBlock(ŷt)

at = σ(W ⊗ hy
t )

ft = (1− at)⊙ hf
t + at ⊙ hy

t

(1)

where σ is a sigmoid function, ⊗ is the standard convolu-

tion, and ⊙ is Hadamard product. Note that an attention sig-

nal at guided by the the current LR frame ŷt combines the

temporally-propagated hidden information hf
t and the fea-

tures hy
t of ŷt to yield the output ft. As Fig. 4(a) shows, the

forward propagated ft is further combined with the back-

ward propagated bt to predict ẑt through a 1x1 convolution.

For upscaling every LR video frame ŷt, the proposed

predictive module works in a sliding-window manner with

a window size of 2L + 1. That is, the forward (respec-

tively, backward) ST-LSTM always starts with a reset state

0 when accepting the input ŷt−L (respectively, ŷt+L). This

design choice is out of generalization and buffering consid-

erations. We avoid running a long ST-LSTM at inference

time because the training videos are rather short. Moreover,

the backward ST-LSTM introduces delay and buffering re-

quirements.

Finally, we note in passing that LSTM-VRN exploits

temporal information across LR video frames only for up-

scaling while its downscaling is still a SISO-based scheme,

which does not take advantage of temporal information in

HR video frames for downscaling.

3.2. MIMObased Video Rescaling Network

Our MIMO-VRN (Fig. 4(b)) is a new attempt that adopts

a MIMO strategy for both upscaling and downscaling, mak-

ing explicit use of temporal information in these opera-

tions. Here, we propose a new basic processing unit,

called Group of Frames (GoF). To begin with, the HR

input video {xt}Nt=1 is decomposed into non-overlapping

groups of frames, with each group including g frames,

namely {xt}gt=1, {xt}2gt=g+1, . . .. The downscaling pro-
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ceeds on a group-by-group basis; each GoF is downscaled

independently of each other. Within a GoF, every HR

video frame xt ∈ R
C×H×W is first transformed individ-

ually using 2-D Haar Wavelet, to arrive at its low-frequency

y′t ∈ R
C×H

2
×W

2 and high-frequency z′t ∈ R
3C×H

2
×W

2

components. We then group the low-frequency components

{y′i}t+g
i=t in a GoF as one group-type input Y ′

t ∈ R
gC×H

2
×W

2

to the coupling layers (i.e. replacing y′ in Fig. 3 with Y ′
t) and

the remaining high-frequency components {z′i}t+g
i=t as the

other group-type input Z ′
t ∈ R

3gC×H

2
×W

2 (i.e. replacing

z′ in Fig. 3 with Z ′
t). Because each group-type input con-

tains information from multiple video frames, the coupling

layers are able to utilize temporal information inherent in

one group-type input to update the other. With two down-

scaling modules, the results are a group of quantized LR

frames Ŷt = {ŷi}t+g
i=t and the group high-frequency com-

ponent Zt = {zi}t+g
i=t . It is worth noting that due to the

nature of group-based coupling, there is no one-to-one cor-

respondence between the signals in Ŷt ∈ R
gC×H

4
×W

4 and

Zt ∈ R
3gC×H

4
×W

4 .

The upscaling proceeds also on a group-by-group basis,

with the group size g and the group formation fully aligned

with those used for downscaling. As depicted in Fig. 4(b),

we employ a residual block-based predictive module to

form a prediction of the missing high-frequency compo-

nents {zi}t+g
i=t from the corresponding group of LR frames

{ŷi}t+g
i=t . Similar to the notion of the group-type inputs

for downscaling, the LR frames {ŷi}t+g
i=t and the estimated

high-frequency components {ẑi}t+g
i=t comprise respectively

the two group-type inputs Ŷt and Ẑt to the invertible net-

work operated in inverse mode. With this MIMO-based up-

scaling, a group of HR frames {x̂i}t+g
i=t are reconstructed

simultaneously.

3.3. Training Objectives

LSTM-VRN. The training of LSTM-VRN involves two

loss functions to reflect our objectives. First, to ensure

that the LR video {ŷt}Nt=1 is visually pleasing, we follow

common practice to require that {ŷt}Nt=1 have similar vi-

sual quality to the bicubic-downscaled video {xbic
t }Nt=1; to

this end, we define the LR loss as

LLR =
1

N

N
∑

t=1

‖xbic
t − ŷt‖2. (2)

Second, to maximize the HR reconstruction quality, we

minimize the Charbonnier loss [14] between the original

HR video {xt}Nt=1 and its reconstructed version {x̂t}Nt=1

subject to downscaling and upscaling:

LHR =
1

N

N
∑

t=1

√

‖xt − x̂t‖2 + ǫ2, (3)

where ǫ is set to 1 × 10−3. The total loss is Ltotal =
LHR + λLLR, where λ is a hyper-parameter used to trade-

off between the quality of the LR and HR videos.

MIMO-VRN. The training of MIMO-VRN shares the same

LLR and LHR losses as LSTM-VRN because they have

common optimization objectives. We however notice that

MIMO-VRN tends to have uneven HR reconstruction qual-

ity over video frames in a GoF (Sec. 4.4). To mitigate the

quality fluctuation in a GoF, we additionally introduce the

following center loss for MIMO-VRN:

Lcenter =
1

M × g

M
∑

m=1

mg
∑

t=(m−1)g+1

∣

∣‖xt − x̂t‖2 − cm
∣

∣ ,

(4)

where g is the group size, cm =
∑mg

t=(m−1)g+1 ‖xt −
x̂t‖2/g denotes the average HR reconstruction error in a

GoF, and M is the number of GoF’s in a sequence. Eq. (4)

encourages the HR reconstruction error of every video

frame in a GoF to approximate the average level cm.

4. Experimental Results

4.1. Setup

Datasets. For a fair comparison, we follow the common test

protocol to train our models on Vimeo-90K dataset [29].

It has 91,701 video sequences, each is 7 frames long.

Among them, 64,612 sequences are for training and 7,824

are for test. Each sequence has a fixed spatial resolution

of 448 × 256. The performance evaluation is done on two

standard test datasets, Vimeo-90K-T and Vid4 [18]. Vid4

includes 4 video clips, each having around 40 frames.

Implementation and Training Details. Our proposed

models adopt the settings from IRN [28], which consists

of two downscaling modules (Fig. 3). Each module is com-

posed of one 2-D Haar transform and eight coupling layers.

Both LSTM-VRN and MIMO-VRN have eight predictive

modules (Fig. 4) replicated and stacked for a better predic-

tion of the missing high-frequency component. The sliding

window size for LSTM-VRN is set to 7, which includes

the current LR video frame together with 6 neighbouring

LR frames (3 from the past and 3 from the future). The

GoF size g for MIMO-VRN is set to 5. For data augmen-

tation, we randomly crop training videos to 144 × 144 as

HR inputs and use their bicubic-downscaled versions (of

size 36 × 36) as LR ground-truths. We also apply random

horizontal and vertical flipping. LSTM-VRN and MIMO-

VRN share the same LR and HR training objectives (Eq. (2)

and Eq. (3)), with the λ for LLR set to 64. The training of

MIMO-VRN additionally includes the center loss (Eq. (4)),

the hyper-parameter of which is chosen to be 16. We use

Adam optimizer [12], with β1 = 0.9, β2 = 0.5 and a batch

size of 16. The weight decay is set to 1× 10−12. We use an
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Table 1. PSNR-Y / SSIM-Y comparison on Vid4 for ×4 upscaling. ’†’ represents the model adopting the joint optimization for downscaling

and upscaling. Red, green, and blue indicate the best, the second best, and the third best performance, respectively.

Downscale Upscale Method Calendar City Foliage Walk Average

SISO

SISO

DRN-L [6] 22.47 / 0.7289 26.25 / 0.7011 24.88 / 0.6681 28.84 / 0.8752 25.61 / 0.7433

CAR† [21] 24.48 / 0.8143 30.19 / 0.8444 26.98 / 0.7841 31.59 / 0.9250 28.28 / 0.8421

IRN† [28] 26.62 / 0.8850 33.48 / 0.9337 29.71 / 0.8871 35.36 / 0.9696 31.29 / 0.9188

MISO

DUF [10] 24.04 / 0.8110 28.27 / 0.8313 26.41 / 0.7709 30.60 / 0.9141 27.33 / 0.8318

EDVR-L [24] 24.05 / 0.8147 28.00 / 0.8122 26.34 / 0.7635 31.02 / 0.9152 27.35 / 0.8264

PFNL [30] 24.37 / 0.8246 28.09 / 0.8385 26.51 / 0.7768 30.65 / 0.9135 27.40 / 0.8384

TGA [9] 24.47 / 0.8286 28.37 / 0.8419 26.59 / 0.7793 30.96 / 0.9181 27.59 / 0.8419

RSDN [8] 24.60 / 0.8355 29.20 / 0.8527 26.84 / 0.7931 31.04 / 0.9210 27.92 / 0.8505

LSTM-VRN† 27.31 / 0.9039 34.36 / 0.9482 31.13 / 0.9213 36.18 / 0.9742 32.24 / 0.9369

MIMO MIMO
MIMO-VRN† 29.23 / 0.9389 35.49 / 0.9573 33.25 / 0.9535 37.17 / 0.9812 33.79 / 0.9577

MIMO-VRN-C† 28.83 / 0.9322 35.13 / 0.9544 32.72 / 0.9476 36.93 / 0.9808 33.40 / 0.9537

Table 2. PSNR-Y / SSIM-Y comparison on Vimeo-90K-T for ×4

upscaling. ’†’ represents the model adopting the joint optimization

for downscaling and upscaling. Red, green, and blue indicate the

best, the second best, and the third best performance, respectively.

Downscale Upscale Method Average

SISO

SISO

DRN-L [6] 35.63 / 0.9262

CAR† [21] 37.69 / 0.9493

IRN† [28] 40.83 / 0.9734

MISO

DUF [10] 36.37 / 0.9387

EDVR-L [24] 37.63 / 0.9487

TGA [9] 37.59 / 0.9516

RSDN [8] 37.23 / 0.9471

LSTM-VRN† 41.42 / 0.9764

MIMO MIMO
MIMO-VRN† 43.26 / 0.9846

MIMO-VRN-C† 42.53 / 0.9820

initial learning rate of 1× 10−4, which is decreased by half

for every 30k iterations. Our code is available online 1.

Baselines. We include three categories of baselines

for comparison: (1) SISO-down-SISO-up with predefined

downscaling kernels (e.g. DRN-L [6]), (2) SISO-down-

SISO-up with jointly optimized downscaling and upscaling

(e.g. CAR [21] and IRN [28]), and (3) SISO-down-MISO-

up with predefined downscaling kernels (e.g. DUF [10],

EDVR-L [24], PFNL [30], TGA [9], and RSDN [8]). The

first two categories perform video downscaling and upscal-

ing on a frame-by-frame basis. The third category includes

the state-of-the-art video super-resolution methods, where

the predefined downscaling is done frame-by-frame and the

learned upscaling is MISO-based. The predefined down-

scaling uses the bicubic interpolation method. It is to be

noted that the methods adopting the learned downscaling

perform upscaling based on their respective LR videos,

which would not be the same as the bicubic-downscaled

videos. The results for the methods in categories (1) and

(2) are produced using the pre-trained models released by

1https://ding3820.github.io/MIMO-VRN/

the authors. Those in category (3) are taken from the papers

since these baselines share exactly the same setting as ours.

We report results for a downscaling/upscaling factor of 4

only, following the common setting for video rescaling.

Metrics. For quantitative comparison, we adopt the stan-

dard test protocol in the super-resolution tasks to evaluate

Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-

ity Index (SSIM) [27] on the Y channel, denoted respec-

tively by PSNR-Y and SSIM-Y.

4.2. Comparison of Quantitative Results

Tables 1 and 2 report the PSNR-Y and SSIM-Y results

of the reconstructed HR videos on Vid4 and Vimeo-90K-T.

Table 3 summarizes the results for the downscaled videos.

The following observations are immediate:

(1) Optimizing jointly video downscaling and upscaling

improves the HR reconstruction quality. This is confirmed

by the fact that LSTM-VRN achieves considerably higher

PSNR-Y (32.24dB on Vid4 and 41.42dB on Vimeo-90K-

T) than the baselines with video super-resolution methods

for upscaling (27.33-27.92dB on Vid4 and 36.37-37.59dB

on Vimeo-90K-T) [24, 10, 30, 9, 8], which adopt the same

SISO-down-MSIO-up strategy yet with a predefined down-

scaling kernel. We note that the image-based joint opti-

mization schemes, e.g. IRN [28] and CAR [21], achieve

better HR reconstruction quality than the traditional video-

based baselines, even without using temporal information

for upscaling. The superior performance of joint optimiza-

tion schemes is attributed to the fact that they can better

embed HR information in LR frames for upscaling.

(2) Incorporating temporal information in the LR video

improves further on the HR reconstruction quality. The re-

sult is evidenced by the 0.95dB and 0.59dB PSNR-Y gains

of LSTM-VRN over IRN [28] on Vid4 and Vimeo-90K-

T. Both share a similar invertible network for downscal-

ing, but our LSTM-VRN additionally leverages informa-

tion from multiple LR video frames to predict the high-
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Figure 5. Sample LR video frames from Vid4. Our models show comparable visual quality to the bicubic method.

Table 3. PSNR-Y and SSIM-Y results measured between the ×4

downscaled LR videos and the bicubic-downscaled videos.
Method Vid4 Vimeo-90K-T

IRN [28] 40.77 / 0.9908 46.24 / 0.9956

LSTM-VRN 42.36 / 0.9940 47.14 / 0.9968

MIMO-VRN 45.05 / 0.9965 49.11 / 0.9975

MIMO-VRN-C 45.51 / 0.9969 49.34 / 0.9976

frequency component of a video frame during upscaling.

(3) MIMO-VRN achieves the best PSNR-Y/SSIM-Y re-

sults. It outperforms LSTM-VRN by 1.55dB and 1.84dB

in PSNR-Y on Vid4 and Vimeo-90K-T, respectively, while

LSTM-VRN already shows a significant improvement over

the other baselines. The inclusion of the center loss

(see MIMO-VRN-C) causes a modest decrease in PSNR-

Y/SSIM-Y but helps to alleviate the quality fluctuation in

both the resulting LR and HR videos (Sec. 4.4). These re-

sults highlight the benefits of incorporating temporal infor-

mation into both downscaling and upscaling in an end-to-

end optimized manner.

(4) Both LSTM-VRN and MIMO-VRN produce visually-

pleasing LR videos. Table 3 shows that the LR videos pro-

duced by our models have a PSNR-Y of more than 40dB

when compared against the bicubic-downscaled videos.

This together with the SSIM-Y results suggests that they

are visually comparable to the bicubic-downscaled videos,

as is also confirmed by the subjective quality comparison in

Fig. 5 and the supplementary document.

4.3. Comparison of Qualitative Results

Figs. 6 presents a qualitative comparison on Vid4. As

shown, our models produce higher-quality HR video frames

with much sharper edges and finer details. The other meth-

ods show blurry image quality and fail to recover image de-

tails. From Fig. 5, our downscaling models produce visu-

ally comparable results to the bicubic downscaling method,

which indicates the visually-pleasing property of our LR

videos. The reader is referred to our project page 1 for more

results.

4.4. Ablation Experiments

Temporal Propagation Methods in LSTM-VRN. Table 4

presents results for three temporal propagation schemes in

LSTM-VRN. The first runs LSTM in forward direction

without reset. The second and the third implement the pro-

Table 4. Ablation study of the propagation methods for LSTM-

VRN. Results are reported on Vid4.

Sliding Window Bi-directional PSNR-Y

31.16√
31.53√ √
32.24

Table 5. PSNR-Y of different GoF sizes on Vid4. IRN Ret is the

re-trained IRN with Vimeo-90K, as compared to IRN, the pre-

trained model from [28].

Method HR LR

IRN [28] 31.29 41.13

IRN Ret 30.72 45.06

GoF1 30.69 44.38

GoF3 33.61 43.85

GoF5 33.79 45.05

GoF7 33.45 45.13

posed method with uni- or bi-directional propagation, re-

spectively. We see that the sliding window-based reset is

advantageous to the HR reconstruction quality. This may be

attributed to the fact that the training videos in Vimeo-90K

are rather short. When trained on Vimeo-90K, the first vari-

ant may not generalize well to unseen long videos in Vid4.

As expected, with the access to both the past and future LR

frames, the bi-directional propagation performs better than

the uni-directional one (i.e. Fig. 4(a) without the backward

path).

GoF Size. Table 5 studies the effect of the GoF size on

MIMO-VRN’s performance. The setting GoF1 reduces

to the SISO-up-SISO-down method, which is similar to

IRN [28] except that it introduces a prediction of the high-

frequency component from the LR video frame. For a fair

comparison, we re-train IRN [28] on Vimeo-90K and de-

note the re-trained model by IRN Ret. Note that the pre-

trained IRN [28] performs better than IRN Ret since it is

trained on a different (image-based) dataset. We see that

GoF1 and IRN Ret show comparable performance, espe-

cially on the HR videos. This suggests that without ad-

ditional temporal information, the prediction of the high-

frequency component from the LR video is ineffective.

However, increasing the GoF size, which involves more

temporal information in downscaling and upscaling, im-

proves the quality of the HR video significantly. GoF5 is

seen to be the best setting.
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Figure 6. Qualitative comparison on Vid4 for 4× upscaling. Zoom in for better visualization.

(a) Reconstructed HR video (b) Downscaled LR video

Figure 7. The impact of the center loss on the quality of the HR

and LR videos. The per-frame PSNR-Y is visualized as a function

of frame indices. The GoF size is 5. MIMO-VRN: no center

loss. HR: the center loss imposed on the HR video only. LR: the

center loss imposed on the LR video only. HR&LR: the center

loss imposed on both the HR and LR videos.

Table 6. PSNR-Y of MIMO-VRN with and without the center loss

on Vid4. The mean absolute deviation (MAD) indicates the av-

erage absolute deviation of the per-frame PSNR-Y from the GoF

mean.
Center loss PSNR-Y MAD

HR LR HR LR HR LR

33.79 45.05 0.88 0.55√
33.40 45.54 0.28 0.63√
33.55 42.42 0.86 0.38√ √
33.13 43.32 0.31 0.29

Center Loss. Fig. 7 visualizes the PSNR-Y of the HR and

LR videos produced by MIMO-VRN as functions of time.

Without the center loss (see MIMO-VRN), the PSNR-Y of

both the HR and LR videos fluctuates periodically by as

much as 2dB. Observe that the crest points of the HR video

occur roughly at the GoF centers while the trough points

are at the GoF boundaries. Table 6 performs an ablation

study of how this center loss would affect the HR and/or

LR videos when it is imposed on these videos. We observe

that introducing the center loss largely mitigates the quality

fluctuation in the corresponding HR and/or LR video (see

the MAD results in Table 6 and Fig. 7). It however de-

grades the HR and/or LR quality in terms of PSNR-Y, as

compared to the case without the loss. We make the choice

of imposing the center loss on the HR video only for two

reasons. First, this leads to a minimal impact on the HR

reconstruction quality. The second is that the quality fluc-

tuation in the LR video is less problematic in terms of sub-

jective quality because the PSNR-Y measured against the

bicubic-downscaled video is way above 40dB. On closer vi-

sual inspection, these LR videos hardly show any artifacts

in the temporal dimension.

4.5. Complexityperformance Tradeoffs

LSTM-VRN and MIMO-VRN present different

complexity-performance trade-offs. (1) LSTM-VRN is

relatively lightweight, having 9M network parameters as

compared to 19M with MIMO-VRN. (2) LSTM-VRN

does not require additional buffering/delay and storage

for downscaling as is necessary for MIMO-VRN. (3)

MIMO-VRN has better LR/HR quality while LSTM-VRN

has more consistent LR/HR quality temporally. They use

depends on the complexity constraints and performance

requirements of the application.

5. Conclusion

This work presents two joint optimization approaches

to video rescaling. Both incorporate an invertible network

with coupling layer architectures to model explicitly the

high-frequency component inherent in the HR video. While

our LSTM-VRN shows that the temporal information in

the LR video can be utilized to good advantage for bet-

ter upscaling, our MIMO-VRN demonstrates that the GoF-

based rescaling is able to make full use of temporal informa-

tion to benefit both upscaling and downscaling. Our mod-

els demonstrate superior quantitative and qualitative perfor-

mance to the image-based invertible model. They outper-

form, by a significant margin, the video rescaling frame-

work without joint optimization.
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