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Abstract

Semi-supervised learning is a useful tool for image seg-

mentation, mainly due to its ability in extracting knowledge

from unlabeled data to assist learning from labeled data.

This paper focuses on a popular pipeline known as self-

learning, where we point out a weakness named lazy mim-

icking that refers to the inertia that a model retains the pre-

diction from itself and thus resists updates. To alleviate this

issue, we propose the Asynchronous Teacher-Student Op-

timization (ATSO) algorithm that (i) breaks up continual

learning from teacher to student and (ii) partitions the un-

labeled training data into two subsets and alternately uses

one subset to fine-tune the model which updates the labels

on the other. We show the ability of ATSO on medical and

natural image segmentation. In both scenarios, our method

reports competitive performance, on par with the state-of-

the-arts, in either using partial labeled data in the same

dataset or transferring the trained model to an unlabeled

dataset.

1. Introduction

Semantic segmentation plays an important role in im-

age understanding. Recently, the fast development of deep

learning [17] provides a powerful tool for dense image

prediction [6, 20], but for many scenarios such as medi-

cal image analysis, data annotation is often expensive but

there may exist abundant unlabeled data. In addition, it

is a common requirement of transferring a segmentation

model from one domain to another without extra annota-

tions. Both scenarios fall into the area of semi-supervised

learning which focuses on learning from both labeled data

and unlabeled data while the labeled part is often smaller.

An effective pipeline is known as self-learning, in which

an initial model is trained on the labeled part (training set)

and fine-tuned on the unlabeled part (reference set) with the

pseudo labels generated by itself. We refer to this pipeline

as teacher-student optimization, a variant of knowledge dis-

tillation [14] that has straightforward applications on medi-

cal image analysis [47].

However, we notice a factor that harms the efficiency of

utilizing unlabeled data. In the self-learning procedure, the

similarity between the teacher and student, two variants of

the target model, tend to increase. Consequently, the super-

vision that the student model obtains from the pseudo labels

becomes weak and the learning process quickly arrives at

a plateau. We call this phenomenon lazy mimicking: the

teacher model stores knowledge in the pseudo labels for the

student model to learn; once a prediction error appears, it

is likely to persist throughout the self-learning procedure;

therefore, inaccuracy accumulates and finally downgrades

the quality of the generated pseudo labels. We find that

lazy mimicking quantitatively reflects in that the pseudo la-

bels are not improved during the learning process – in other

words, the accuracy on the reference set stops growing but

the model itself does not know. From the viewpoint of op-

timization, lazy mimicking is caused by the self-learning

process gradually pushing the teacher and student models,

as a whole, towards a local optimum.

To break up the optimization trap and alleviate lazy mim-

icking, we present the asynchronous teacher-student op-

timization (ATSO) algorithm. ATSO puts forward two sim-

ple modifications beyond the self-learning pipeline to break

up the chain of ‘error inheritance’. First, we switch off

continual learning and start each generation from the same

initialized model. Second, we prevent using the pseudo la-

bels generated by a teacher model to supervise its direct stu-

dent, which involves partitioning the reference set into two

subsets – in each round of teacher-student optimization, we

generate the pseudo labels on any subset based on a teacher

model that was not trained on the same set of data. As we
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shall see in experiments, both strategies are helpful to im-

prove the quality of the pseudo labels and, consequently,

boost the final segmentation accuracy.

We evaluate ATSO on two kinds of segmentation data,

medical images and autonomous driving images. For medi-

cal analysis, we use the NIH and MSD datasets for pancreas

segmentation from CT scans. ATSO shows promising seg-

mentation results using 10% or 20% of labeled data of NIH,

surpassing the previous state-of-the-arts and approaching

the fully-supervised upper-bound. ATSO also works well

in transferring a model trained on NIH to MSD that is com-

pletely unlabeled. For autonomous driving, two popular

datasets named Cityscapes and Mapillary are investigated.

Compared to the state-of-the-arts that used strong data aug-

mentations on Cityscapes, ATSO produces competitive seg-

mentation accuracy with just basic-level augmentations. In

transferring a model from Cityscapes and Mapillary, ATSO

makes use of super-class pseudo labels to avoid the instabil-

ity of training, and achieves satisfying results.

In summary, the contribution of this paper is two fold.

First, this is the first work to reveal the lazy mimicking

phenomenon in the self-learning pipeline. Second, the

ATSO pipeline is presented that alleviates the above burden

and improves semi-supervised image segmentation. Third,

the idea of super-class pseudo labels is helpful to stabilize

knowledge distillation in multi-class segmentation tasks.

2. Related Work

Image segmentation is a fundamental task in computer

vision. Recently, with the fast development of deep neural

networks [16, 29, 13], researchers developed effective algo-

rithms [20, 45, 6] for natural image segmentation. These

techniques quickly propagated to the area of medical im-

ages [27, 22]. One of the major differences between natural

and medical images lies in the dimensionality, where re-

searchers have investigated 2D-based [27, 28, 48, 43, 21]

and 3D-based [7, 22, 50] pipelines and tried to integrate

them into one framework to absorb benefits from both of

them [33, 19, 24, 37].

Semi-supervised learning lies between supervised and

unsupervised learning, which assumes that a small frac-

tion of data are labeled, while the remaining part are un-

labeled but closely related to the labeled subset [4, 49]. Re-

searchers designed some generalized frameworks includ-

ing self-learning [1], multi-view learning [32, 40], co-

training [4], etc. The idea of self-learning is to use an initial

model trained on labeled data to predict the labels on unla-

beled data, so that these labels, though less accurate, can

be used for training an updated, more powerful model [1].

This is related to knowledge distillation [14] and teacher-

student optimization [12], but since unlabeled data was in-

troduced, it is crucial to maximally improve the quality of

the predicted labels [34, 41]. The idea of self-learning is

also widely used for natural image recognition. [3] obtained

the final prediction by averaging the representation of mul-

tiple transformation from one image. [38], [2], and [30]

injected noise into the network training process with differ-

ent degrees of data augmentation to enhance the robustness

of the model and further improve the reliability of pseudo

labels. [39] only introduced noise into the student model

to highlight the inconsistency between the teacher and stu-

dent models and prevent the iterative process from moving

towards a local optimum.

As another line of research, both co-training and multi-

view learning aim to use the consistency within the task

itself to assist learning. Differently, co-training often as-

sumed that different models should produce the same out-

put on the same data [26], but multi-view learning assumed

that the same model should produce the same result on vari-

ous views of the same data [32]. Sometimes, these assump-

tions were combined into one framework [31, 26]. Semi-

supervised learning is of great interest to the researchers

of medical image analysis, mainly because accurate anno-

tations are often difficult to acquire. There exists large-

scale datasets with inaccurate [35] and/or partial data anno-

tations [46], and researchers also developed practical semi-

supervised algorithms for learning from these data [47, 36].

ATSO aims at improving the quality of ‘pseudo labels’

in the self-training pipeline of semi-supervised learning.

The key principle is to enlarge the difference between the

teacher and student signals so that the student model learns

non-trivial knowledge from the teacher model. A similar

idea was presented by a recent work [42] which studied

fully-supervised learning tasks. Differently, [42] facilitates

the difference by manipulating learning rates, while ATSO

by isolating reference data between iterations. ATSO is also

related to other knowledge distillation approaches which

trained a few models simultaneously so that each model

can be used to supervise others. Examples include deep

mutual learning [44] and deep co-training [26]. In particu-

lar, deep co-training [26] added an adversarial loss term to

enlarge the gain between teacher and student models. Dif-

ferently, we train two models individually on two subsets of

the reference set, which naturally guarantees diversity and

enjoys the ability of being parallelized when the number of

individually-optimized models is large.

3. Our Approach

3.1. Problem Setting and Baselines

We study the problem of image segmentation. The goal

is to train a segmentation model, y = f(x;θ), in which x

and y denote the input images and output predictions and

f(·) is the deep network parameterized by θ. There are

some off-the-shelf choices of f(·) including FCN [20] and

DeepLab [6]. Both FCN and DeepLab process 2D images.
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In case of analyzing 3D medical data, e.g., CT scans, we

follow a practical pipeline, RSTN [43], that partitions each

3D volume into 2D slices, known as the coronal, sagittal,

and axial views, uses a 2D network for segmentation, and

stacks the outputs into a 3D volume as the final prediction.

The accuracy of image segmentation is often measured by

the overlapping ratio between the prediction and ground-

truth. Throughout the rest part of this paper, we use the

term of segmentation accuracy or briefly accuracy to re-

fer to the mean IOU value for the natural images and the

Dice-Sørensen coefficient (DSC) for the medical images.

Provided Y and Z being the predicted and ground-truth set

of object pixels, we have IOU = |Y ∩ Z| / |Y ∪ Z| and

DSC = 2× |Y ∩ Z| / (|Y|+ |Z|), respectively.

Besides the fully-supervised image segmentation on the

fully annotated data, another important setting is semi-

supervised learning in which a large portion of training data

do not have labels but we need to learn as much knowledge

as possible from them. As a formal definition, the training

set T is partitioned into two parts, namely, the supervised

(labeled) set S and the reference (unlabeled) set R. Most

often, we have |S| ≪ |R|. Also, there is a testing set, E ,

which is invisible during the model training procedure.

3.2. Lazy Mimicking: the Devil in SelfLearning

For the simplicity of description, throughout this section,

we illustrate our approach using the scenario of medical im-

age segmentation – all data are from the NIH pancreas seg-

mentation dataset [28] and all results are from RSTN [43],

while almost all our statements can be directly transplanted

to natural image segmentation.

We first show that image segmentation accuracy can drop

dramatically in the semi-supervised setting. We start with

training the model using 10% of data labeled and the re-

maining 90% unlabeled on the NIH dataset. The detailed

configurations are elaborated in the experimental section.

Although RSTN achieves an average accuracy of over 84%
with full supervision (60 training samples) on the NIH

dataset, but if only 10% of training data (6 training samples)

are preserved, the accuracy quickly drops to nearly 70%.

A simple and effective pipeline for semi-supervised

learning is named self-learning. It starts with an initial

model, denoted by M0, which is trained under supervised

learning on S . M0 gets updated for a total of T rounds. In

the t-th (t = 1, 2, . . . , T ) round (a.k.a., generation), the ref-

erence subset,R, is sent into the old model Mt−1 (often re-

ferred to as the teacher model), and the prediction is named

the pseudo label in the current round. The training process

of the student model, Mt, then follows a regular supervised

learning procedure on both S and R, with the supervision

on R coming from the pseudo labels. The trained student

model of the current round is used as the teacher model of

the next round and the iteration continues till the end.

However, the results are below satisfaction. Self-

learning gets saturated after 2 generations, when it achieves

an accuracy of 78.98% on the test set. Although the accu-

racy is significantly higher than the base model, it is still far

away from the fully-supervised upper-bound which is over

84%. In other words, self-learning extracts knowledge from

the reference set, but the efficiency is below satisfaction.

To investigate the reason, we diagnose the accuracy of

the reference set, which is expected to grow with the learn-

ing procedure. However, we find that the accuracy quickly

arrives at a plateau. After the 0th (the initial training stage

with only labeled data), 1st, 2nd, and 3rd generations, the

accuracy of the reference set is 71.41%, 74.54%, 75.44%,

and 74.72%, respectively. Compared to the scenario when

100% training data are labeled, the accuracy on the same

subset of training data is 86.70%. In other words, the train-

ing procedure has entered a ‘trap’ that the pseudo labels of

the reference set stop at a low accuracy (what is worse, the

accuracy starts to drop in the 3rd generation), but the algo-

rithm ‘does not know’ because the ground-truth is missing.

From the viewpoint of optimization, this phenomenon

can be explained as a local optimum of the self-learning sys-

tem. Let xn be a training sample in the reference set,R, y⋆

n

is the ground-truth label, and yn is the predicted output by

the teacher model. We assume that yn = y⋆

n
+ ǫn where ǫn

is the prediction error. WhenR is labeled, i.e., y⋆

n
is known,

ǫn follows a zero-mean distribution because the optimiza-

tion goal is to minimize |ǫn| on the training set. However,

in the scenario of self-learning, y⋆

n
remains unknown and

thus ǫn may follow a non-zero-mean distribution. Since yn

is used as the pseudo label, such noise can persist across in

the student model. What makes things worse, each genera-

tion of the teacher-student optimization can introduce new

noise which accumulate on the reference set. We use the

name of lazy mimicking to refer to the behavior that the

student model is unable to identify and eliminate the noise

of the teacher model. We show a typical example of lazy

mimicking in Figure 1.

3.3. Asynchronous Optimization: Escaping from
the Optimization Trap

To alleviate lazy mimicking, i.e., escaping from the op-

timization trap, we point out two key factors that assist the

propagation of the noise, ǫn: (i) the pre-trained weights of

the current snapshot from the teacher model and (ii) the ref-

erence set that has just been used by the teacher model. This

inspires us to weaken the correlation between the teacher

and student models from these two aspects.

First, we weaken the correlation from the model per-

spective, namely, preventing the teacher and student model

from being too close. This is easily implemented by break-

ing up the setting of continual learning and initializing each

student model from the same checkpoint – in practice, we

31237



Case #11∈ 𝓡(𝟏)

Case #54∈ 𝓡(𝟐)

train on 𝓢 ∪𝓡(1) train on 𝓢 ∪𝓡 2 train on 𝓢 ∪𝓡(1) ∪𝓡(2)

39.19% 72.79% 40.54%

79.35% 68.77% 67.03%

Figure 1. Examples of lazy mimicking and a simple method to alleviate it (best viewed in color). The leftmost column shows two unlabeled

images in the reference set, and the right columns show the segmentation results when the full reference set has been used for self-learning

and when half of the reference set has been used. Segmentation accuracy is significantly improved when the reference set does not contain

the test case. The red, green, and yellow masks indicate the true label, prediction, and overlapping region, respectively. The numbers in the

bottom-right corner denote the DSC accuracy of the entire 3D volume.

use the first model optimized on the labeled training set, S ,

to be the default checkpoint. As shown in the experiments,

this simple modification brings significant accuracy gain.

Second, we weaken the correlation from the data per-

spective, namely, preventing using the same set of reference

data continuously, i.e., always using the pseudo labels gen-

erated by a teacher model to supervise its direct student. To

verify this assumption, we first notice that in the aforemen-

tioned self-learning procedure, the accuracy gained on the

test set is much higher than that on the reference set, e.g.,

6.36% test accuracy gain vs. 4.03% reference accuracy gain

after 2 self-learning generations. To make things clearer, we

partition the reference set into two parts, and perform self-

learning on different combinations of reference data. Re-

sults of two hard examples are shown in Figure 1. Interest-

ingly, the segmentation accuracy is significantly improved

when the example is not contained in the reference set. This

aligns with the observation that the improvement on the test

set is larger than that on the reference set. Back to the opti-

mization perspective, the noise on the reference set does not

transfer to the data that the current generation does not use

for self-learning. This inspires us to partition the reference

set into two subsets, denoted byR = R(1) +R(2). In each

generation, we generate the pseudo labels onR(1) using the

model that was just self-trained on R(2), and vice versa.

After the last generation asynchronous update of both sub-

sets, we combine the pseudo labels of both subsets into the

complete one, based on which the final model is trained.

Integrating the above two aspects obtains the asyn-

chronous teacher-student optimization (ATSO) algo-

rithm, described in Algorithm 1. Compared to the self-

learning baseline, each generation of ATSO takes approx-

imately the same computational costs. This makes ATSO

easily plugged into any self-learning scenarios.

Of course, there may exist other solutions that alleviate

Algorithm 1: ATSO

Asynchronous Teacher-Student Optimization

Input : a training set T = S ∪ R (S is labeled

andR is unlabeled), # of iterations T ;

Output: a model M trained on T ;

1 Train an initial model M0 from scratch on S;

2 DivideR into two subsets,R(1) andR(2), t← 0;

3 M
(1)
0 ←M0, M

(2)
0 ←M0;

4 repeat

5 UpdateR
(1)
t+1 using the prediction of M

(2)
t

;

6 UpdateR
(2)
t+1 using the prediction of M

(1)
t

;

7 M
(1)
t+1 ←M0, M

(2)
t+1 ←M0;

8 Fine-tune M
(1)
t+1 on S ∪ R

(1)
t+1;

9 Fine-tune M
(2)
t+1 on S ∪ R

(2)
t+1;

10 t← t+ 1;

11 until t = T ;

12 Train MT on S ∪ R
(1)
t
∪R

(2)
t

;

Return: M←MT .

lazy mimicking, yet our solution is simple and effective.

Moreover, ATSO also has the option of dividing the refer-

ence set into more subsets, but this can slow down the train-

ing procedure. In practice, we find that using two folds of

reference data performs well for semi-supervised learning.

4. Experiments on Medical Images

This section demonstrates the effectiveness of ATSO in

two medical segmentation datasets. We investigate two sce-

narios, namely, semi-supervised segmentation (with part of

training data labeled) on a single dataset and transferring

the trained model from one dataset to another that does not

have labels at all.
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4.1. Results on the NIH Dataset

We evaluate ATSO on the NIH dataset [28] for pancreas

segmentation. It contains 82 normal CT scans, each of

which is a 3D volume of 512 × 512 × L voxels, where

L is the length of the long axis. We follow the prior

work [48, 43] to partition each dataset into four folds and

use the first three folds (62 cases) as the training data. For

semi-supervised learning, we follow the prior work [47, 36]

to use a small portion (10% or 20%) of training data as the

labeled set and leave the remaining part to the reference set.

We report the average DSC over all test cases.

The configuration of the deep networks follows that in

the original RSTN paper [43]. In the training stage, we opti-

mize three individual networks for segmentation along with

the coronal, sagittal and axial views, respectively. In the

inference stage, either on the reference set or the test set,

predictions from these three views are fused into the final

segmentation by majority voting. Please refer to the origi-

nal paper for further technical details.

We first investigate semi-supervised segmentation on the

NIH dataset with 10% of the training set (6 cases) labeled.

The naive baseline, by only using the labeled data for train-

ing, reports a 72.62% test accuracy which is far lower

than the upper-bound, 85.04%, when the labels of all train-

ing data are available. In what follows, we gradually add

the key components of ATSO into the baseline and show

how these components push the training procedure towards

higher accuracy.

• Breaking up Continual Learning Brings Benefits

We first compare the options with and without continual

learning, which we refer to as the self-learning baseline and

synchronous teacher-student optimization (STSO), re-

spectively. The former uses the last snapshot of the teacher

model to initialize the student model, while the latter fine-

tunes the student model from M0. To save computational

costs, we only perform the third training stage of RSTN be-

yond initialization. Note that the major difference between

the self-learning baseline and STSO lies in whether contin-

ual learning is used – we use the comparison to reveal the

relationship between continual learning and ‘lazy mimick-

ing’ and thus offer a new understanding to the prior work

that either used continual learning or not.

Results are summarized in Table 1. The difference be-

tween the self-learning baseline and STSO is significant.

After two generations, the self-learning baseline achieves a

78.98% accuracy on the testing set and 75.44% on the ref-

erence set. Starting from the third generation, these num-

bers start to drop, demonstrating that lazy mimicking has

obstructed the model from obtaining useful information and

conducted a fallacious direction to the student model. The

best accuracy of STSO, 79.67%, (a non-trivial 0.69% im-

provement) is obtained after 4 generations.

• Asynchronous Optimization Improves Accuracy

Generation
Self-learning STSO ATSO

@R @E @R @E @R @E

G0 71.41 72.62 71.41 72.62 71.41 72.62
G1 74.54 76.82 74.54 76.82 75.69 78.82
G2 75.44 78.98 75.42 77.88 77.05 80.81
G3 74.72 78.27 76.42 79.27 77.81 81.69
G4 74.38 77.78 76.93 79.67 77.73 81.41
G5 73.38 77.22 77.15 79.57 78.07 81.57

Table 1. Segmentation results (DSC, %) on the NIH pancreas seg-

mentation datasets with 10% labeled training data (6 cases). The

results of the reference set and the test set are compared during 5

generations.

Next, we study the difference between STSO and ATSO.

Results are summarized in Table 1. ATSO improves seg-

mentation accuracy on both the reference and test sets. In-

terestingly, ATSO enjoys faster growth in both numbers: af-

ter only two generations, the test accuracy has increased to

over 80%, claiming a nearly 3% advantage over the corre-

sponding number of STSO. After five generations, ATSO

still enjoys a 2% advantage over STSO. That being said,

ATSO has a broad range of applications in the scenario of

limited computational resource for model training.

To quantify the impact of lazy mimicking, we refer to the

DSC between the final model and the model trained only on

labeled data, which is 84.40%, 83.47%, and 81.13% for the

self-learning baseline, STSO, and ATSO, respectively, im-

plying that ‘teacher and student being too close’ is a nega-

tive factor to the segmentation accuracy (77.22%, 79.57%,

81.57%). Therefore, by not generating pseudo labels on the

reference set that was just used, the algorithm can escape

from the optimization trap.

• Comparison to State-of-the-Arts and Visualization

In Table 2, we compare ATSO against state-of-the-art ap-

proaches, and show that ATSO outperforms all of them. In

particular, ASTO surpasses [36] by more than 2.5% in both

scenarios that 10% and 20% labeled data have been used.

Note that [36] is a recently published method which in-

volved uncertainty in multi-view learning – in comparison,

our solution is easier and more effective. In addition, be-

ing simple and easily implemented, ATSO can be combined

with other training strategies, e.g., adversarial training [26]

or uncertainty evaluation [36], towards better performance.

Figure 2 shows some typical examples of how segmen-

tation errors are fixed with semi-supervised learning. When

the labeled set is small, it is very likely that the labeled

training set does cover sufficient situations, causing some

failure cases in the reference set. In the self-learning base-

line or even STSO, it is relatively difficult for the model

to fix these errors during iteration, and the persisted errors

can hinder the ability of the student model. In comparison,

ATSO offers extra opportunities to jump out of the current

distribution and thus get rid of the failure case. Hence, the

efficiency of utilizing unlabeled training data is improved.
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Figure 2. Visualization of the improvement on the reference and test sets (best viewed in color). For each case, the second to the last row

show the results produced by the self-learning baseline, STSO, and ATSO, respectively. In each pair, the left and right sides of the arrow

are the outputs of an intermediate and the final generations. We show typical 2D slices that reflect the difference, while the DSC numbers

in the bottom-right corner are computed in the entire 3D volume. The red, green, and yellow masks indicate the true label, prediction, and

overlapping region, respectively. Please also zoom in to see the white dashed circles that mark the regions with significant accuracy gain.

Method Backbone 10% D 20% D

DMPCT [47] 2D ResNet-101 63.45 66.75
DCT [26] (2v) 3D ResNet-18 71.43 77.54
TCSE [18] 3D ResNet-18 73.87 76.46
UMCT [36] (2v) 3D ResNet-18 75.63 79.77
UMCT [36] (6v) 3D ResNet-18 77.87 80.35

UMCT [36] (2v+) 3D ResNet-18 77.78 80.52
UMCT [36] (3v+) 3D ResNet-18 79.05 81.18
Self-Learning (ours) 2D FCN8s ×2 78.98 82.87
STSO (ours) 2D FCN8s ×2 79.67 83.21
ATSO (ours) 2D FCN8s ×2 81.69 83.70

Table 2. Accuracy (DSC, %) comparison between some recently

published methods and our solutions, i.e., the self-learning base-

line, STSO, and ATSO. We have tested the accuracy using either

10% or 20% labeled training data. Some of the numbers are bor-

rowed from [36]. 2v means that 2 views have been used in multi-

view learning and ’+’ means muli-view fusion results.

4.2. Transferring to the MSD Dataset

The pancreatic tumor segmentation task of the MSD

dataset (http://medicaldecathlon.com/) has 281 abnormal

CT scans. Each sample contains the annotation of the pan-

creas and the tumor. Since we train the base model on the

NIH dataset (normal pancreas), we only evaluate the pan-

creas segmentation accuracy on the MSD data. We use 62

cases from the NIH dataset as the labeled training data while

200 cases from the MSD dataset as the unlabeled training

data. The rest of the MSD dataset is considered as the test

set. Transferring from NIH to MSD is a challenging task

since the distributions are very different between these two

datasets: the scanners are different, and the MSD data con-

tain abnormality (pancreatic tumor) while the NIH data do

not. In this scenario, the key is to extract information from

the unlabeled training set that has a close distribution to the

test set. Since the resolution on the long axis varies signifi-

cantly, we normalize the inter-slice distance along the long

axis during training and testing, but rescale the final out-

put to the original size for a fair comparison. We also com-

pute the global DSC criterion (following the MSD standard,

merging all test cases into a single volume) which reports

the same trend as local DSC criterion.

We compare the segmentation results on the reference

and test sets among the self-learning baseline, STSO and

ATSO. Results are summarized in Table 3. Directly apply-

ing the pre-trained model for segmentation reports an av-

erage accuracy of 69.95% on the test set. After four gen-

erations, ATSO reports an average accuracy of 76.71% (an

6.76% gain over the direct transfer baseline) which is higher

than that of STSO (75.48%) and the self-learning baseline

(74.78%) after the same generations. Note that 76.71% is

even higher than the accuracy (75.49%) obtained from us-
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Generation
Self-learning STSO ATSO

@R @E @R @E @R @E

G0 63.75 69.95 63.75 69.95 63.75 69.95
G1 68.24 75.35 68.24 75.35 68.86 74.53
G2 69.72 75.42 68.50 75.09 69.17 76.57
G3 69.77 74.78 68.04 74.17 70.49 76.10
G4 70.21 74.03 69.08 75.48 71.02 76.71

Table 3. Segmentation results (DSC,%) on the transfer learning

from NIH to MSD. The results of the reference set and the test set

are compared during 4 generations.

ing 62 labeled MSD cases for training in which the gap be-

tween the training and the testing is smaller. Similar to the

NIH experiments, we also obtain more accurate pseudo la-

bels. After four generations, ATSO achieves a 71.67% ac-

curacy on the reference set, but both the self-learning base-

line and STSO reports around 70%. This aligns with our ex-

pectation: ATSO has the ability of transferring knowledge

from a labeled dataset to another unlabeled, even when the

data distributions differ considerably.

5. Experiments on Natural Images

This section generalizes ATSO to natural image segmen-

tation1, in particular, on autonomous driving data. Com-

pared to medical images, these datasets contain more se-

mantic classes. Similar to the experiments on medical data,

we show the superiority of the proposed ATSO in two semi-

supervised learning scenarios.

5.1. Results on the Cityscapes dataset

• The Finely-Labeled Subset

To compare against other methods, we first evaluate

ATSO on the 2,975 finely-labeled images, where we use

around 1/30, 1/8, and 1/4 labels and leave the remaining

as the reference set. The baseline is chosen to be DeepLab

v2 [5] built on RseNet-101 [13]. The backbone weights are

pre-trained on ImageNet [9]. We train the network for 100
epochs with the pixel-wise cross-entropy as the loss func-

tion. The initial learning rate is set to be 0.01 and adjusted

by the poly schedule. We use a batch size of 32 and dis-

tribute the training on eight NVIDIA V100 GPUs. The en-

tire training procedure takes around 3.5 hours for each gen-

eration. During the training stage, the input images are ran-

domly cropped and rescaled to 512×1024, and the standard

data augmentation including horizontal flipping and Gaus-

sian blur are used. During the testing stage, each input im-

age is rescaled into half width and height and then fed to

the trained network. The output is up-sampled to the origi-

nal size for evaluation (the mIOU value is used).

1We also evaluate ATSO on the PASCAL VOC dataset [10] and achieve

a similar conclusion. Please find the results in the Appendix.

Labeled Samples 100 (1/30) 372 (1/8) 744 (1/4)

Adv-Learning [15] - 57.1 60.5
s4GAN [23] - 59.3 61.9

CutMix [11] 51.2 60.3 63.9
ClassMix [25] 54.1 61.4 63.6

Self-learning 52.4 60.5 63.0
STSO (ours) 52.9 60.7 63.1
ATSO (ours) 53.1 61.8 63.2

Table 4. Segmentation accuracy (mIoU, %) on the Cityscapes val-

idation set. The results of other methods are directly borrowed

from the previous papers [11, 25].

The segmentation accuracy and the comparison to other

approaches are summarized in Table 4. One can ob-

serve that both STSO and ATSO bring consistent accuracy

gain over the self-learning baseline. In particular, ATSO

achieves competitive performance which is on par with Cut-

Mix [11] and ClassMix [25] that used strong data augmen-

tations. On the other hand, we point out that ATSO can be

freely integrated into data augmentation to further improve

the segmentation accuracy – please refer to the experiments

in the Appendix.

During the experiments, we observe that due to the

finely-labeled subset is relatively small, the semi-supervised

segmentation performance is not that stable. This motivates

us to evaluate ATSO in the full dataset.

• The Full Dataset

We perform experiments on the Cityscapes dataset using

1,000 finely-annotated training images as the labeled train-

ing set and the remaining part (21,944 images, including

finely-labeled and coarsely-labeled images) used as the un-

labeled reference set.

The IOU numbers of all classes and different approached

are summarized in Table 5. When only the 1K labeled im-

ages are used for training, the mIOU on the validation set

is 54.68%. After the unlabeled part is incorporated into the

training process, much higher accuracy is achieved. The

baseline self-learning reports an mIOU of 68.48%, and the

STSO gets a similar accuracy of 68.72%. ATSO improves

the accuracy to 70.43%.

The overall improvement of ATSO over the baseline that

only uses labeled data is over 15%, and the improvement

over either the self-learning baseline and STSO is around

2%. From Table 5, we notice that the improvement on the

hard semantic classes is more significant. This delivers dif-

ferent messages compared to the medical image segmen-

tation task. When the proportions of different object cate-

gories vary a lot, it is important to mine richer information

of the objects with limited training instances (e.g., train or

truck) from the reference set to improve the segmentation

accuracy. Due to the space limit, we put some visualization

results in the Appendix.

71241



Method road side budg wall fence pole tr lt tr sn vegtr terr sky pers rider car truck bus train motor bike mIoU

Supervised-only 96.15 72.94 86.60 30.17 37.85 33.60 38.27 54.37 88.24 50.20 90.41 64.34 30.64 87.71 27.18 41.42 25.13 22.37 61.49 54.68

Self-learning 97.60 81.12 90.53 45.02 51.58 53.47 60.56 73.12 91.38 55.67 94.35 77.70 53.51 92.56 47.60 59.24 48.30 55.37 72.64 68.48

STSO 97.65 81.77 90.70 51.52 51.64 53.45 60.75 73.48 91.46 58.46 94.46 78.08 55.18 92.55 45.30 59.68 43.45 53.17 72.92 68.72

ATSO 97.64 81.74 89.97 43.18 52.06 51.09 54.74 69.72 91.15 59.95 94.03 76.18 51.90 93.27 68.28 74.67 61.54 56.07 70.99 70.43

Table 5. Class-wise and mean IOU (%) of Cityscapes, produced by different training strategies. ‘Supervised-only’ indicates that only the

1K labeled images are used. Mind the significant gain in the truck and train classes.

Method road side budg wall fence pole tr lt tr sn vegtr terr sky pers rider car truck bus train motor bike mIoU

transfer 61.82 10.23 46.98 4.73 13.98 17.48 16.66 19.08 64.53 32.09 54.58 25.51 7.88 54.46 9.36 10.20 0.07 10.44 9.51 24.70

STSO19 60.11 7.68 57.64 0.57 10.18 10.73 14.11 24.77 71.50 44.88 54.88 43.54 7.77 59.68 6.79 20.82 0.02 21.28 17.18 28.11

ATSO19 62.08 9.64 62.46 0.90 8.79 6.84 15.90 26.02 71.50 35.48 63.36 45.61 15.89 66.44 5.83 15.89 0.05 14.47 27.41 28.26

STSO5 69.87 9.60 40.31 14.42 14.78 26.36 20.90 21.49 83.28 25.94 27.15 51.27 9.11 80.14 11.60 11.15 0.43 22.16 25.48 29.76

ATSO5 80.65 12.07 40.24 16.67 21.62 25.40 31.88 35.51 86.07 16.75 30.09 56.83 14.27 82.91 23.25 15.78 2.22 28.09 32.68 34.36

ATSO5→19 80.01 7.37 42.87 13.64 24.69 19.82 23.46 20.03 84.81 34.79 19.72 60.86 29.43 83.20 24.56 27.12 15.64 42.38 49.17 37.23

Table 6. Class-wise and mean IOU (%) of Mapillary, produced by different training strategies. Please refer to the texts for details.

5.2. Transferring to the Mapillary Dataset

The transfer learning scenario is defined between two

natural image segmentation datasets. We use two pop-

ular datasets for autonomous driving, i.e., training the

model on Cityscapes [8] and transferring it to Mapillary

(https://www.mapillary.com/). The labeled training set

contains 2,975 finely annotated images from Cityscapes

and the reference and test sets are from Mapillary, which

have 18,000 and 2,000 images, respectively. Note that

Cityscapes has 19 semantic classes while Mapillary has

66. We train a model to infer 19 classes and evaluate it

on the reduced ground-truth on Mapillary by map each of

the 66 classes to one of the 19 classes. The direct transfer

method reports a mIOU of 24.70% on the Mapillary test set

that is dramatically lower than the number (77.86%) on the

Cityscapes test set, revealing a significant distribution gap

between these two datasets.

We directly apply STSO and ATSO in this scenario, and

obtain mIOU values of 28.11% and 28.26% (see Table 6),

respectively. ATSO does not show advantages over STSO.

This is mainly due to the unsatisfying accuracy of the

teacher model (directly transferred from another dataset).

For example, for the objects with a small ground-truth area

(e.g., a train), the teacher model (not seeing the ground-

truth) can easily ignore the entire object or consider it as

another close category so that the pseudo label will guide

the student models to make the same critical mistake.

To alleviate this issue, we propose a solution named

super-class pseudo label generation that generates rela-

tively coarse pseudo labels in the super-class level to get

rid of the trouble. For this purpose, we perform a pre-

defined mapping to reduce the number of classes from 19
to 5 (i.e., rode, vehicle, person, vegetation, others, referred

to as the super-classes) so as to reduce the risk of missing

some class completely. In this reduced, 5-class segmenta-

tion task, ATSO reports a mIOU of 77.11% which is signif-

icantly higher than the mIOU produced by STSO, 69.94%.

We then use the 5-class pseudo label, generated by the

final generation of either STSO or ATSO, to guide the tar-

get network. During the training procedure, the target net-

work generates 19-class segmentation and then reduces it

to 5 classes for computing the loss function with respect

to the pseudo labels. With only one training generation,

the target model produces mIOU of 29.76% and 34.36%
using the pseudo labels from STSO and ATSO, respec-

tively, i.e., better pseudo labels lead to higher mIOU. In-

terestingly, when we continue fine-tuning the latter model

(a 34.36% mIOU) with 19-class pseudo labels, its perfor-

mance is further boosted to 37.23%, claiming an over 12%
gain beyond the direct transfer baseline (24.70%). Class-

wise IOU numbers are detailed in Table 6. These results

provide new insights to apply semi-supervised segmenta-

tion to the challenging datasets, in particular, with difficult

semantic classes that can be easily missed. More details and

results can be found in the Appendix.

6. Conclusions

In this paper, we investigate semi-supervised image seg-

mentation using teacher-student optimization. The core

discovery is that the self-learning process can fall into a

trap named lazy mimicking which downgrades the quality

of prediction in the reference set. To alleviate this issue,

we propose a simple yet effective pipeline named asyn-

chronous teacher-student optimization (ATSO) which (i)

switches off continual learning and (ii) avoids any unlabeled

sample to be used in two consecutive fine-tuning rounds.

Experiments on a few public datasets verify the effective-

ness of our approach in both intra-dataset and inter-dataset

semi-supervised learning tasks.

Our research sheds light on a new direction to improve

semi-supervised learning, i.e., design a better schedule of

feeding unlabeled data to the model. We expect to general-

ize ATSO to a wider range of vision problems, e.g., simul-

taneous detection and segmentation.
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