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Abstract

We extend panoptic segmentation to the open-world and

introduce an open-set panoptic segmentation (OPS) task.

This task requires performing panoptic segmentation for

not only known classes but also unknown ones that have

not been acknowledged during training. We investigate

the practical challenges of the task and construct a bench-

mark on top of an existing dataset, COCO. In addition,

we propose a novel exemplar-based open-set panoptic seg-

mentation network (EOPSN) inspired by exemplar theory.

Our approach identifies a new class based on exemplars,

which are identified by clustering and employed as pseudo-

ground-truths. The size of each class increases by mining

new exemplars based on the similarities to the existing ones

associated with the class. We evaluate EOPSN on the pro-

posed benchmark and demonstrate the effectiveness of our

proposals. The primary goal of our work is to draw the

attention of the community to the recognition in the open-

world scenarios. The implementation of our algorithm is

available on the project webpage1.

1. Introduction

For deeper visual understanding, researchers have con-

structed large-scale image-based benchmarks [6, 18, 24, 33,

43] and have studied various tasks such as image classifi-

cation [14, 47], object detection [10, 23, 41, 42], semantic

segmentation [4, 27, 34], instance segmentation [3, 13], and

many others. Recently, researchers are getting more inter-

ested in finding the location and shape of instances and es-

timating semantic labels from natural scenes since they are

critical for high-level understanding of visual content.

Since Kirillov et al. [17] recently formulated a panoptic

segmentation task, which is a combination of instance seg-

mentation and semantic segmentation, a number of stud-

ies [5, 9, 16, 20, 22, 25, 38, 51, 48] have been proposed

∗This work was done during an internship at Adobe Research.
1https://cv.snu.ac.kr/research/EOPSN

Input image Ground-truth for closed-set

Open-set prediction Ground-truth for open-set

Figure 1: For a given image, we show the ground-truth for

closed-set and open-set panoptic segmentation, where un-

labeled regions are in black. In open-set panoptic segmen-

tation, a model needs to find the unknown class instances,

which are not annotated in training data. We assume that

“car” is an unknown class in the open-set visualization.

and achieved substantial performance improvements. How-

ever, one drawback of the panoptic segmentation task is

the excessive cost of dataset construction. The annotation

of pixel-level panoptic segmentation labels requires signif-

icant human efforts, and is even harder than semantic seg-

mentation. It is challenging to create a large-scale dataset

containing such comprehensive annotations. There are two

potential ways to tackle this problem. The first approach

is to develop a weakly supervised panoptic segmentation

model [21] that is free from pixel-level annotations. The

other is to build a generalized model that identifies segments

of not only trained classes but also unseen ones. The second

approach is closely related to open-set recognition [44] that

admits the existence of unknown class in testing.

In this paper, we extend panoptic segmentation to the

open-world. Unlike the closed-set counterpart, the new
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task has to deal with examples in unknown classes that are

not supervised and acknowledged during training. There-

fore, the goal of this task is to discover panoptic segmen-

tation labels for the examples in both known and unknown

classes. We call this new task open-set panoptic segmenta-

tion (OPS). We argue that the task is an important milestone

for advancing comprehensive visual understanding and it

also makes substantial impacts on a wide range of practi-

cal applications such as dataset construction, scene analy-

sis, and image editing. Figure 1 illustrates an example of

OPS.

We address the following critical challenges in the jour-

ney to OPS and make the task tractable using reasonable

assumptions2. The first challenge comes from the defini-

tion of object. Since a certain object may consist of many

components that belong to another objects, a coarse-grained

object class can be split into multiple sub-categories. For

example, a “bus” consists of various parts such as windows,

side mirrors, wheels, etc. On the other hand, it is difficult

to handle the unknown categories that belong to stuff, e.g.,

“grass” and “water”, since they are often defined as a region

and their individual instances are often ill-defined. There-

fore, an exhaustive panoptic segmentation for all kinds of

objects and backgrounds is almost impossible. The sec-

ond issue is that, unlike the open-set image classification

that discriminates images in unknown classes, the open-set

panoptic segmentation requires finding unknown class ob-

jects from a scene even when the unknown class instances,

unfortunately, are labeled as background.

We propose an exemplar-based open-set panoptic seg-

mentation network (EOPSN) as a strong baseline model

for this new task. On top of Panoptic FPN [16], one of

the popular closed-set panoptic segmentation approaches,

we integrate an extra component that searches for unknown

class labels inspired by the exemplar theory [30, 35] in psy-

chology. We first find a new unknown class and its exem-

plars by clustering object features and then discover more

based on the similarity to existing exemplars during train-

ing. Note that the proposed method is generic and appli-

cable to any top-down panoptic segmentation method. Ex-

perimental results support the effectiveness of the proposed

model; EOPSN outperforms the simple baselines, which are

variants of [16]. The contribution of this paper is three-fold

as follows:

• We define the open-set panoptic segmentation (OPS)

task and make it feasible using reasonable assumptions

through in-depth analysis of its inherent challenges.

• We construct a brand-new OPS benchmark by refor-

matting COCO [24] and present performance of sev-

eral baselines, which are variants of Panoptic FPN.

2Section 3.3 discusses the details.

• We propose a novel framework for open-set panoptic

segmentation, EOPSN, based on the exemplar theory,

and demonstrate its effectiveness in detecting and seg-

menting examples in unknown classes.

2. Related Works

2.1. Panoptic Segmentation

Panoptic segmentation, a joint problem of semantic seg-

mentation and instance segmentation, has received a lot of

attention since Kirillov et al. [17] introduce the task. There

exist a large number of works for this problem and they

are categorized into two groups: top-down and bottom-

up approaches. The top-down techniques [9, 16, 20, 22,

25, 38, 51] typically generate object proposals and segment

the proposals before combining semantic segmentation re-

sults. Mask-RCNN [13] is often deployed for instance seg-

mentation and an encoder-decoder architecture is utilized

for semantic segmentation. On top of that, AUNet [22]

leverages mask-level attention to transfer knowledge from

the instance segmentation head to the semantic segmenta-

tion head. UPSNet [51] proposes a parameter-free panop-

tic head to resolve conflicts in thing and stuff predictions.

On the other hand, the bottom-up (proposal-free) methods

obtain semantic segmentation outputs and then perform in-

stance partitioning [5, 48, 52]. The bottom-up approaches

are free from the instance-instance or instance-background

overlap issues, but they generally achieve lower accuracy

than the top-down methods. Our method is categorized to a

top-down approach, which processes instances and seman-

tic backgrounds separately.

2.2. Open­Set Learning

Open-set recognition receives a spotlight in the computer

vision community recent years. The goal of open-set im-

age classification is to classify known class images observed

during training while recognizing examples in unknown

classes [44]. In an open-set classification algorithm [45],

unknown class is further divided into two subgroups de-

pending on whether it has been exposed as a negative class

during training (seen-unknown class) or it has never ap-

peared (unseen-unknown class). On the other hand, simi-

lar to open-set object detection [8], such a strategy is not

applicable to open-set panoptic segmentation since there is

no information about whether unlabeled objects are seen or

unseen in the training dataset.

Most open-set image classification methods [2, 26, 32,

36] make predictions to unknown classes at test time if the

probabilities of all known classes are below a certain thresh-

old. OpenMax [2] leverages (C + 1)-way classifier for C-

class classification with background and trains the classi-

fier using the Weibull distribution. Generated images [36]

and counterfactual images [32] are employed to estimate ro-
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bust decision boundaries for known classes and identify un-

known classes effectively. Liu et al. [26] propose a memory-

and clustering-based model for open-set image classifica-

tion when the distribution of known classes is long-tailed.

Recently, the open-set scenario is spread to other tasks

such as object detection [8, 31] and semantic instance seg-

mentation [37]. Miller et al. [31] first address open-set ob-

ject detection using dropout sampling. The task is further

investigated and formalized by Dhamija et al. [8]. Pham et

al. [37] introduce a Bayesian optimization framework that

considers both object boundaries and masks for open-set

instance segmentation. This work formulates the open-set

panoptic segmentation task on top of the closed-set coun-

terpart.

2.3. Exemplar­Based Learning

Unlike prototype-based techniques [46, 50] that utilize

cluster centroids as the representatives of the individual

clusters, exemplar-based methods directly employ sam-

ples stored in memory. One of the well-known exemplar-

based methods in machine learning is k-nearest neigh-

bor algorithm [7], which assigns labels of new data us-

ing the training examples in neighborhood. Wu et al. [49]

perform representation learning without manual annota-

tions by providing each example with a separate class la-

bel. Incremental learning frameworks [12, 39, 40] often

adopt exemplar-based learning to prevent catastrophic for-

getting [29]. They store a small number of exemplars that

represent the whole dataset or classes in the previously tasks

effectively. MemAE [11] employs exemplar-based learning

for anomaly detection.

Existing exemplar-based learning approaches assume

that ground-truth labels for exemplars are available or make

the information less critical. On the other hand, our prob-

lem is much more challenging because it requires to identify

exemplars for diverse unknown classes automatically and

learn their representations properly without labels.

3. Open-Set Panoptic Segmentation (OPS)

This section defines the open-set panoptic segmentation

with its evaluation metrics. Then, we discuss the inher-

ent challenges of the task and how we make the problem

tractable via reasonable assumptions.

3.1. Definition of Label and Task

The open-set panoptic segmentation is similar to the

closed-set method. The key difference is the existence of

unknown classes, which are not available for training but ap-

pear in testing while the known classes are always available.

Another criterion to distinguish class types is how an object

is formed physically; the thing class, denoted by CTh, con-

sists of the objects with concrete shape and structure while

the stuff class, CSt, involves amorphous background regions

grass grass

Figure 2: Toy example illustration of ground-truth and pre-

dicted panoptic segmentation of an image. Objects with

black-dotted border denote unknown classes and an object

with red-dotted border in the ground-truth is an unlabeled

object. The connections across objects in the two different

images indicate matching results with their attributes. Al-

though the model correctly finds an unknown instance in

blue, it is considered as a false positive since the instance is

not labeled in the ground-truth.

(e.g., “sky” or “sand”) or unstructured objects (e.g., “tree”

or “grass”). In addition, we introduce another kind of se-

mantic label, called void, which is not annotated in training

data and corresponds to ambiguous or out-of-class pixels.

Given a predefined set of C semantic classes encoded by

C := {0, ..., C − 1} and a set of unknown class codes de-

noted by U , the ith pixel of an image is labeled by a tuple,

(li, zi) ∈ (C ∪ U) × N, where li and zi indicate a seman-

tic class label and its instance identifier, respectively. In

our problem definition, U actually has a single element that

represents the entire unknown classes. The group of pixels

with the same instance identifier (zi) constitute a segment

that belongs to class li ∈ (C ∪ U). In summary, the open-

set panoptic segmentation aims to find all segments with

known labels or unknown flags in a given image.

3.2. Evaluation Metric

We utilize standard panoptic segmentation metrics [17],

which include panoptic quality (PQ), segmentation qual-

ity (SQ) and recognition quality (RQ) for both known and

unknown classes. The metrics are defined as

PQ =

∑

(p,g)∈TP
IoU(p, g)

|TP |
︸ ︷︷ ︸

segmentation quality (SQ)

·
|TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |

︸ ︷︷ ︸

recognition quality (RQ)

, (1)

where IoU means Intersection-over-Union of two regions,

and TP, FP, and FN denote true positive, false positive, and

false negative, respectively, as illustrated in Figure 2. If a

predicted segment and a ground-truth region with the same

semantic label are highly overlapped, i.e. IoU > 0.5, the

identified segment is classified as the true positive set, TP.
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Figure 3: Illustration of the proposed framework, EOPSN. The model first identifies unknown classes with the corresponding

exemplars using k-means clustering [28] of the detected bounding boxes in void areas from a small subset of images (clus-

tering stage). Each element in a cluster denotes a proposal feature while each color indicates a source image. The cluster in

red-dotted ellipse corresponds to one of the new unknown classes and each image patch in the cluster becomes an exemplar.

Identified unknown classes and their exemplars are used to discover more exemplars by comparing with object proposals of

an input image in subsequent iterations (mining stage). The two stages alternate to identify and augment unknown classes but

clustering is performed sparsely to reduce computational complexity.

3.3. Challenges

Finding unknown instances Unlike the open-set image

classification, which simply recognizes unknown class im-

ages, an open-set panoptic segmentation model needs to

find objects in unknown class from each image. It is a very

difficult problem since there is no explicit semantic knowl-

edge about the objects and the unknown objects might have

been labeled as background during training.

Ground-truth labeling Panoptic segmentation requires

pixel-level annotations for each instance and semantic back-

ground region. Annotators are supposed to delineate all in-

stances and background stuffs thoroughly. However, unfor-

tunately, a certain object may consist of multiple compo-

nents that correspond to other object classes, making com-

prehensive annotations challenging. For example, “car” is

composed of several parts such as windows, side mirrors,

lights, tires, etc. Also, the regions in some stuff labels

(e.g., “tree”, “gravel”) can be divided into several instances.

Without a concrete guidline, annotations will be inconsis-

tent and unreliable. It hinders training open-set panoptic

segmentation models and measuring their performance.

Evaluation Current metrics for evaluating panoptic seg-

mentation performance assume that each image has a com-

plete annotation. However, the universe set of class labels is

unbounded in practice, which makes the evaluation incon-

sistent with true quality of panoptic segmentation. In other

words, if an open-set panoptic segmentation algorithm iden-

tifies unknown instances very accurately but the labels of

the detected objects are missing as illustrated in Figure 2,

the false positive rate will be large, which leads to low RQ

and PQ values. On the other hand, SQ does not suffer from

such an issue but it is not straightforward to represent the

overall performance since it only considers true positives.

3.4. Tractable Problem Definition

Since we face significant conceptual and practical chal-

lenges in OPS as discussed in Section 3.3, we propose a

tractable version of problem definition as follows.

Assumption We have the following three assumptions re-

garding unknown classes observed in training data. First,

all unknown classes belong to the thing category. This is

because potential unknown classes in the stuff category are

often ill-defined. The second assumption is that parts of

known classes cannot be unknown classes. For example,

assuming that “car” and “person” are known, “tire” and

“head” cannot be unknown instances since they are parts of

the aforementioned known classes, respectively. However,

if “tire” exists by itself, not as a part of another, it can be an

unknown class. The final assumption is that unknown class

objects only appear in the void regions during training. The

purpose of the assumptions is to prevent confusion between

known and unknown class regions.

Dataset Perfect annotation for the open-set panoptic seg-

mentation is not realistic. Hence, a reasonable way to mea-

sure the OPS quality is training on one dataset and test-

ing on another with unknown classes, which is similar to
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multi-domain semantic segmentation [19]. However, there

is a domain gap between datasets and the definition of an

object may be different in each dataset. Therefore, we

create a dataset for OPS using an existing dataset. There

are several public benchmarks for panoptic segmentation,

which include COCO [24], Cityscape [6], Mapillary [33]

and ADE20k [55]. However, all of them except COCO are

specialized to specific environments such as driving or in-

door scene. Hence, we adopt COCO, which contains natu-

ral photographs in everyday life. We generate several splits

with different numbers of unknown classes sampled from

the thing classes. However, our benchmark cannot evaluate

unlabeled unknown classes properly as discussed earlier be-

cause the label information is completely missing through-

out training and evaluation.

4. Method

We explain the baseline models and the proposed ap-

proach for open-set panoptic segmentation in this section.

4.1. Motivation and Overview

The core technique in OPS is how to find instances in

unknown classes. One possible way is to leverage a class-

agnostic model such as RPN [42], which predicts an object-

ness score. We employ this approach as our baseline. How-

ever, it has a critical limitation; the score is optimized to

the known instances. Hence, the performance of the model

depends heavily on the semantic similarity between known

and unknown classes, which means that unknown classes

are unlikely to be recognized by the model if they are not

semantically related to any of known classes.

To tackle this drawback, we propose an exemplar-based

learning framework on top of the baseline to find unknown

classes from training data more effectively. Note that an ex-

emplar means a bounding box corresponding to an example

identified as unknown class. Our model first finds unknown

classes with the associated exemplars using k-means clus-

tering [28], which is applied to the detected bounding boxes

within void area. A tightly coupled cluster with a high ob-

jectness score is considered as an unknown class, and each

image patch in the cluster becomes an exemplar. The exem-

plars are used to find new ones by comparing the similari-

ties between the existing exemplars and the object proposals

from the images contained in the subsequent mini-batches.

They are also employed as the pseudo-ground-truth bound-

ing boxes for the future iterations. The clustering and min-

ing procedures alternate to detect new unknown classes and

collect examples with the identified unknown labels while

the backbone network is concurrently optimized with both

types of class labels. Figure 3 illustrates the procedure of

the proposed approach.

4.2. Baseline

Since only thing classes can be unknown according to

our problem definition, it is reasonable to adopt top-down

panoptic segmentation methods with RPN as baseline mod-

els. We choose Panoptic FPN [16], which is composed of an

instance segmentation head [13] and a semantic segmenta-

tion head on top of a shared feature extractor. The instance

segmentation head is exactly the same as Mask R-CNN [13]

and the semantic segmentation head is identical to the FPN-

based decoder.

We modify the bounding box regressor and the mask

predictor in the instance segmentation head to make them

class-agnostic for handling unknown classes. This baseline

model first predicts bounding boxes pertaining to known

classes and finds unknown instances based on the object-

ness scores of the candidates from RPN, where the score

threshold is 0.5. We also introduce the void class in the

classification branch within the instance segmentation head

to identify the bounding boxes sampled from the void re-

gions. For the supervision of the void classes, we use the

bounding boxes that more than a half of the region is inside

the void area. Note that, since the boxes from void regions

do not necessarily correspond to objects, they are not em-

ployed to train the RPN.

4.3. Exemplar­Based Open­Set Learning

The main goal of our exemplar-based learning is to iden-

tify bounding boxes with coherent features that belong to

the same unknown classes. Our exemplar-based learning

consists of two stages: clustering candidate proposals in un-

known classes obtained from a subset of training images,

which aims to find new categories and their exemplars, and

mining new exemplars via similarity matching with the ex-

isting ones. These clustering and mining stages alternate

throughout the training procedure.

For the clustering and mining stages, we extract the fea-

tures from unknown candidate bounding boxes in void re-

gions for unknown classes. To this end, we first reduce

duplicate detections by applying Non-Maximum Suppres-

sion (NMS) with the IoU threshold 1 × 10−7, and then

sample candidate proposals with the weights based on the

objectness scores given by RPN [42]. After that, 1024-

dimensional features are obtained from the proposals using

a backbone network, and we perform a series of operations

including RoI-Align, GAP, and feature computation using

two fc layers as in [13].

Clustering To find unknown classes, we perform k-means

clustering based on the consine distance using the extracted

features from candidate bounding boxes. Note that the clus-

tering is performed at every 200 iterations using the fea-

tures computed for all the examples presented in the last 200

mini-batches. We generate a large number of clusters (over-
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Table 1: Open-set panoptic segmentation results on the COCO val set (K = 20%) of the baseline approaches with different

utilization of void regions: used as backgrounds (Void-background), ignored (Void-ignorance), supervised by Eq (3) (Void-

suppression) and trained as a new label (Void-train) during training.

Utilization of void regions
Known Unknown

PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt PQ SQ RQ

Void-ackground 37.7 76.3 46.6 44.8 79.3 54.1 29.2 72.8 37.5 4.0 71.1 5.7

Void-ignorance 37.2 76.3 45.9 43.9 79.0 53.1 29.1 73.0 37.3 3.7 71.8 5.2

Void-uppression 37.5 75.9 46.1 45.1 80.6 54.5 28.2 70.2 36.1 7.2 75.3 9.6

Void-train 36.9 76.4 45.5 44.0 80.3 53.3 28.2 71.7 36.0 7.8 73.4 10.7

clustering) and take a subset of clusters only that clearly

correspond to true unknown classes. Such a cluster should

have a high average objectness score but a small average co-

sine distance between the centroid and all elements since the

instances in a true unknown class are prone to be clustered

tightly while non-object proposals have loose connections

and low objectness scores. We identify exemplars from the

high-quality clusters and store them in the subsequent min-

ing stage. Note that we maintain exemplars in multiple un-

known classes during training but collapse all of them and

make a single unknown class for evaluation.

Mining exemplars Our approach mines additional exem-

plars with the unknown concepts detected in the past, from

the images in the incoming mini-batch. This can be done

easily by comparing features of the stored exemplars and

the features of the object proposals from the images in a new

mini-batch. Note that, since the feature extraction network

is updated over time, we need to recompute the features of

the stored exemplars. We accept the proposals generated by

RPN as new exemplars if their cosine similarities to any of

existing exemplars are higher than a threshold.

Loss We utilize the almost same classification loss (in-

cluding the regression loss), mask loss, and semantic seg-

mentation loss adopted in Panoptic FPN [16]. The only dif-

ference is classification loss on the instance segmentation

head. We utilize the cross-entropy loss over known classes,

a background class (bg), and unknown classes as follows:

Lce =
∑

c∈(CTh∪{bg}∪U)

−yc log pc, (2)

where yc is a (pseudo-)ground-truth label and pc is the soft-

max score of class c. Additionally, we give negative super-

vision to the object proposals in the void regions so that they

are not classified as known classes, which is given by

Lvoid =
∑

c∈CTh

− log(1− pc). (3)

Then, the total classification loss is given by

Lcls = Lce + IvoidLvoid, (4)

where Ivoid is an indicator function for a box in void regions.

Inference Our model predicts instance segmentation and

semantic segmentation results and then combine them to

make a panoptic segmentation output. We first generate

panoptic segmentation map using a same inference mecha-

nism of the standard panoptic segmentation model [16] and

then add predicted unknown instances additionally.

5. Experiments

We describe our experimental setting and present the

results. We also analyze various aspects of the proposed

framework. Refer to the supplementary document for im-

plementation details and more experimental results.

5.1. Dataset and Evaluation

All exepriments are conducted on COCO [24]. We uti-

lize 2017 panoptic segmentation train and validation splits,

which contain 118K and 5K images, respectively, with an-

notations of 80 thing classes and 53 stuff classes. To con-

struct an open-set setup, we remove annotations for a sub-

set of known thing classes in the training dataset and con-

sider them as unknown classes. We construct three different

splits with varying numbers of unknown classes (5%, 10%,

20%)3. The removed classes in the the splits are shown be-

low, where the classes are removed cumulatively.

• 5%: “car”, “cow”, “pizza”, “toilet”

• 10%: “boat”, “tie”, “zebra”, “stop sign”

• 20%: “dining table”, “banana”, “bicycle”, “cake”,

“sink”, “cat”, “keyboard”, “bear”

We employ the standard panoptic segmentation metrics,

i.e., PQ, SQ, and RQ, to evaluate performance. We report

performance of known class and unknown class separately.

5.2. Quantitative Results

Table 1 presents open-set panoptic segmentation perfor-

mance of the baseline models relying on Panoptic FPN by

varying the utilization of void regions on COCO val set with

20% unknown classes. There are four different usages of

3We sorted the class labels based on their frequencies and sampled a

subset of labels regularly for removal to simulate unknown classes.
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Table 2: Open-set panoptic segmentation results on the COCO val set with several different known-unknown splits K denotes

the ratio of unknown classes to all classes. The numbers in bold denote higher scores than the opponents.

K(%) Model
Known Unknown

PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt PQ SQ RQ

Supervised 39.4 77.7 48.4 45.8 80.7 55.4 29.7 73.1 38.0 - - -

5
Baseline (Void-train) 37.7 76.7 46.4 44.2 80.4 53.5 28.3 71.3 36.2 10.0 73.8 13.5

EOPSN 38.0 76.9 46.8 44.8 80.5 54.2 28.3 71.9 36.2 23.1 74.7 30.9

10
Baseline (Void-train) 36.9 75.4 45.5 43.2 79.0 52.4 28.3 70.4 36.2 8.5 73.2 11.6

EOPSN 37.7 76.8 46.3 44.5 80.6 53.8 28.4 71.8 36.2 17.9 76.8 23.3

20
Baseline (Void-train) 36.9 76.4 45.5 44.0 80.3 53.3 28.2 71.7 36.0 7.8 73.4 10.7

EOPSN 37.4 76.2 46.2 45.0 80.3 54.5 28.2 71.2 36.2 11.3 73.8 15.3

the boxes: training as backgrounds (Void-background), ig-

noring the boxes (Void-ignorance), providing the negative

supervision for known classes using (3) to prevent the boxes

from being classified as known class (Void-suppression),

and training as a new class with standard cross-entropy

loss (Void-train). All variations have similar performance

for known classes but unknown classes have different char-

acteristics. Void-ignorance model has the worst perfor-

mance since the instances in unknown class are classified

as known classes. Void-suppression and Void-train models

achieve comparable accuracy and outperform the rest two

options since bounding boxes in void area are not trained as

backgrounds in RPN and do not have low objectness scores.

Table 2 summarizes the experimental results on the

COCO val set with different known-unknown splits. The su-

pervised model denotes Panoptic FPN trained on all classes

without the unknown ones. The baseline is Panoptic FPN

with the Void-train option, which is one of the variants pre-

sented in Table 1. EOPSN outperforms the baseline method

in all aspects for unknown classes with large margins while

still achieving competitive performance for known classes.

Overall, both PQ and RQ in unknown classes are much

smaller than known cases while SQ’s are similar in both

known and unknown classes. This is because SQ is com-

puted based only on true positives.

5.3. Qualitative Results

Figure 4 illustrates the exemplars in a detected unknown

class after the first clustering with K = 20% in EOPSN.

Most exemplars contain “car” while there exist objects in

other unknown classes such as “cake”, “cow”, and “bicycle”

as well as instances in known class, “giraffe”.

Figure 5 presents the comparison of the open-set panop-

tic segmentation methods. between the baseline model (the

third row) and EOPSN (the forth row) on the COCO val set

with K = 20%. The unknown classes in the figures are

“stop sign”, “car”, “keyboard”, “sink”, and “toilet”. The

second row shows ground-truths, where unknown classes

are in orange. We observe that EOPSN successively finds

Figure 4: Visualization of the exemplars in an identified un-

known class by the first clustering in EOPSN.

several unknown instances missed by the baseline model.

Interestingly, EOPSN discovers the keys inside the key-

board and the bathtub unit, which are not included in the

COCO classes.

6. Discussion

In addition to the challenges discussed in Section 3.3,

several critical issues still remain. First of all, EOPSN

mainly focuses on the classification branch in the instance

segmentation head while we have not explored potential of

the semantic segmentation head sufficiently. We believe

that combining a bottom-up approach to form unknown seg-

ments would improve performance.

Second, EOPSN is based on clustering with training data

to find new unknown classes. If an unknown class does not

appear in the training dataset, its performance will be de-

graded considerably. However, as we collect more data, the

number of seen-unknown classes will grow rapidly and the

benefit of the proposed model will become salient; the tech-
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Figure 5: Qualitative results on the COCO val set with K = 20%. The first row presents input images and the subsequent

rows illustrate ground-truths, results of the baseline (Void-train), and those of EOPSN. Instances in the unknown class are

denoted by orange color.

niques based on the class-agnostic objectness scores, i.e.,

the baseline methods based on RPN, would have less mer-

its since they only employ the ground-truth information of

known classes.

Finally, a new metric should be defined for OPS. If

a trained model finds more unknown instances in testing,

which are legitimate but unlabeled, the inconsistency be-

tween true and measured accuracy will be aggravated. A

straightforward solution is to employ human evaluation, but

it is expensive and may incur another critical issues related

to consistency. This issue may be alleviated by introduc-

ing a new metric by revising SQ. For example, by properly

considering false positives of unknown classes, we can rep-

resent overall segmentation quality more accurately.

7. Conclusion

We introduced a novel task referred to as open-set panop-

tic segmentation (OPS), which involves unknown classes

that appear in testing while not considered during training.

The goal of this task is to obtain a correct panoptic segmen-

tation map for the union of known and unknown classes. We

provided a new benchmark dataset on top of COCO [24].

To tackle the challenging task, we presented EOPSN, an

exemplar-based open-set panoptic segmentation network as

a solid baseline model. Our framework first identifies new

classes with the associated exemplars by clustering the pro-

posals sampled from a small subset of images, and then dis-

covers new exemplars progressively using the rest of the

images during training. EOPSN outperforms the baselines

based on variants of Panoptic FPN [16]. Since EOPSN is

a generic approach that can be incorporated into any top-

down panoptic segmentation model, the integration of the

state-of-the-art networks would lead to better performance.

We hope that this work draws the attention of the com-

puter vision community to open-set problems beyond sim-

ple recognition tasks. OPS would facilitate large-scale

dataset collection that requires dense labeling and allow us

to tackle more realistic tasks in challenging scenarios.
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