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Abstract

Previous convolutional neural network (CNN) based

blind super-resolution (SR) methods usually adopt an it-

erative optimization way to approximate the ground-truth

(GT) step-by-step. This solution always involves more com-

putational costs to bring about time-consuming inference.

At present, most blind SR algorithms are dedicated to ob-

taining high-fidelity results; their loss function generally

employs L1 loss. To further improve the visual quality of

SR results, perceptual metric, such as NIQE, is necessary

to guide the network optimization. However, due to the

non-differentiable property of NIQE, it cannot be as the

loss function. Towards these issues, we propose an adap-

tive modulation network (AMNet) for multiple degradations

SR, which is composed of the pivotal adaptive modulation

layer (AMLayer). It is an efficient yet lightweight fusion

layer between blur kernel and image features. Equipped

with the blur kernel predictor, we naturally upgrade the

AMNet to the blind SR model. Instead of considering it-

erative strategy, we make the blur kernel predictor train-

able in the whole blind SR model, in which AMNet is well-

trained. Also, we fit deep reinforcement learning into the

blind SR model (AMNet-RL) to tackle the non-differentiable

optimization problem. Specifically, the blur kernel predic-

tor will be the actor to estimate the blur kernel from the

input low-resolution (LR) image. The reward is designed by

the pre-defined differentiable or non-differentiable metric.

Extensive experiments show that our model can outperform

state-of-the-art methods in both fidelity and perceptual met-

rics.

1. Introduction

Single image super-resolution (SISR) refers to estimat-

ing the plausible and sharp detailed high-resolution (HR)

image from its counterpart low-resolution (LR) image. It
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has been widely used in image/video enhancement, remote

sensing imaging, and video surveillance. Recently, the in-

troduction of convolutional neural networks (CNNs) makes

the SISR performance reach a new height. Numerous CNN-

based SISR methods [6, 7, 8, 16, 18, 13, 39, 19, 27] have

explored network architecture designs and training strate-

gies. They have focused on supervised settings with a fixed

degradation model, e.g., bicubic downsampling. These al-

gorithms achieved impressive results for the bicubic down-

sampling condition but produced undesirable artifacts when

the images with a different degradation. Zhang et al. [35]

proposed SRMD to handle multiple degradations via a sin-

gle model to address the issue of multiple degradations.

Different from previous CNN-based methods, SRMD ex-

plicitly takes both LR image and its degradation maps as

input. Following SRMD, Xu et al. [30] proposed a sin-

gle unified dynamic network trained for variational degra-

dations (UDVD) to improve performance; its primary con-

tribution is two types of dynamic convolutions. Note that

the predefined blur kernel is given; thus, SRMD [35] and

UDVD [30] are both non-blind settings. However, in most

practical applications, blur kernels are not provided. Thus,

the SR problem with unknown blur kernels, i.e., blind SR,

is a more attractive field for academia and industry.

In general, to tackle the blind SR problem, previous tech-

niques [35, 34] decompose the blind SR problem into two

sequential subproblems, i.e., estimating blur kernel from

input LR image and generating SR image based on esti-

mated kernel. As stated in [22], this solution is not an

end-to-end training approach, causing a suboptimal prob-

lem. Based on the observation of artifacts caused by kernel

mismatch, Gu et al. [10] made efforts to correct an inac-

curate blur kernel. They proposed an iterative kernel cor-

rection (IKC) method to correct the estimated kernel only

by observing the previous SR results. In a deep alternat-

ing network (DAN) [22], the authors make the estimation

of blur kernel much easier through sending both LR and SR

images to Estimator. This iterative principle can make gen-

erated SR images gradually approach the ground-truth, but
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it will consume more computational costs and make train-

ing/testing processing slower.

Besides, the current multiple degradations SR methods

(including non-blind and blind settings) [35, 10, 25, 22]

mainly adopt mean absolute error (MAE) or mean square

error (MSE) as the loss function to achieve high PSNR val-

ues. It is rare to explore the multiple degradations percep-

tual SR problem. Under the condition of bicubic downsam-

pling, many perceptual SR methods incorporate the percep-

tual loss [14] and adversarial learning [19] to generate real-

istic textures and exact details. Following the training strat-

egy in ESRGAN [27], Zhang et al. [34] trained USRNet

(complex degradations) with the MAE loss for PSNR per-

formance and then fine-tuned the model with the weighted

combination of MAE loss, VGG perceptual loss, and rel-

ativistic adversarial loss to pursue perceptual quality per-

formance. The most challenging problem is the evalua-

tion procedure, whether single degradation perceptual SR or

multiple degradations perceptual SR. HR images (ground-

truth) are not available in many applications. Thus, an

objective metric like PSNR/SSIM and perceptual metric

like LPIPS [36] cannot be used. At this time, some non-

reference image quality assessment (NR-IQA) metrics can

be utilized, such as NIQE [24].

Nevertheless, most of these NR-IQA metrics are not dif-

ferentiable, which cannot serve as the loss functions to opti-

mize the network. Zhang et al. [37] introduced a Ranker to

learn the behavior of perceptual metrics. However, training

this Ranker needs to make a rank dataset. Specifically, se-

lect two SR images and calculate their ranking order accord-

ing to the perceptual metric’s quality score. This method in-

directly optimizes the network in the orientation of specific

perceptual metrics. Therefore, there is also a lack of a so-

lution that does not need to make a training dataset and ex-

plicitly optimize the non-differentiable objective function.

This paper is devoted to addressing the above issues, i.e.,

how to solve the non-differentiable evaluation metrics op-

timization for blind SR problems while maintaining fast

training and testing speed (non-iterative). Following the

standard approach, we model the LR image as degrada-

tion from the HR image with blurring and downsampling.

First, given a blur kernel and a LR image, we need to

train a single network for multiple degradations SR as in

[35, 10, 30]. Motivated by style transfer [12] and im-

age synthesis [15], we design the new generator architec-

ture equipped with modified adaptive instance normaliza-

tion (AdaIN) to control the image SR process. Our genera-

tor, namely adaptive modulation network (AMNet) for mul-

tiple degradations SR, adjusts the “blur/sharp style” of the

image based on the embedding code of blur kernel. In this

way, we can significantly reduce the tremendous amount

of calculation caused by using the spatial feature transform

(SFT) layers in SFTMD [10] without sacrificing perfor-

mance. Second, we tune the input embedding code of blur

kernel to optimize the output SR image towards the given

non-differentiable metrics. To this end, a policy is adopted

to select the blur kernel code to guide the optimization.

Such a problem can be solved by a reinforcement learning

(RL) framework where the agent models actions (blur ker-

nel codes) from the observations (LR images). The reward

is related to designative evaluation metrics (differentiable

or non-differentiable). For implementing the high-speed

training/inference, we use only single-step actions (inspired

by [17]) in our whole blind SR framework – AMNet-RL

(Adaptive Modulation Network with Reinforcement Learn-

ing). This paper makes the following contributions:

• We design a novel modified AdaIN module, which can

be used in our proposed adaptive modulation network

(AMNet) to better fulfill the multiple degradations SR

problem while having the attributes of lower computa-

tional cost and higher speed than the previous multiple

degradations SR methods [35, 10, 30]. To pursue the

perceptual effect, we also construct a GAN-based ver-

sion of AMNet, denoted as AMGAN.

• We introduce an efficient RL algorithm into our whole

blind SR framework. It can optimize the policy to ac-

complish the blur kernel estimation task guided by the

non-differentiable evaluation metrics. To the best of

our knowledge, the proposed method is the first RL

that optimizes blind SR with the in-differentiable per-

ceptual metrics.

• We validate our AMNet-RL (PSNR-oriented), and

AMGAN-RL (perception-driven) can achieve compa-

rable results on commonly used datasets.

2. Related work

2.1. Nonblind SuperResolution

Bicubic Interpolation Downsampling. In the past few

years, various CNN-based SISR methods have focused on

restoring HR images from LR images synthesized by the

predefined downsampling setting (bicubic interpolation).

Since the pioneering work SRCNN [6, 7], many CNN-

based methods [16, 39, 13, 19, 27] have been proposed

based on this downsampling setting. Note that SRGAN [19]

and ESRGAN [27] pursue generating more realistic images.

To optimize the SR model in the orientation of perceptual

metrics, RankSRGAN [37] introduces a Ranker to learn the

behavior of the perceptual metrics by learning to rank ap-

proach.

Multiple Degradations. Another kind of non-blind SR

aims to present a single model for multiple degradations.

These solutions send both the LR image and its correspond-

ing blur kernel to the network. Zhang et al. [35] deal with
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multiple degradations via a single model under the maxi-

mum a posteriori (MAP) framework. They introduce a di-

mensionality stretching strategy to resolve the inputs’ di-

mension inconsistency (LR image, blur kernel, noise level).

This strategy has played a significant role in promoting the

following SR methods for multiple degradations. Inspired

by SFTGAN used in semantic super resolution [26], Gu et

al. [10] propose a spatial feature transform (SFT) layer and

insert it into each residual block. In this way, it can bet-

ter keep the blur kernel information in a deeper network

and provide better performance. Xu et al. [30] exploit dy-

namic convolutions to solve the SISR problem with varia-

tional degradations better. In likewise, Luo et al. [22] pro-

pose a conditional residual block (CRB), which concatenate

the stretched kernel and LR image at the beginning of resid-

ual block in [38].

2.2. Blind SuperResolution

For managing blind SR, the sequential combinations of

a kernel estimation method and a non-blind SR method is a

common scenario. Bell-Kligler et al. [2] find the underlying

image-specific SR kernel of the input image through learn-

ing a downscaling generator that produces a downscaled

version of the LR test image. It requires introducing a dis-

criminator to judge whether the downscaled image has the

same patch distribution as the original LR image. In [10],

Gu et al. present a kernel predictor and a kernel corrector to

predict the blur kernel iteratively. Luo et al. [22] alternate

the Restorer (recovering SR image based on estimated blur

kernel) and Estimator (utilizing LR and SR images to pre-

dict blur kernel) repeatedly to form an end-to-end trainable

network.

2.3. Reinforcement Learning for Image Restoration

In recent years, some works have successfully applied

deep RL to the image restoration field. Cao et al. [5] pro-

pose a deep RL-based attention mechanism to address the

problem of face hallucination. Considering the contextual

interdependency between patches, the authors use a recur-

rent policy network to specify a new attention region. As

a result, it can learn a sequence of patches that need to be

enhanced. Yu et al. [31] learn a policy to select appropri-

ate tools from the toolbox to restore an image that is cor-

rupted by mixed distortions progressively. For saving com-

puting costs, Yu et al. also propose Path-Restore [32] that

devises a pathfinder to select short paths for accessible re-

gions. Most recently, Wei et al. [28] introduce RL into the

PnP framework, yielding a tuning-free PnP proximal algo-

rithm for compressed sensing MRI and phase retrieval.

3. Method

3.1. Problem Formulation

Following [10, 22], our objective is to solve the blind

super-resolution problem mathematically formulated as:

I
LR=

(

I
HR ⊗ k

)

↓s, (1)

where I
HR, ILR, k, ⊗, and ↓s indicate HR, LR image, blur

kernel, convolution operation, bicubic downsampling oper-

ation with scale factor s, respectively. Previous methods

solve this problem into two sequential steps:

{

k = P
(

I
LR; ΘP

)

I
SR = G

(

I
LR,k; ΘG

) (2)

where P (·) denotes the function that estimates k from I
LR,

G (·) is a non-blind SR method that takes into account the

degradation kernel k and LR image I
LR, which allows the

generator to be more flexible. ΘP and ΘG are the model pa-

rameters of P and G, respectively. If training P (·) and G (·)
respectively, it will usually lead to a significant decline in

performance. This phenomenon has been pointed out in the

recent blind SR literatures [10, 22]. Different from iterative

way used in these recent works, we first train a non-blind

SR network G and then optimize blur kernel estimation net-

work P through

argmin
ΘP

L
(

I
HR,G

(

I
LR,P

(

I
LR; ΘP

)

; ΘG

))

(3)

where ΘG is fixed. It means that we expect to obtain the

ΘP that makes the SR result optimal. Here, L can choose

fidelity related loss (e.g., L1 loss) or perception related loss

(e.g., GAN loss) according to the task’s requirement. In

this way, we can build an end-to-end network while making

blind SR training more comfortable and faster.

Moreover, we are committed to solving non-

differentiable evaluation metrics-guided blind SR problems,

building a bridge between the SR and quality assessment

fields. Our goal is to choose a blur kernel code to make the

resulting SR image I
SR better in the specified evaluation

index. We formulate this task as an automatic parameter

selection, which can be addressed via reinforcement

learning (RL). In the RL framework, we need to define the

tuple (S,A, p, r), where S is the state space, A is the action

space, p is the transition function that maps input state

s ∈ S to its outcome state s′ ∈ S after taking action a ∈ A,

and r is the reward function. Specifically, in our task, S is

the space of images, which includes the LR input image

and the rendered SR image. A is the space of the blur

kernel code. The transition function is the aforementioned

non-blind SR model that renders the SR image based on

input state s (LR image) and action a (reduced kernel),

which can be expressed as s′ = p (s, a). RL’s key element
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is the reward function r, which is constructed by predefined

evaluation metrics, such as PSNR (differentiable) and

NIQE (non-differentiable), and evaluates action given the

state.

As shown in Figure 1, we propose an adaptive modula-

tion network (AMNet) for our non-blind SR model. Follow-

ing [35, 10, 22], the blur kernel is flattened and then reduced

by principal component analysis (PCA). Equipped with ker-

nel predictor, our AMNet can be upgraded to a blind SR

model by using Equation 3 to optimize. Here, the kernel

predictor plays the role of Actor in RL framework (please

see in Figure 3(c)). Then, we will elaborate on the details

in the following subsections.

3.2. Adaptive Modulation Network

Previous SR with multiple degradations algorithms [35,

10, 22, 30] stretch the input reduced kernel k ∈ R
t into

degradation maps K ∈ R
t×H×W , and then employ con-

catenation [35, 30, 22] or spatial feature transform [10] to

integrate it with LR image or LR image features. Since the

degradation maps will participate in the subsequent con-

volution operations, this approach will increase the com-

putational costs. This phenomenon is most obvious in

SFTMD [10]. Thus, we try to directly use reduced kernel

k to control the characteristic of the network’s output. In-

spired by adopting the adaptive instance norm (AdaIN) [12]

to implement the successful control of the image synthesis

in StyleGAN [15], we propose a modified AdaIN to influ-

ence the output by the reduced kernel k. We can regard the

reduced kernel as a “blur/sharp” style code.

Given an input image features x ∈ R
C×H×W and a re-

duced kernel k, AdaIN in our task can be defined as

y = γ (k)

(

x− µ (x)

σ (x)

)

+ β (k) , (4)

in which µ (x) and σ (x) are the mean and standard devi-

ation of the x across spatial dimensions independently for

each channel:

µc (x) =
1

HW

H
∑

h=1

W
∑

w=1

xchw (5)

σc (x) =

√

√

√

√

1

HW

H
∑

h=1

W
∑

w=1

(xchw − µc (x))
2
+ ǫ. (6)

We use the symbol γ (·) and β (·) to denote the functions

that convert reduced kernel k to the scaling and bias values.

However, only using γ (k) and β (k) to adjust the mean

and standard deviation of the input image features cannot

attain fine control, which manifests as a slow convergence

speed and poor SR performance in our experiment. The

reason why this approach shows breathtaking performance

in StyleGAN [15] might be that each style code controls

a specified level feature (related to feature resolution). In

other words, the current style code knows the resolution in-

formation of the corresponding feature maps. Therefore,

we construct the adaptive modulation layer (AMLayer), as

illustrate in Figure 1(b), that modifies the mean and standard

deviation of the current features using the guidance of the

reduced kernel k. Concretely, we can formulate this layer

as follows:

y = γ (k, σ (x))

(

x− µ (x)

σ (x)

)

+ β (k, µ (x)) , (7)

where γ (k, σ (x)) = FC1 (Concat (FC (k) , σ (x))),
γ (k, µ (x)) = FC2 (Concat (FC (k) , µ (x))). Here,

FC, FC1, and FC2 are full-connected layers. Concat rep-

resents concatenation operation across the channel dimen-

sion.

As shown in Figure 1(c), we insert AMLayer into the

residual block to form the adaptive modulation residual

block (AMRB), a basic block of our non-blind SR model

– adaptive modulation network (AMNet) (please see in Fig-

ure 1(a)). To train AMNet, we employ widely used L1 loss

for PSNR performance. Following [34, 27], once the AM-

Net is well-trained, we further adopt a weighted combina-

tion of L1 loss, VGG perceptual loss, and realness adversar-

ial loss [29] for perceptual quality performance. We refer to

such fine-tuned model as AMGAN. Due to limited pages,

we provide the details of AMGAN in the supplementary

file.

To accommodate the blind SR task, we construct a blur

kernel predictor, and its structure is shown in Figure 3(c).

The basic module is a residual block (RB), as depicted in

Figure 3(d), which contains two 3 × 3 convolutional lay-

ers and one channel attention layer [38]. At the end of the

network, following [22], we use global average pooling to

aggregate spatial information to obtain the predicted kernel.

3.3. Adaptive Modulation Network with RL

As illustrated in Figure 3(a), the environment E is the

combination of the renderer (AMNet or AMGAN) and re-

ward function. To train our blind SR model, whether PSNR-

oriented or perception-driven, we will utilize the follow-

ing RL framework to accomplish. For the PSNR-oriented

task, the pre-trained AMNet is the renderer. We adopt well-

trained AMGAN as the renderer that translates the LR im-

age and reduced kernel to the SR image for our perception-

driven task. We define the reward function as

r = ζ ·
(

M
(

G
(

I
LR,P

(

I
LR

)))

−M
(

G
(

I
LR,kGT

)))

,

(8)

where M represents evaluation metrics, such as NIQE and

PSNR. G, P denote the renderer and actor, respectively. If

M = NIQE (the lower value, the better), ζ is set to −1
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F
C

F
C

Input image 

features

Instance Norm

Output image 

features





H

W

C

H

W

C

Reduced kernel

F
C

Figure 2. The structure of the AdaIN in Equation 4.

to ensure that the received reward is positive when the cur-

rent policy is better than GT. Similarly, if M = PSNR (the

higher value, the better), ζ is set to 1.

Since the action space is continuous, we select deep de-

terministic policy gradient (DDPG) [20] as a method of

RL, that consists of a actor µ (s |θµ ) and a critic network

Q
(

s, a
∣

∣θQ
)

. The original DDPG optimizes the critic net-

work parameter θQ by minimizing the loss:

L
(

θQ
)

=
1

N

∑

i

(

yi −Q
(

si, ai
∣

∣θQ
))2

, (9)

where yi = ri + γQ′

(

si+1, µ
′

(

si+1

∣

∣

∣
θµ

′
)
∣

∣

∣
θQ

′
)

. Here,

µ′, Q′, and γ are target critic network, target actor, and dis-

counting factor, respectively. Since our task only needs to

be executed in one step, Equation 9 can be simplified to:

L
(

θQ
)

=
1

N

∑

i

(

ri −Q
(

si, ai
∣

∣θQ
))2

. (10)

If the actual reward ri = 0.05, the estimated Qi = −0.05
and Qi = 0.15 can both obtain 0.1 error. However, we

expect more penalty when Qi = −0.05. Therefore, we

further modify Equation 10 as follows:

L
(

θQ
)

=
1

N

∑

i
max

(

0,−γ ∗Q
(

si, ai
∣

∣θQ
))

+
(

ri −Q
(

si, ai
∣

∣θQ
))2

.

(11)

If γ = 1, it indicates reward ri > 0, and vice-versa for

γ = −1. The former term is to penalize the situation that

ri and Qi are different signs. When ri and Qi are same

signs, the first term is equal to zero.

Like the original DDPG, we update the actor by using

policy gradient:

∇θµJ =

1

N

∑

i
∇aQ

(

s, a
∣

∣θQ
)
∣

∣

s=si,a=µ(si) ∇θµµ (s |θµ ) |s=si .

(12)

4. Experiments

4.1. Implementation Details

Following [10, 22, 30], we collect 3450 high-quality

RGB images from DIV2K [1] and Flickr2K [21] for train-

ing. We synthesize the degraded LR images according to

Equation 1. For fair comparison with other methods, we

adopt the same degradation setting that used in [10, 22], i.e.,

we use isotropic Gaussian blur kernels. The range of kernel

width is set to [0.2, 4.0] for scale factor 4, and the kernel

size is fixed to 21 × 21. During training, the input patch

size is 64× 64, and the mini-batch size is set to 64. We also

perform randomly horizontal flip and 90 degree rotation for
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data augmentation. We use Adam optimizer with learning

rate lr = 2 × 10−4. We train our models with PyTorch on

2 RTX 2080Ti GPUs. For AMGAN, its learning rate is set

1× 10−4, and the batch size is 16.

For quantitative evaluation, we use 6 widely used bench-

mark datasets: Set5 [3], Set14 [33], BSD100 [23], Ur-

ban100 [11], Manga109 [18], and PIRM Val [4]. As

in [10, 22], we also uniformly select 8 kernels, denoted as

Gaussian8, from [1.8, 3.2] for the quantitative evaluation of

blind SR methods. The HR images are first blurred by the

selected blur kernels and then downsampled to synthesize

test images. The fidelity-oriented SR results are evaluated

with PSNR and SSIM, and the perception-driven SR im-

ages are measured by learned perceptual image patch sim-

ilarity (LPIPS) [36], and NIQE [24]. The lower the values

of LPIPS and NIQE, the better.

We set the number of AMRB as 16 to form our AM-

Net, as shown in Figure 1(a). To further improve the per-

formance, we also construct the larger AMNet, named AM-

Net L, which contains 32 AMRBs. The reduced kernel di-

mension is set to 15 in all our experiments.

To stably train our AMNet-RL (or AMGAN-RL), the ac-

tor network depicted in Figure 3(c) should be pre-trained to

make the actor has a better initialization. We also use Adam

optimizer with batch size 96 and 5000 iterations, with a base

learning rate of 1×10−5 for the actor network and 1×10−4

for the critic network. The learning rate is exponentially de-

cayed to 10−2 of the original values during training.

4.2. Quantitative Results

We evaluate the performance of the proposed AMNet

on isotropic Gaussian blur kernels with widths 0.2, 1.3,

and 2.6. Table 1 shows the quantitative comparisons with

the state-of-the-art non-blind SR methods SRMDNF [35],

SFTMD [10], and UDVD [30]. It should be noted that AM-

Net L uses fewer parameters than SFTMD and UDVD to

achieve similar or higher performance. Since the topolog-

ical structure of AMNet L is SRResNet [19], which is the

same as SFTMD and UDVD. It demonstrated the effect of

AMLayer. Comparing with SRMDNF, the proposed AM-

Net with a similar model size achieves significantly better

performance on all settings and datasets. It means that AM-
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Set14 (4×):

baboon

zoomed LR SRMD [35] SFTMD [10] AMNet (ours) RankSRGAN [37] USRGAN [34] AMGAN (ours)

PSNR / LPIPS 22.86 / 0.5367 22.93 / 0.5174 22.96 / 0.4856 21.82 / 0.6344 21.45 / 0.2538 20.34 / 0.1955

B100 (4×):

102061

zoomed LR SRMD [35] SFTMD [10] AMNet (ours) RankSRGAN [37] USRGAN [34] AMGAN (ours)

PSNR / LPIPS 26.46 / 0.4005 26.68 / 0.3748 26.80 / 0.3423 24.21 / 0.5207 25.26 / 0.1968 25.11 / 0.1675

B100 (4×):

86016

zoomed LR SRMD [35] SFTMD [10] AMNet (ours) RankSRGAN [37] USRGAN [34] AMGAN (ours)

PSNR / LPIPS 21.82 / 0.9414 21.88 / 0.9356 21.91 / 0.9280 21.44 / 0.9427 21.03 / 0.5736 20.94 / 0.4855

Figure 4. Visual results of various methods at scaling factor of 4. Note that RankSRGAN, USRGAN, and our AMGAN are perception-

driven approaches.

BSD100 (4×):

16077

zoomed LR IKC [10] DAN [22] AMNet-RL (ours) USRGAN [34] AMGAN (ours) AMGAN-RL (ours)

PSNR / NIQE 27.72 / 6.0191 27.58 / 0.7193 27.73 / 6.1870 25.14 / 3.0408 25.78 / 3.3071 23.78 / 3.0057

Figure 5. Visual results of various blind SR methods at scaling factor of 4.

Table 1. Quantitative evaluation (PSNR) with state-of-the-art non-

blind SR methods for scale factor of 4. The comparison is con-

ducted using three different isotropic Gaussian kernels on Set5,

Set14, and BSD100 datasets. The best results are highlighted.

Methods Kernel width Params Set5 Set14 BSD100

SRMDNF [35]

0.2

1,552K 31.96 28.35 27.49

SFTMD [10] 7,966K 32.39 28.77 27.58

UDVD [30] 4,933K 32.31 28.78 27.70

AMNet (ours) 1,599K 32.28 28.66 27.60

AMNet L (ours) 3,121K 32.46 28.78 27.68

SRMDNF [35]

1.3

1,552K 32.00 28.42 27.53

SFTMD [10] 7,966K 32.41 28.82 27.64

UDVD [30] 4,933K 32.37 28.85 27.75

AMNet (ours) 1,599K 32.39 28.71 27.67

AMNet L (ours) 3,121K 32.57 28.85 27.75

SRMDNF [35]

2.6

1,552K 31.77 28.26 27.43

SFTMD [10] 7,966K 32.05 28.55 27.47

UDVD [30] 4,933K 31.99 28.55 27.55

AMNet (ours) 1,599K 32.46 28.53 27.65

AMNet L (ours) 3,121K 32.65 28.75 27.77

Net can better balance performance and model size. Be-

sides, our method is stable under different blur kernels. For

instance, AMNet and AMNet L still perform well when

kernel width is set to 2.6, while other algorithms show a

serious performance drop compared with kernel width of

1.3. In Figure 4, we present visual comparisons on differ-

ent datasets. Apart from SRMD [35] and SFTMD [10], we

also include RankSRGAN [37], USRGAN [34] to compare

with our AMGAN. For image “baboon” from Set14, we ob-

serve that our AMNet can produce much better visual re-

sults (sharper edges) than SRMD and SFTMD. Obviously,

AMGAN yields much better pleasant details than AMNet.

We can see that RankSRGAN does not perform well since

the actual degradation deviates from bicubic degradation.

This phenomenon has appeared in [34] and studied well

in [9]. When comparing USRGAN and AMGAN, the for-

mer fails to generate natural textures while the latter syn-

thesizes plausible textural details. In image “102061” from

BSD100, our AMGAN can even clearly generate a reflec-

tion of the building in the water.

For blind setting, we show our quantitative evaluation

results in Table 2, which is compared with two blind SR

state-of-the-art approaches: IKC [10], and DAN [22]. The

proposed AMNet L-RL with fewer parameters achieves

the best PSNR and SSIM performance on most evaluation

datasets. For image “16077” in Figure 5, we can observe

that IKC [10] and DAN [22] can produce fine results. As

a comparison, our AMNet-RL generates a shaper outline.
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Table 2. Average PSNR/SSIM results of different blind SR methods for scale factor of 4. The comparison is conducted using Gaussian8

kernels on Set5, Set14, BSD100, Urban100, and Manga109. The best two results are highlighted in red and blue colors, respectively.

Methods Params Set5 Set14 BSD100 Urban100 Manga109

IKC [10] (blind) 9,047K 31.64 / 0.8820 28.29 / 0.7632 27.36 / 0.7183 25.31 / 0.7495 28.86 / 0.8774

DAN [22] (blind) 4,334K 31.89 / 0.8864 28.43 / 0.7687 27.51 / 0.7248 25.86 / 0.7721 30.50 / 0.9037

AMNet-RL (blind) 1,982K 32.27 / 0.8941 28.47 / 0.7750 27.61 / 0.7326 25.63 / 0.7750 30.03 / 0.9004

AMNet L-RL (blind) 3,504K 32.34 / 0.8964 28.57 / 0.7779 27.66 / 0.7343 25.86 / 0.7794 30.39 / 0.9024

Table 3. Average LPIPS/NIQE/PSNR results. The comparison is

conducted using kernel widths 0.2, 1.3 and 2.6.

Dataset Scores

USRGAN [34]

(non-blind)

AMGAN

(non-blind)

AMGAN-RL

(blind)

17.0M 1.60M 1.98M

Set5

LPIPS ↓ 0.0967 0.0707 0.0778

NIQE ↓ 5.1147 5.047 4.8206

PSNR ↑ 29.55 31.02 29.36

Set14

LPIPS ↓ 0.1648 0.1254 0.1366

NIQE ↓ 3.7727 4.2598 3.8897

PSNR ↑ 26.05 27.14 26.67

BSD100

LPIPS ↓ 0.1975 0.1698 0.1682

NIQE ↓ 3.5579 4.0750 3.4968

PSNR ↑ 25.03 26.36 25.63

PIRM Val

LPIPS ↓ 0.1528 0.1197 0.1418

NIQE ↓ 3.0580 3.3672 3.0021

PSNR ↑ 25.235 26.50 25.36

Comparing with USRGAN [34], our AMGAN synthesize

finer textures. AMGAN-RL shows stronger contrast than

AMGAN in Figure 5.

4.3. Study of AMLayer

Table 4. Comparison with AdaIN and the presented AMLayer. The

kernel width of the isotropic Gaussian blur is set to 1.8.

Module Set5 Set14 BSD100 Urban100

AdaIN 32.12 28.53 27.56 25.66

AMLayer 32.43 28.67 27.68 25.81

To validate the effectiveness of the adaptive modulation

layer (AMLayer), we replace all AMLayers in our AMNet

with the AdaIN layer that is described in Equation 4 (please

see Figure 2). From Table 4, we can find out that the AM-

Layer leads to performance improvement (PSNR: +0.31dB

for Set5). It indicates that our AMLayer is very suitable for

the reduced kernel information transformation to the image

feature maps.

4.4. Investigation of L
(

θQ
)

To verify the necessity of using Equation 11, we train

our AMGAN-RL by Equation 10 and Equation 11, recep-

tively. From Table 5, we observe that adding different signs

penalty can assist the converge of our critic network, which

further helps actor network optimize better.

4.5. Running Time
Without an iteration scheme, our AMNet-RL has a

higher inference speed. From Table 6, we evaluate the av-

Table 5. Comparison with Equation 10 and Equation 11. The av-

erage NIQE values are evaluated on Set5 with kernel widths 0.2,

1.3 and 2.6.
Loss function 0.2 1.3 2.6

Equation 10 4.98 4.83 4.87

Equation 11 4.88 4.77 4.80

erage speed of different methods on the same platform with

one RTX 2080Ti GPU. When the input sizes are 64×64, the

computational cost of IKC [10] has reached 199 GFLOPs.

DAN [22] has a much fewer computational cost, which is

about 78 GFLOPs. As a comparison, our AMNet-RL only

requires 14.50 ms to process a 64 × 64 image, nearly four

times faster than DAN, and 11 times faster than IKC. Com-

bined with the results in Table 2, our AMNet-RL achieves

dominant performance in terms of the trade-off between the

running time and PSNR value.

Table 6. FLOPs and average inference time (measured by

torch.cuda.Event(enable timing=True)).

Input size Methods FLOPs Time

64× 64

IKC [10] (iterations=7) 199 G 171.66ms

DAN [22] (iteration=4) 78 G 63.51 ms

AMNet-RL (ours) 6.6 G 14.50 ms

AMNet L-RL (ours) 11.5 G 26.18 ms

5. Conclusion
This paper proposes an adaptive modulation layer to

compose a novel multiple degradations SR model, which

yields better performance and less computational costs. To

alleviate the non-differentiable evaluation metrics optimiza-

tion problem, we introduce RL into the blind SR frame-

work. Through numerical experiments, we demonstrate

that our whole blind SR framework can reach compara-

ble performance. Our blind SR framework with RL can

also convert any evaluation metrics (differentiable of non-

differentiable) to the reward function, guiding the actor to

sample the correct action. We believe that our work can

build a bridge in the blind SR and quality assessment fields.
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