
Progressive Semantic Segmentation

Chuong Huynh1 Anh Tuan Tran1,2 Khoa Luu1,3 Minh Hoai1,4

1VinAI Research, Hanoi, Vietnam, 2VinUniversity, Hanoi, Vietnam
3University of Arkansas, Fayetteville, AR 72701, USA
4Stony Brook University, Stony Brook, NY 11790, USA

{v.chuonghm,v.anhtt152,v.khoal,v.hoainm}@vinai.io

Abstract

The objective of this work is to segment high-resolution

images without overloading GPU memory usage or losing

the fine details in the output segmentation map. The mem-

ory constraint means that we must either downsample the

big image or divide the image into local patches for sepa-

rate processing. However, the former approach would lose

the fine details, while the latter can be ambiguous due to

the lack of a global picture. In this work, we present Mag-

Net, a multi-scale framework that resolves local ambigu-

ity by looking at the image at multiple magnification levels.

MagNet has multiple processing stages, where each stage

corresponds to a magnification level, and the output of one

stage is fed into the next stage for coarse-to-fine information

propagation. Each stage analyzes the image at a higher

resolution than the previous stage, recovering the previ-

ously lost details due to the lossy downsampling step, and

the segmentation output is progressively refined through the

processing stages. Experiments on three high-resolution

datasets of urban views, aerial scenes, and medical images

show that MagNet consistently outperforms the state-of-the-

art methods by a significant margin. Code is available at

https://github.com/VinAIResearch/MagNet.

1. Introduction

The current state-of-the-art (SOTA) semantic image seg-

mentation techniques [1, 4, 16, 19, 21, 23, 26] are based on

deep learning, where a convolutional neural network (CNN)

takes an input image and outputs a segmentation map. Most

of the existing techniques, however, assume that the entire

segmentation process can be performed with a single feed-

forward pass of the input image and the entire process can

be fitted into GPU memory. Unfortunately, most existing

techniques cannot handle high-resolution input images due

to memory and other computational constraints. One ap-

proach to handle a large input image is to downsample it,

but this results in a low-resolution segmentation map, which

is not adequate for applications that require high-resolution

(a) Input image (b) Ground truth

(c) Downsampling (d) Patch processing

(e) GLNet (f) DenseCRF

(g) PointRend (h) MagNet (Proposed)

Figure 1: Comparing several semantic segmentation and re-

finement approaches on a high-resolution input image. Down-

sampling loses fine details, while Patch Processing wrongly classi-

fies local patches due to the lack of the global context. The collab-

orative global-local network GLNet fails due to the large discrep-

ancy between the global and local branches. Post-processing and

refinement methods such as DenseCRF and PointRend can only

correct small mistakes due to local inconsistency. MagNet outper-

forms other methods, thanks to a novel multi-scale segmentation

and refinement framework. Best viewed in color.

output with fine details [12, 24], e.g., for tracking the pro-

gression of malignant lesion [8]. Another approach to han-

dle a large input image is to divide the image into small

patches and process each patch independently. This ap-

proach, however, does not take into account the global in-

formation [22] that is needed to resolve ambiguity in local

patches. The limitations of these two approaches are illus-

trated in Fig. 1(c) & (d).

One way to address the limitations of the two aforemen-

16755

tioned approaches is to combine them, i.e., to fuse global

and local segmentation processes. On the one hand, the

global view of the entire image can be used to resolve the

ambiguity in the appearance of local patches. On the other

hand, by analyzing local patches, we can refine the seg-

mentation boundaries and recover the lost details due to the

downsampling procedure of the global segmentation pro-

cess. This approach has been successfully demonstrated

recently by the Global-Local Network (GLNet) [5]. How-

ever, given an input image with ultra-high resolution, there

is a huge gap between the scale of the whole image and

the scale of the local patches. This will lead to contrasting

output segmentation maps, and it will be difficult to com-

bine and reconcile differences with a single feed-forward

processing stage (see Fig. 1e); the difficulty of this combi-

nation task is analogous to constructing a single-span bridge

across a wide river.

To bridge the gap between the two extreme ends of the

scale space, we propose to consider multiple scales in be-

tween. We introduce a novel multi-scale framework where

the output segmentation map will be progressively refined

as the image is analyzed from the coarsest to the finest scale.

The core of our framework is a refinement module that can

use one segmentation map to refine another. This refine-

ment module is used at every stage of our multi-scale pro-

cessing pipeline to refine the output segmentation map at

its most uncertain locations. Our framework can integrate

global contextual cues to produce more accurate segmenta-

tion, and it can output high-resolution detailed segmentation

maps under a memory constraint. Fig. 1 shows the result of

MagNet and compares it with other segmentation methods,

including the recently proposed PointRend [14] method that

seeks to refine only at the most uncertain pixels.

2. Related Work

Multi-scale, multi-stage, context aggregation. The com-

bination of multiple scale levels helps the network aggre-

gate different fields of view and provides more context to

each pixel [3, 11]. ICNet [38] used a cascaded architecture

for feature maps of different downsampled inputs, while

RefineNet [18] fused upsampled outputs of the branches

that handled different low-resolution inputs. Feature Pyra-

mid Network (FPN) [13] upsampled feature maps in dif-

ferent scales and aggregated them with the output of low

layers. The dilated convolution and Atrous Spatial Pyramid

Pooling (ASPP) module in DeepLab [4] enlarged the re-

ceptive field, created a connection between far-apart pixels.

The same effect was achieved by PSPNet [37], which com-

bined different scaling feature maps to enlarge the receptive

fields. High-resolution Net (HRNet) [30] proposed another

scale fusion schema where a new branch with a larger recep-

tive field was added after each stage. Attention technique

was also used in many recent approaches [2, 34, 35] to add

more global information to every single point.

Another approach to handle high-resolution images is to

use multi-stage networks, where images are segmented af-

ter several stages or sub-networks. Xia et al. [32] proposed

Hierarchical Auto-Zoom Net, a strategy to scale the field of

view when sliding the view through a big image. For ultra-

high resolution images, Takahama et al. [27] solved the im-

balance between background and foreground by predicting

whether the whole patch contained foreground pixels or not

before segmenting it.

Propagating global information to local patches is a

promising approach to deal with high-resolution images.

ParseNet [20] pooled global context to local field of view

to have more information. BiSeNet [33] included one more

branch for global pooling and the global context would be

added to the feature map at the last stage. Although those

methods were efficient, they consumed a huge amount of

GPU memory for ultra-high resolution images. Tokunaga

et al. [28] proposed a method for super-high-resolution im-

ages, using independent multi-scale networks and an adap-

tive weight generator. The outputs of network members

were combined with corresponding trained weights to pro-

duce the final output, but there was no knowledge sharing

between network branches. Unlike [28], [5] contained two

sub-networks with shared information, where the global

branch took the downsampled images to extract global con-

text and the local branch took patches and corresponding

global features to improve the details of high-resolution im-

ages. However, due to the ad-hoc combination of the global

and local branches, it was difficult to extend to more than

two scales. Moreover, in our experience, training the local

network was difficult due to the domination of the strong

global branch.

Segmentation refinement. There were several approaches

to improve the segmentation outputs with post-processing.

One approach was to use classical methods such as Con-

ditional Random Fields (CRFs) [15] or Guided Filter

(GF) [10] on the segmentation mask produced by deep

learning networks. However, these methods were slow and

the improvement was incremental. The inference speed

could be improved with a deep learning version of Guided

Filter (DGF) [31]. Another approach for post-processing

was to use deep networks. Iterative Instance Segmenta-

tion (ISS) [17] refined the output by repeatedly passing the

input image and the segmentation map through a refine-

ment module several times. This method was based on self-

reflection, the input image to each refinement stage was the

same. Like ISS, CascadedPSP [6] used the same refinement

scheme but the resolution of the input at each refinement

stage was different. However, the wrong prediction at any

middle stage could significantly affect the performance of

later steps. Some methods aimed to refine parts of the out-

put only, such as pixels at the boundaries [36, 39] or pixels

16756

Method
Dense GF DGF ISS GLNet Cascade PointRend SegFix DeepStrip

Ours
CRF [15] [10] [31] [17] [5] PSP [6] [14] [36] [39]

Deep learning ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Using high-resolution

input

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multi-scale processing ✓ ✓ ✓ ✓

Can recognize new

objects

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Partly refinement ✓ ✓ ✓ ✓

Table 1: Summary of key features of various semantic segmentation refinement approaches.

at uncertain locations (PointRend [14]). However, boundary

refinement methods [36, 39] failed to recover tiny objects,

while PointRend [14] only used the local context for refine-

ment. Furthermore, because the input of the PointRend was

the high-level features of a deep network, it must be trained

specifically for each segmentation backbone. In this paper,

we propose a modular framework for having any number of

scale levels. It is simple but effective for refining a coarse

segmentation output, being able to keep the overall structure

of the coarse segmentation output while adding more details

after each stage without suffering the domination problems.

Table 1 compares the key features of different methods.

3. MagNet

We now describe MagNet, a multi-scale segmentation

framework for ultra-high resolution images. It is a multi-

stage network architecture, where each stage of the network

corresponds to a particular scale. An input image will be

inspected at multiple scales, from the coarsest to the finest.

The core of our framework is a segmentation module and

a refinement module, which are used at every processing

stage. At each stage, the inputs to the refinement module

are two segmentation maps: (1) the cumulative result from

the previous stages, and (2) the result obtained by running

the segmentation module at and only at the current scale.

The objective of the refinement module is to use the latter

segmentation map to refine the former one, at selective loca-

tions determined based on the uncertainty of two estimated

segmentation maps.

In our framework, the segmentation module can be any

segmentation backbone, as long as it can output a segmen-

tation map with uncertainty estimates. The refinement mod-

ule is agnostic to the segmentation backbone; it can be

trained with one backbone and used with another. In the fol-

lowing, we will describe the multi-stage processing pipeline

and the refinement module in details.

3.1. Multi­stage processing pipeline

The architecture and processing pipeline of MagNet is

depicted in Fig. 2. There is one segmentation module and

one refinement module, which are used repeatedly in m pro-

cessing stages, where m is a hyper-parameter for the num-

ber of scales that we want to analyze. We use s to denote

the processing stage, where s = 1 corresponds to the coars-

est scale and s = m corresponds to the finest scale. Let

X ∈ R
H×W×3 be an input image, where H,W are the

height and width of the image. We consider the case when

H and W are too big for image X to be processed without

downsampling, and let h and w be the largest (or desirable)

sizes that can be handled by the segmentation module. We

use hs and ws to denote the height and width for the scale

level s. We determine the scale levels so that they span

the entire scale space: H = h1 > · · · > hm = h and

W = w1 > · · · > wm = w.

For a particular scale level s, we divide the input im-

age X into patches of size hs×ws and perform seman-

tic segmentation on these patches. The locations of these

patches are defined by a set of rectangular windows, and

let Ps denote the set of these windows: Ps = {p|p =
(x, y, ws, hs)}, where each window is specified by the top-

left corner, width, and height. As the scale level s increases,

the width and height of the rectangular windows decrease,

but the cardinality of Ps increases. For a particular window

p, we will use Xp to denote the image patch extracted at

the window p.

Our network will take an image X ∈ R
H×W×3 and

produce a sequence of segmentation maps Y 1, · · · , Y m ∈
R

H×W×C , where C is the number of semantic categories

in consideration. At stage s, we first determine the set of

rectangular windows Ps for patch division and refine the

segmentation map of each patch. Specifically, for each win-

dow p ∈ Ps, do:

1. Extract the image patch Xs
p

and previous segmentation

output Y s−1

p
defined by the window p. The height and

width of these tensors are hs and ws.

2. Downsample Xs
p

and Y s−1

p
so that the new height and

width are h and w, which are the size that can be fitted

into GPU memory and be processed by the segmenta-

tion and refinement modules. Let X̄s
p

and Ȳ s−1

p
denote

the downsampled tensors.

3. With X̄s
p

as the input, use the segmentation module to

obtain the scale-specific segmentation map Ōs
p

.

16757

Segmentation

network

Refinement

Module

Level s - 1

Level s

.

.

.

.

.

.

!

!

!"#
$%&

!"#	
$

($%&

($

("#
$%&

("	#		
$

("#
$%&

("#
$%)

*"#
$%&

*"#
$

+$%&

+$

ℎ$%&

ℎ$ ℎ$

+$

ℎ$%&

+$%&

+$×ℎ$Refinement

Module

Segmentation

network

: downsample : upsample

Figure 2: Overview of our proposed MagNet. The segmentation network produces the scale-specific prediction while the

refinement module selectively refines the coarse prediction from previous stages based on that local prediction.

Refinement

Network

select

replace

!

"

#

$

#%

$%
locations

output

Figure 3: The overview of the refinement module. The

cumulative segmentation Y is partly replaced with the

scale-specific segmentation map O based on the score Q.

4. With Ȳ s−1

p
and Ōs

p
as the input, use the refinement

module to refine Ȳ s−1

p
to obtain Ȳ s

p
(See Sec. 3.2).

5. Upsample Ȳ s
p

to get Y s
p

of size hs×ws×C.

These processing steps are illustrated in Fig. 2.

3.2. Refinement module

The refinement module is a core component of our

framework, which is used to refine the individual patches

of a segmentation map at every processing stage of our

pipeline. The input to this module is two segmentation

maps of size h×w×C: (1) the scale-cumulative segmen-

tation map Y , from all previous scales, and (2) the scale-

specific segmentation map O, from the current scale. The

output of the module is the updated scale-cumulative seg-

mentation map.

Fig. 3 depicts the refinement process, which contains the

following steps. First, using a small network with Y and

O as the input, we obtain an initial combined segmenta-

tion map R. We then calculate the prediction uncertainty

maps for both Y and R. Specifically, for each pixel of Y ,

the prediction confidence at this location is defined as the

absolute difference between the highest probability value

and the second-highest value (among the C probability val-

ues for C classes). The uncertainty score is then computed

based on the confidence score such that the two scores must

add up to one. Similarly, we can compute the prediction un-

certainty map for R. Let Y u and Ru denote the prediction

uncertainty maps for Y and R respectively.

Next, we will describe how to use two uncertainty maps

to select k locations of Y for refinement. While only

one uncertainty prediction is used in the previous work

PointRend [14], we extend this approach to have a better

selection strategy. These are the locations where Y is un-

certain about its prediction, while R is certain about its pre-

diction. The score map for ranking the pixels is calculated

as Q = F(Y u ⊙ (1 − Ru)), where ⊙ denotes point-wise

multiplication and F denotes median blurring to smooth

the score map. Empirical comparison between the effect

of each element in the formula can be found in Sec. 4.2.3.

3.3. MagNet­Fast

There is trade-off between the accuracy and the run-time

efficiency of our framework. One way to reduce the running

time is to decrease the number of scales to process. Another

approach is to perform segmentation and refinement on a

subset of image patches at each scale level. MagNet-Fast

combines these two approaches when it runs on a smaller

number of scales and only selects the patches with the high-

est prediction uncertainty Y u for refinement. In MagNet-

Fast, the total number of image patches that need to be fed

16758

Conv3x3, S=1, K=64;

BatchNorm; ReLU

Conv3x3, S=1, K=64;

BatchNorm; ReLU

Residual block, K=128

Residual block, K=128

Conv1x1, S=1, K=𝐶

Input ℎ	×	𝑤	×	2𝐶

Output	ℎ	×	𝑤	×	𝐶

Conv1x1, S=1, K=32;

BatchNorm; ReLU

Conv3x3, S=1, K=32;

BatchNorm; ReLU

Conv1x1, S=1, K=𝑘;

BatchNorm

Conv1x1, S=1, K=𝑘;

BatchNorm

Input

ReLU

+

Output

Residual block, K=𝒌

Figure 4: The two residual blocks are trained to refine

the segmentation at each scale. This module outputs the

same size h×w as the input.

into the segmentation module might be even smaller than

the number of image patches used in the patch processing

approach. Moreover, MagNet-Fast can leverage both global

context and detailed information for segmentation, leading

to superior results as will be seen in our experiments.

4. Experiments

We evaluated the performance of MagNet on three high

resolution datasets: Cityscapes [7], DeepGlobe [9], and

Gleason [29]. Some information about these datasets is

listed in Table 2. The number of pixels of each image is

from 2 to 25 million. In this section, we present experiments

comparing MagNet with other state-of-the-art frameworks

in semantic segmentation and also describe some ablation

studies on Cityscapes.

Dataset Content Resolution No.classes

Cityscapes [7] urban scene 2048×1024 19

DeepGlobe [9] aerial scene 2448×2448 6

Gleason [29] histopathology 5000×5000 4

Table 2: Details of high-resolution datasets used to eval-

uate our framework. All images have from 2 to 25 million

pixels with a lot of details.

4.1. Implementation details

Architecture of the refinement module. Fig. 4 depicts the

architecture of the refinement module used in all experi-

ments. The main components are the two residual blocks.

With the input of size h×w×2C, the refinement module

produces the output of size h×w×C.

Training. For each dataset, we trained a state-of-the-art

segmentation model on the downsampled images and a re-

finement module to refine the coarse output on sliced im-

ages. While training the refinement module, we randomly

extracted image patches and also applied the following data

Refinement steps mIoU(%) Time(s)

256 63.23 0.03

256→512 65.73 0.19

256 → 1024 65.23 0.61

256 → 2048 65.21 2.24

256→512 → 2048 67.13 2.38

256 → 1024→2048 66.95 2.79

256→512→1024→2048 67.57 2.93

Table 3: Performance of MagNet on Cityscapes with and

without intermediate scale levels. It is essential to have

the intermediate scales.

augmentation: rotation, and horizontal and vertical flip-

ping. We used SGD optimizer with momentum 0.9, de-

cayed weight 5×10−4, and initial learning rate 10−3. We

trained the refinement module for 50 epochs, and the learn-

ing rate was decreased tenfold at epoch 20, 30, 40, and 45.

We used cross-entropy as the loss function for training seg-

mentation and refinement modules. We implemented Mag-

Net using PyTorch [25] starting from the public implemen-

tation of HRNet-OCR [35]. We use a batch size of 16 for

training on a DGX-1 workstation with Tesla V100 GPUs.

Testing. During inference, at each scale, we extracted non-

overlapping patches for processing. The evaluation metric

is mean Intersection over Union (mIoU). For memory and

speed comparison, we ran benchmarking experiments on a

machine with an Intel i7 CPU and an RTX2080Ti GPU.

4.2. Experiments on the Cityscapes dataset

Cityscapes is a dataset of high-resolution urban scenes,

containing images of size 2048×1024 pixels. The task is to

segment objects in videos captured by auto cameras. There

are two kinds of data, with coarse and fine labels. In our

experiments, we used the fine-labeled dataset, with 2,975

training images and 500 testing images.

We considered four possible scale levels (m=4), cor-

responding to patch sizes of 2048×1024, 1024×512,

512×256, and 256×128. The size of the input to the seg-

mentation module was always 256×128 to satisfy the mem-

ory constraint, so any larger patch would be downsampled.

4.2.1 Benefits of multiple scale levels

Table 3 shows the results of MagNet for a different num-

ber of scales. While the direct refinement from the lowest

to highest scale improves about 2% mIoU, from 63.23%

to 65.23%, adding the two intermediate scales between

the smallest and largest scales improve the performance by

4.34% mIoU. Qualitative improvements through each pro-

cessing stage can be observed in Fig. 5. After each stage, the

errors decrease and the segmentation masks become finer.

16759

Model mIoU(%) Mem.(MB) Time(s)

Patching 52.19 1575 1.77

Downsampling 63.23 1575 0.02

DenseCRF [15] 62.95 (↓0.28) 1575 26.02

DGF [31] 63.33 (↑0.10) 1727 (↑152) 0.32

PointRend [14] 64.39 (↑1.16) 2033 (↑458) 0.14

SegFix [36] 65.83 (↑2.60) 2961 (↑1386) 0.38

MagNet-Fast 66.91 (↑3.68) 2007 (↑432) 0.32

MagNet 67.57 (↑4.34) 2007 (↑432) 2.93

Table 4: Performance of MagNet and other segmenta-

tion refinement methods on the Cityscapes dataset. The

backbone HRNetV2-W18+OCR [35] was used as the seg-

mentation module for all refinement methods.

4.2.2 Comparing segmentation approaches

Table 4 and Table 5 compare the performance of MagNet

with several state-of-the-art semantic segmentation refine-

ment methods. All methods were trained and applied to the

output of the pretrained HRNet+OCR [35] model, which is

among the leading methods on this dataset. Although there

are various HRNet models [30], we used HRNetV2-W18

256 x 128 512 x 256 1024 x 512 2048 x 1024

Figure 5: The visualization of segmentation output

through each processing stage on Cityscapes dataset.

The first one is the image. Others in the first row are the

selective points to be refined (red color). The second row is

the segmentation output. The third row is the errors com-

paring with the ground-truth. Best viewed in color.

Model fence pole traffic

sign

person motor-

cycle

Patching 33.32 42.87 59.39 61.23 22.12

Downsample 45.38 35.58 54.97 64.64 36.16

DenseCRF [15] 45.30 32.27 54.69 64.32 36.20

DGF [31] 45.42 35.63 55.27 64.85 36.20

PointRend [14] 45.01 42.71 60.18 67.10 39.17

SegFix [36] 46.17 38.77 59.23 67.86 37.12

MagNet-Fast 48.57 46.38 64.84 69.65 41.98

MagNet 50.59 49.39 64.15 72.16 45.19

Improvement 4.42 6.52 4.66 4.30 6.02

Table 5: IoU for some specific categories on Cityscapes.

The best and previous best method is highlighted in red and

blue color respectively, and the difference between them is

shown in the last row.

given its manageable complexity that was required for our

experiments, especially in terms of memory constraint.

MagNet-Fast is an efficient version of MagNet, in which

only the most uncertain patches are refined at each scale.

In this experiment, we selected the number of patches so

that MagNet-Fast had a similar processing speed as Seg-

Fix [36] and DGF [31]. This model ran on only three scales

256→512→2048 and the three highest uncertain patches

for each scale. In total, MagNet-Fast needed to run infer-

ence on 1+3+3 = 7 patches, comparing to 1+4+16+64 =
85 patches of MagNet, and 64 patches of the patch process-

ing approach.

In this experiment, except for DenseCRF [15], we fine-

tuned other frameworks to achieve the best result with the

segmentation backbone. For SegFix [36], with the offset

prediction published by the authors, the best result was

achieved with the offset width of 10. Both DGF [31] and

PointRend [14] were trained with the output of the segmen-

tation backbone. Besides, DGF ran on patches to be fairly

compared with our method in speed and memory.

As can be observed, DenseCRF [15] is the only

method that cannot improve the coarse segmentation.

PointRend [14] is the fastest method, but the improvement

is small. The inference times of MagNet-Fast, SegFix [36],

and DGF [31] are similar, but MagNet-Fast outperforms the

others significantly. MagNet was slower, but it had the high-

est mIoU.

The cumulative IoU distributions of these methods in

our experiment are shown on Fig. 6a. There is a big gap

between MagNet and the other methods, especially when

looking at the zoom-in window.

Fig. 6b shows the results of several methods on two

Cityscapes images. Both MagNet and MagNet-Fast yield

the best refinement. SegFix [36] cannot recover small ob-

jects, such as sign poles, that are wrongly merged with a

bigger region, while PointRend [14] performs poorly due to

16760

(a) The IoU cumulative distribution

Groundtruth Downsampling PointRend SegFix MagNet-Fast MagNet

78.35% 75.27% 80.16% 81.57% 82.92%

80.57% 83.67% 82.81% 83.44% 84.96%

(b) Visualization of refinement methods

Figure 6: Our methods outperform other refinement frameworks on the Cityscapes dataset. (a) The cumulative distribution of mIoU

of each image on the dataset (lower is better). The MagNet and MagNet-Fast achieve the best result among others. (b) Some segmentation

results of refinement frameworks and our MagNet. The mIoU numbers are below the images. More tiny objects are recognized and

boundaries are refined better with MagNet and MagNet-Fast. Best viewed in a digital device with magnification.

Y u (1−Ru) F mIoU (%)

✓ 63.22

✓ ✓ 63.25

✓ 66.36

✓ ✓ 66.46

✓ ✓ 67.37

✓ ✓ ✓ 67.57

Table 6: Performance of MagNet on Cityscapes with different

ranking scores. The initial segmentation has mIoU of 63.23%.

With k=216, the framework achieves the best performance when

using both Y
u and (1−R

u) with smoothing operation.

the lack of global context.

4.2.3 Ablation study: point selection

Number of refined points

m
Io

U
 (%

)

60

62

64

66

68

70

0 2048 8192 16384 32768 65536 100000 120000

PointRend MagNet (ours)

Figure 7: Correlation between the number of selective

points of each scale and mean IoU on the Cityscapes

dataset. When the quantity of points increases, the per-

formance of MagNet continuously grows while the mIoU

of PointRend decreases.

Table 6 shows our ablation study on the importance of

using the prediction uncertainty maps Y u, Ru, and the me-

dian filtering function F in selecting points for refinement.

The best performance was achieved when both uncertainty

maps were used. Also, smoothing with median filtering im-

proved the result in every case.

We also studied how the number of refinement points

correlates with accuracy. The results of MagNet and

PointRend [14] are shown in Fig. 7. As can be seen, the per-

formance of MagNet improved when the number of points

increased. The performance stopped increasing after 216

points, and it dropped to 66.86% if all points were selected

for refinement. Meanwhile, the performance of PointRend

decreased significantly when the number of selected points

increased beyond 2048; it even dipped below the initial

value where no refinement was applied.

4.2.4 Ablation study: segmentation backbones

We also tested the MagNet framework with two different

segmentation backbone networks, and the results are shown

in Table 7. In both cases, MagNet improved the segmen-

tation results of the original networks significantly, from

2% to 5%. In this experiment, we used four scale levels:

256→512→1024→2048 and the number of refinement lo-

Model mIoU(%)

Backbone: DeepLabV3+ [4]

Patch processing 59.64

Downsampling 52.01

MagNet 61.99

Backbone: HRNetV2-W48 + OCR [35]

Patch processing 54.30

Downsampling 63.92

MagNet 68.90

Table 7: Results of using MagNet with two backbone net-

works. MagNet can be used with different segmentation back-

bones, and improve their segmentation results. See Table 4 for the

results for using MagNet with HRNetV2-W18 backbone.

16761

Model mIoU(%) Mem.(MB) Time(s)

Downsampling

U-net[26] 50.11 1813

FCN-8s[21] 52.86 10569

SegNet[1] 60.93 2645

DeepLabv3+[4] 63.50 1541

FPN[13] 67.86 1247 0.01

Patch processing

U-net[26] 46.53 1813

FCN-8s[21] 62.43 10569

SegNet[1] 68.40 2645

DeepLabv3+[4] 69.69 1541

FPN[13] 70.98 1247 0.31

DenseCRF[15] 70.36 (↓0.62) 1247 39.68

DGF[31] 70.38 (↓0.6) 1435 (↑188) 0.25

GLNet[5] 71.60 (↑0.62) 1865 (↓618) 0.37

PointRend[14] 71.78 (↑0.8) 1593 (↑346) 0.16

MagNet-Fast 71.85 (↑0.87) 1559 (↑312) 0.29

MagNet 72.96 (↑1.98) 1559 (↑312) 1.19

Table 8: Segmentation results on the DeepGlobe dataset.

We used the same segmentation backbone (FPN) for all re-

finement methods in the last part.

cations for each patch was k = 216.

4.3. DeepGlobe

DeepGlobe is a dataset of high-resolution satellite im-

ages. The dataset contains 803 images, annotated with

seven landscape classes, including the unknown class. Fol-

lowing the evaluation protocol of [5], the unknown class is

ignored in mIoU calculation, so there are only six classes to

consider. The size of the images is 2448×2448 pixels. We

used the same train/validation/test split as reported in [5],

with 455, 207, and 142 images for training, validation, and

testing, respectively.

The Feature Pyramid Network (FPN) [13] with Resnet-

50 backbone was used as the segmentation network as in

the previous work GLNet [5]. We also used the same input

size 508×508 as GLNet. We used three refinement stages

with three scales 612→1224→2448 and selected 216 points

for refinement at each scale. The results are shown in Ta-

ble 8. For MagNet-Fast, at each of the three scale levels,

we selected the top three patches with the highest level of

prediction uncertainty for refinement. PointRend [14] was

also trained with the same segmentation backbone and it

achieved higher accuracy than GLNet. Both MagNet and

MagNet-Fast outperformed other methods.

4.4. Gleason

Gleason [29] is a medical dataset with histopathologi-

cal images of prostate cancer. The task is to segment and

Model mIoU(%) Mem.(MB) Time(s)

Experts 65.48 - -

Patching 46.56 1903 2.42

Downsampling 68.90 1903 0.02

DenseCRF[15] 69.46 (↑0.56) 1903 141.79

DGF[31] 68.91 (↑0.01) 2223 (↑320) 0.29

PointRend[14] 68.97 (↑0.07) 2655 (↑752) 0.21

MagNet-Fast 69.75 (↑0.85) 2621 (↑718) 0.33

MagNet 70.60 (↑1.7) 2621 (↑718) 2.74

Table 9: Performance of MagNet and other frameworks

on Gleason dataset with PSPNet [37] as the backbone.

grade lesions on ultra-high-resolution images. There are

four classes in the dataset that need to be segmented: be-

nign, Grade 3, Grade 4, and Grade 5. The dataset contains

244 images with a size of 5000×5000 pixels with segmen-

tation labels provided by six clinical experts. The combined

final label is based on majority voting. We randomly split

the dataset into 195 training and 49 testing images.

PSPNet [37], the highest-ranked method on the leader-

board for Gleason, was used as the segmentation network

with the backbone Resnet-101. We used the input size

of 512×512, and four refinement stages with four scales:

625→1250→2500→5000. MagNet-Fast was also run on

four scales, but only on three patches with the highest level

of prediction uncertainty at each scale. There are 216 re-

finement points for each scale. The results of MagNet and

MagNet-Fast, together with the result of the winning so-

lution PSPNet and the mIoU agreement between medical

experts, are shown in Table 9. MagNet was run with the

PSPNet segmentation backbone, and it improved the per-

formance of PSPNet by 1.7%.

5. Conclusions

We have proposed MagNet, a multi-scale segmentation

framework for high-resolution images. MagNet can gen-

erate high-resolution segmentation output without explod-

ing the GPU memory usage by dividing input images into

patches. To avoid the problem of being too global or local,

patches of multiple scales are considered, from the coars-

est to the finest levels. MagNet has multiple segmentation

stages, where the output of one stage will be used as the

input for the next stage, and the segmentation output will

be progressively refined. We have demonstrated the bene-

fits of MagNet on three challenging high-resolution image

datasets, where MagNet outperforms the previous state-of-

the-art methods by a margin of 1% to 2% in terms of mean

Intersection over Union (mIoU).

References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

16762

for image segmentation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 39(12):2481–2495, 2017. 1,

8

[2] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yong-

ming Huang, and Youliang Yan. Blendmask: Top-down

meets bottom-up for instance segmentation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2020. 2

[3] Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu, and

Alan L Yuille. Attention to scale: Scale-aware semantic im-

age segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016. 2

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 40(4):834–848, 2017. 1,

2, 7, 8

[5] Wuyang Chen, Ziyu Jiang, Zhangyang Wang, Kexin Cui,

and Xiaoning Qian. Collaborative global-local networks for

memory-efficient segmentation of ultra-high resolution im-

ages. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 2, 3, 8

[6] Ho Kei Cheng, Jihoon Chung, Yu-Wing Tai, and Chi-Keung

Tang. Cascadepsp: Toward class-agnostic and very high-

resolution segmentation via global and local refinement. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2020. 2, 3

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016. 5

[8] Jorge Cuadros and George Bresnick. EyePACS: an adapt-

able telemedicine system for diabetic retinopathy screening.

Journal of Diabetes Science and Technology, 3(3):509–516,

2009. 1

[9] Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan

Pang, Jing Huang, Saikat Basu, Forest Hughes, Devis Tuia,

and Ramesh Raska. Deepglobe 2018: A challenge to parse

the earth through satellite images. 2018. 5

[10] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. In Proceedings of the European Conference on Com-

puter Vision, 2010. 2, 3

[11] Le Hou, Tomas F. Yago Vicente, Minh Hoai, and Dimitris

Samaras. Large scale shadow annotation and detection us-

ing lazy annotation and stacked cnns. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 43(4):1337–

1351, 2021. 2

[12] Minh-Chuong Huynh, Trung-Hieu Nguyen, and Minh-Triet

Tran. Context learning for bone shadow exclusion in chexnet

accuracy improvement. In International Conference on

Knowledge and Systems Engineering (KSE), 2018. 1

[13] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr

Dollár. Panoptic feature pyramid networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019. 2, 8

[14] Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Gir-

shick. Pointrend: Image segmentation as rendering. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2020. 2, 3, 4, 6, 7, 8

[15] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected crfs with gaussian edge potentials. In Ad-

vances in Neural Information Processing Systems, 2011. 2,

3, 6, 8

[16] Hieu Le, Tomas F. Yago Vicente, Vu Nguyen, Minh Hoai,

and Dimitris Samaras. A+D Net: Training a shadow detector

with adversarial shadow attenuation. In Proceedings of the

European Conference on Computer Vision, 2018. 1

[17] Ke Li, Bharath Hariharan, and Jitendra Malik. Iterative in-

stance segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016. 2, 3

[18] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian

Reid. Refinenet: Multi-path refinement networks for high-

resolution semantic segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017. 2

[19] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

deeplab: Hierarchical neural architecture search for semantic

image segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019. 1

[20] Wei Liu, Andrew Rabinovich, and Alexander C Berg.

Parsenet: Looking wider to see better. arXiv preprint

arXiv:1506.04579, 2015. 2

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2015. 1, 8

[22] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu

Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and

Alan Yuille. The role of context for object detection and

semantic segmentation in the wild. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2014. 1

[23] Vu Nguyen, Tomas F. Yago Vicente, Maozheng Zhao, Minh

Hoai, and Dimitris Samaras. Shadow detection with condi-

tional generative adversarial networks. In Proceedings of the

International Conference on Computer Vision, 2017. 1

[24] Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and

Gerard Medioni. On face segmentation, face swapping, and

face perception. In Proceedings of the International Con-

ference on Automatic Face and Gesture Recognition, 2018.

1

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

Advances in Neural Information Processing Systems, 2019.

5

[26] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In Proceedings of the International Conference on

Medical Image Computing and Computer Assisted Interven-

tion, 2015. 1, 8

16763

[27] Shusuke Takahama, Yusuke Kurose, Yusuke Mukuta, Hi-

royuki Abe, Masashi Fukayama, Akihiko Yoshizawa,

Masanobu Kitagawa, and Tatsuya Harada. Multi-stage

pathological image classification using semantic segmenta-

tion. In Proceedings of the International Conference on

Computer Vision, 2019. 2

[28] Hiroki Tokunaga, Yuki Teramoto, Akihiko Yoshizawa, and

Ryoma Bise. Adaptive weighting multi-field-of-view cnn for

semantic segmentation in pathology. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2019. 2

[29] Danielle Walker. Miccai automatic prostate gleason grading

challenge, 2019. 5, 8

[30] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,

Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep

high-resolution representation learning for visual recogni-

tion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2020. 2, 6

[31] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang.

Fast end-to-end trainable guided filter. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018. 2, 3, 6, 8

[32] Fangting Xia, Peng Wang, Liang-Chieh Chen, and Alan L

Yuille. Zoom better to see clearer: Human and object pars-

ing with hierarchical auto-zoom net. In Proceedings of the

European Conference on Computer Vision, 2016. 2

[33] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation

network for real-time semantic segmentation. In Proceed-

ings of the European Conference on Computer Vision, 2018.

2

[34] Changqian Yu, Jingbo Wang, Changxin Gao, Gang Yu,

Chunhua Shen, and Nong Sang. Context prior for scene

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2020. 2

[35] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-

contextual representations for semantic segmentation. In

Proceedings of the European Conference on Computer Vi-

sion, 2020. 2, 5, 6, 7

[36] Yuhui Yuan, Jingyi Xie, Xilin Chen, and Jingdong Wang.

Segfix: Model-agnostic boundary refinement for segmenta-

tion. In Proceedings of the European Conference on Com-

puter Vision, 2020. 2, 3, 6

[37] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017. 2, 8

[38] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping

Shi, and Jiaya Jia. Icnet for real-time semantic segmentation

on high-resolution images. In Proceedings of the European

Conference on Computer Vision, 2018. 2

[39] Peng Zhou, Brian Price, Scott Cohen, Gregg Wilensky, and

Larry S Davis. Deepstrip: High-resolution boundary refine-

ment. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2020. 2, 3

16764

