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Abstract

A video can be represented by the composition of ap-

pearance and motion. Appearance (or content) expresses

the information invariant throughout time, and motion de-

scribes the time-variant movement. Here, we propose self-

supervised approaches for video Generative Adversarial

Networks (GANs) to achieve the appearance consistency

and motion coherency in videos. Specifically, the dual dis-

criminators for image and video individually learn to solve

their own pretext tasks; appearance contrastive learning

and temporal structure puzzle. The proposed tasks enable

the discriminators to learn representations of appearance

and temporal context, and force the generator to synthesize

videos with consistent appearance and natural flow of mo-

tions. Extensive experiments in facial expression and hu-

man action public benchmarks show that our method out-

performs the state-of-the-art video GANs. Moreover, con-

sistent improvements regardless of the architecture of video

GANs confirm that our framework is generic.

1. Introduction

Generative Adversarial Networks (GANs) [16] are one

of the major research topics in the spotlight, due to their

impressive capability to model the data distribution in an

unsupervised way. The recent advances in the aspects of

objectives [5, 4, 26] and architectures [20, 21, 22] alleviate

the chronic problems of GANs such as the mode collapse

and training instability. Thanks to these sustained research

efforts, the latest techniques enable us to synthesize visually

plausible and diverse images.

With these advances in the image domain, the problem of

generating videos has emerged in recent years. Pioneering

attempts [37, 30] have started with mapping a latent vector

to a video with spatio-temporal convolutions. On the other

hand, the following methods [35, 38] have proposed the

video generation frameworks mainly targeting to decom-

pose spatio-temporal latent space into motion and content
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Figure 1. Illustration of conditions for realistic videos. Video

can be represented as the composition of appearance and its mo-

tions. For the natural and realistic video, appearances and motions

in the same video have to be consistent throughout time. In other

words, appearance representation should be similar among frames

of the same video compared to the frames from different videos,

and the flow of the motion would be fit into the temporal context.

subspaces. Their efforts to disentangle the latent space to

appearance and motion ones have reduced the complexity

of generating videos.

In spite of the aforementioned successes, extending

GANs to the video domain is still challenging. One of the

main causes is high dimensionality of videos. Compared to

images, videos have one more dimension, time. The time

dimension exponentially expands the video space from the

image space with respect to the number of frames. In this

huge space, perceptually satisfying videos could account for

an extremely small portion because they have to fulfill not

only spatial realness but also temporal coherency. There-

fore, it is obvious that mapping low-dimensional latent vec-

tors to visually plausible videos is a lot more complex than

the case of images.

From this perspective, we suggest to reduce the video
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space. That is, we have to contract the possible space by ex-

ploiting the prior knowledge about “realistic” videos. This

provides essential constraints towards the realness of the

synthesized videos. For instance, let us assume real videos

consist of only grayscale frames instead of color ones. In

this case, typical RGB representations are redundant since

videos are fully represented in grayscale. Hence, we can re-

duce the space by forcing the videos to have a single chan-

nel with the prior knowledge in the assumption. By this, the

task of GANs can be turned into a simpler one because it

shrinks many possible mappings.

Then what are the major components to achieve for gen-

erating “realistic” videos? We hypothesize two prominent

constraints for realistic videos; consistency of appearance

and coherency of motion. Fig. 1 describes the two types

of conditions. First, appearance should be consistent over

time, especially for short videos. For example, the identity

of an actor should be retained over time. Second, the mo-

tion should be naturally progressed with coherency along

time. A physically impossible human movement can be a

counterexample for it. These constraints should be satisfied

when generating realistic videos.

To meet these necessary conditions, we present Self-

supervised Video GANs (SVGAN), which imposes explicit

constraints on appearance and motion with two pretext self-

supervision tasks; appearance contrastive learning and tem-

poral structure puzzle. Appearance contrastive learning

makes the discriminator to learn the representations of ap-

pearance which is invariant throughout time in videos. On

the other hand, temporal structure puzzle forces the discrim-

inator to figure out whether the video is coherent or not in

temporal ordering. Furthermore, we distill these explicit

constraints to the generator so that it synthesizes videos sat-

isfying those conditions in a collaborative way. Eventually,

these constraints significantly reduce the huge video space

to its small portion of spots where realistic videos can exist

so that the video generation problem becomes less complex.

Different from previous approaches [37, 30, 35, 38] mainly

focusing on the architecture of the generator, we bring the

focus into the objective of the discriminator in video GANs.

The proposed self-supervision tasks directly involve the ob-

jective of the discriminator as a new direction towards real-

istic videos in the literature.

Our main contributions are summarized as follows:

– We mainly focus on the objectives of the discriminator

and its effects on video GANs with self-supervision.

To our best knowledge, it is the first attempt to shed

light on the discriminator objectives in video GANs.

– We propose Self-supervised Video GANs (SVGAN),

which explicitly imposes constraints on GANs with

two pretext self-supervision tasks; appearance con-

trastive learning and temporal structure puzzle. They

constrain GANs to synthesize videos with (1) invariant

appearance through time and (2) naturally progressed

flow of motion, respectively.

– Our extensive experiments on challenging benchmarks

of facial expressions and human actions validate that

our method significantly enhances video generation

performance of the state-of-the-art techniques regard-

less of the generator architectures which previous ap-

proaches have mostly focused on.

2. Related Work

2.1. Video GANs

Generative Adversarial Networks (GANs) [16] is one of

the rapidly growing research topics in computer vision com-

munity. Especially, in the image domain, there are lots of

recent advances [7, 21, 28, 44, 20, 22] which generate large-

scale and high-fidelity images. Different from that impres-

sive progress, extending GANs to the temporal domain is

rather tough. The major challenge towards video GANs is

the fact that realistic videos need to fulfill both consistent

and plausible appearances and natural motion.

To overcome the aforementioned challenge, there are

several studies to model video distribution based on GANs.

The most pioneering work is VGAN [37], which generates

foreground and background of video separately with a two-

stream spatio-temporal generator. TGAN [30] introduces a

temporal generator that produces a set of frame latent vec-

tors from a single video latent vector to yield video frames.

Those methods basically focus on mapping an entire video

into a single point in the latent space. On the other hand,

MoCoGAN [35] decomposes spatio-temporal latent space

into motion and appearance subspaces to reflect the dy-

namic characteristics of the temporal domain. Moreover,

they newly utilize dual discriminators, video and image dis-

criminators, for stability while training GANs. Similarly,

G3AN [38] proposes a three-stream generator to disentan-

gle motion and appearance with a self-attention module for

a spatio-temporal consistency of videos. Also, there are

researches which mainly concentrate on generating high-

fidelity videos [31, 1, 10]. In addition, there are maximum

likelihood based video generation models [41, 42], but we

do not directly compare those models with ours since our

work focus on enhancing the performance of GANs.

The majority of previous methods focus on searching for

the generator architecture optimized to the video generation

task. Unlike those methods, here we take an orthogonal

approach, contributing to the objectives of discriminators in

video GANs.

2.2. Selfsupervised Learning

Self-supervised learning is one of the promising ways

to learn feature representations without any human super-
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vision. Generally, it produces pseudo labels to solve a pre-

defined pretext task, which is commonly achieved by trans-

forming input data. In the image domain, one type of recent

advances employs geometrical transformations (or verifica-

tions) such as relative patch prediction [12], solving jigsaw

puzzle [29] and rotation prediction [15].

Contrastive learning is another stream in self-supervised

learning, which maximizes the agreement between repre-

sentations of two different views (e.g. transformation) of

the given image. For instance, Exemplar-CNN [13] and in-

stance discrimination [40] treat each image instance as an

individual class and perform a classification task in para-

metric and non-parametric ways, respectively. Recently,

MoCo [17] introduces a momentum encoder for consistency

of feature representation during training and a dynamic dic-

tionary for a large number of negative samples to enhance

the chance to pick the hard-negative samples. On the other

hand, SimCLR [8] suggests a simple framework for con-

trastive learning with an extensive analysis of a model ar-

chitecture, augmentation methods and loss functions.

In the video domain, several recent methods [14, 25, 39]

focus on learning spatio-temporal representations for action

recognition and video retrieval tasks. ShuffleLearn [27]

and clip order prediction [43] learn to predict the correct

temporal order of shuffled images and video clips, respec-

tively. Similarly, video jigsaw [2] and solving cubic puz-

zle [23] learn to match 3D permutation in an image and

video level.

Recently, those impressive representations of self-

supervised learning are brought into image GANs [9, 34,

19]. They introduce an auxiliary task (e.g. rotation predic-

tion) to the discriminator for maintaining visual representa-

tions of the real distribution during unstable training process

of GANs. In contrast to aforementioned methods, we bring

self-supervised learning into the generation of videos. To

our best knowledge, this is the first self-supervised approach

in the field of video GANs. Furthermore, we assign two

pretext tasks which are tailored to the video generation task

for enhancing consistency of appearance and coherency of

motion.

3. Self-supervised Video GANs

Video GANs are the framework to generate the video, a

sequence of frames. Similar to general GANs for images, it

learns to map the random noise into the video space by min-

imizing the gap between distributions of real data and fake

samples. However, different from the architectures of image

GANs, recent video GANs [35, 38] deploy dual discrimina-

tors; image discriminator DI and video discriminator DV .

Each discriminator solves the binary classification problem

(real and fake) on its domain, and provides feedback to the

generator G that learns to deceive discriminators. As a re-

sult, the typical objective of Video GANs is defined as:

min
G

max
DI ,DV

V (G,DI ,DV ) =

Ex∼PI(x) log(DI(x)) + Ex∼P
Î
(x) log(1−DI(x)) +

Ev∼PV (v) log(DV (v)) + Ev∼P
V̂
(v) log(1−DV (v)),

(1)

where PI and PÎ are real and fake distributions of the im-

ages, and PV and PV̂ are those of the videos.

In addition to adversarial learning, we assign (1) appear-

ance contrastive learning to the image discriminator DI ,

and (2) temporal structure puzzle to the video discriminator

DV as shown in Fig. 2. These two pretext tasks put direct

constraints to GANs so that they generate videos with con-

sistent representations of appearance over time, and natural

motion. Now, we deliver the two supervision tasks in detail

through the following two subsections. Then we cover col-

laborative learning, which gives the constraints to the gener-

ator G, followed by the subsection on the full objectives of

SVGAN. Note that we consistently regard the discriminator

as the encoder for the pretext tasks.

3.1. Appearance Contrastive Learning

Let us first solidify our definition of the word “appear-

ance”. In this paper, appearance is information which is in-

variant with respect to the temporal axis. For example, the

identity of a particular person in a facial expression video

can be seen as a subset of appearance in our definition. In

this case, appearance consistency indicates that an identical

appearance has to be maintained within the entire frames in

the same video.

Here, we strictly re-define the meaning of appearance

consistency as follows: appearance representations ex-

tracted from any pairs of frames in the same video have to

be relatively closer than representations of frames from the

other videos. This definition allows us to bring about the

concept of contrastive learning for video generation.

Recent approaches of contrastive learning [8, 17] in the

image domain have a goal to maximize the agreement be-

tween two different views of a single image. With trans-

formations t, t
′

∈ T , they regard the randomly augmented

images xt and xt
′ for a given image x as positive samples,

and augmented images from the other images x̃ as negative

samples. Then, the objective of contrastive learning maxi-

mizes the cosine similarity between positive samples higher

than similarity to the negative samples. In this case, if we

regard a set of transformations T as the sampling along the

temporal axis, the objective of contrastive learning can cor-

respond to our definition of appearance consistency.

From this perspective, we present appearance contrastive

loss LA. Let us elaborate appearance contrastive learning

formally. We denote a video as V = {x1, x2, ..., xn}, where

xi is the ith frame. In order to learn the time-invariant repre-

sentation called appearance, we sample two frames of dis-
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Figure 2. Overall framework of the proposed method. The framework has two mainstreams; adversarial learning and self-supervised

learning paths. Adversarial learning follows a typical real vs. fake training scheme of video GANs with dual discriminators, DI and

DV for images and videos, respectively. The pretext tasks for self-supervised learning are appearance contrastive learning and temporal

structure puzzle. Appearance contrastive learning makes DI to encode time-invariant representations of appearance throughout the video,

which consequently guides the generator G to maximize the similarity of representations among frames of the same video. Temporal

structure puzzle encourages DV to learn coherent representations of temporal structure by correcting the shuffled order, which makes G

synthesize natural videos with coherent motions.

tinct time steps {xi, xj}i 6=j from the same video, and a set

of negative samples X̃ = {x̃1, x̃2, ..., x̃k} from the other

videos. Afterwards, by forwarding the images into the en-

coder (or the discriminator) f(x), we obtain the representa-

tion vectors hi, hj = f(xi), f(xj). Then objective function

of appearance contrastive learning is defined as:

LA = − log
exp(sim(hi, hj)/τ)∑

x̃∈X̃ exp(sim(hi, f(x̃))/τ)
, (2)

where sim(·, ·) is cosine similarity, τ denotes a temperature

parameter, and hi and hj are representations of xi and xj ,

respectively.

As in typical self-supervised GANs [9], we assign the

above pretext task to the discriminator. Specifically, it is

assigned to the image discriminator DI since appearance

contrastive learning is an image-level self-supervision task.

However, the generator implicitly learns consistent appear-

ance by only adversarial learning with the discriminator.

Thus, we also assign the proposed task to the generator so

that it also minimizes the loss of the discriminator by syn-

thesizing appearance consistent videos. It is collaborative

learning between the discriminator and the generator dif-

ferent from adversarial learning. We further elaborate this

collaborative learning in Sec. 3.3.

3.2. Temporal Structure Puzzle

The motion in the video can be represented as differences

among consecutive frames. The important point for natu-

ral motion is temporal coherency which indicates the global

context of the movements of objects. Hence, the lack of this

component can lead to visually or semantically unsatisfying

videos. For instance, videos that consist of frames that are

randomly shuffled seem unnatural to humans.

In this point of view, we present temporal structure puz-

zle that is a modified version of the clip order prediction

task [43]. Here, we denote a partial consecutive sequence

of frames from a video as a clip. Temporal structure puz-

zle is a task of correcting the order of temporally shuffled

clips sampled from a single video. For more details, we first

uniformly divide the video into multiple disjoint clips and

concatenate them with a random order to form a new video.

The encoder then classifies the shuffled permutation from

the feature of a temporally re-organized video extracted by

the encoder. This process makes the model to learn repre-

sentation about motion and temporal structure of the video

since the encoder has to know the flow of motion in the en-

tire sequence to predict correct order.

The main distinction against the previous method [43] is

the learned representation of the encoder from the task. In

[43], they forward divided clips into the encoder individu-

ally. Then, encoded clips are concatenated and classified

using a few additional layers. This may lead the encoder

not directly to learn about the re-ordering task, since the en-

coder has only a single clip as input, not the entire video.

Instead, we feed not a clip but a temporally re-organized

video to the encoder. This re-organized video enables the

encoder to directly learn the task with a larger temporal re-

ceptive field. Especially for generating short videos, this

large receptive field is more proper because one clip has an
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Figure 3. Detailed illustrations of discriminators. Image dis-

criminator classifies image as real or fake and sovles appearance

contrastive learning. Video discriminator classifies video as real

or fake and matches temporal order of shuffled video.

extremely short temporal semantics.

Now, we formulate the temporal structure puzzle task.

The task is to classify the correct permutation over a set of

possible shuffling permutations S = {s1, s2, ..., sP }. Let

us denote a video v as a sequence of clips {c1, c2, ..., cN},

where ci is the ith clip, and we assume the number of frames

of each clip is the same for the sake of simplicity. As men-

tioned above, the video v is represented as a concatenation

of the clips from a real video. We further shuffle the or-

der of these clips of the video v based on a permutation

si. A permutation can be represented as an order of clips

〈ck1
, ck2

, ..., ckN
〉, where k1, k2, ..., kN ∈ {1, 2, ..., N} and

k1 6= k2 6= ... 6= kN . For a given video vsi , which is shuf-

fled on the permutation si, the encoder outputs a probability

distribution pvsi over S. We can denote the probability of

the jth permutation sj as p
vsi
j . Then temporal structure loss

LT for vsi is defined as:

LT = −

P∑

j=1

yj log(p
vsi

j ), (3)

where yj is the ground-truth probability of the video be-

longing to the jth permutation.

Detailed process of discriminators is illustrated in Fig. 3.

Similar to the appearance contrastive learning which is ap-

plied to the image discriminator, the temporal structure puz-

zle with the video-level self-supervision task is assigned to

the video discriminator DV . Moreover, we give the feed-

back of the discriminator to the generator as collaborative

learning, which is more specifically elaborated in the next

subsection.

3.3. Collaborative Learning for Generator

The discriminator which has representations of appear-

ance and motion may be sufficient to train the genera-

tor capable of producing realistic videos. However, when

feedback is given to the generator through backpropagation

from the self-supervision objectives of the discriminators,

the generator is further encouraged to synthesize videos sat-

isfying the two constraints; consistent appearance and co-

herent motion. This collaborative learning accelerates to

meet our constraints with the synergy between the discrim-

inators and the generator, which is a different way from ad-

versarial learning.

To this end, we follow the training scheme of SS-

GAN [9]. Basically, the generator and the discriminators

learn to solve the true vs. fake prediction task in an adver-

sarial way. In contrast, for self-supervision tasks, they are

trained in a collaborative way. In other words, the genera-

tor is guided to produce videos that the discriminators can

easily solve the pretext tasks. The discriminators are basi-

cally good at solving the tasks with real videos since they

are trained from the given tasks, and thus the generator is

encouraged to imitate the real data. In this condition, advan-

tages of the proposed self-supervision tasks are intuitively

explainable. For instance, appearance contrastive loss en-

courages the generator to synthesize frames that maintain

consistency of contents like the way we defined in Sec. 3.1.

On the other hand, temporal structure loss forces the gener-

ator to yield natural motions aligned with the global context

in videos.

3.4. Full Objectives

As mentioned in previous sections, we apply collabora-

tive self-supervision loss and adversarial loss to both the

generator G and discriminators DI and DV . Specifically,

two discriminators, DV and DI , have videos and sampled

images as inputs, respectively. When regarding each DI

and DV as encoder (or classifier) in objectives LA and LT ,

total loss functions are defined as follows:

LD = VI(G,DI) + VV (G,DV ) + λD(LR
A + LR

T ), (4)

LG = −VI(G,DI)− VV (G,DV ) + λG(L
G
A + LG

T ), (5)

VI(G,DI) = Ex∼PI(x) log (DI(x))

+Ex∼P
Î
(x) log (1−DI(x)),

(6)

VV (G,DV ) = Ev∼PV (v) log (DV (v))

+Ev∼P
V̂
(v) log (1−DV (v)),

(7)

where V (G,D) is typical GANs loss proposed in Good-

fellow et al. [16], and λD and λG are hyperparameters that

balance two self-supervision loss functions. LR
A,T and LG

A,T

are proposed self-supervised loss with real and generated

input data. Also, PV and PI represent distributions of real
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videos and images, while PV̂ and PÎ are fake distributions

of those.

4. Experiments

Our framework is generic for video GANs with the

dual discriminator architecture. Therefore, we evaluate

our framework on top of two state-of-the-art video GANs,

MoCoGAN [35] and G3AN [38]. Note that, MoCoGAN

and G3AN use different configurations for training, which

can lead to performance variation. Specifically, MoCoGAN

uses a single frame rate, while G3AN deploys diverse frame

rates for data augmentation. We directly follow the settings

of them to validate the merits of our framework clearly.

Besides, we perform all the experiments on unconditional

video generation without exploiting any high-level human

supervision. Our framework is denoted as SVGAN in the

tables.

4.1. Datasets

Facial expression datasets We conduct experiments on

two facial expression datasets, MUG Facial Expression

dataset [3] and UvA-NEMO Smile dataset [11]. MUG con-

tains 1254 videos with 86 subjects, and we use 54 of them,

which are available online. UvA-NEMO consists of 1240

smiling videos of 400 identities. For face datasets, we crop

the facial regions and resize videos into a spatial resolution

of 64×64.

Action datasets As for human actions, we evaluate our

model on the Weizmann Action [6] and UCF101 [33] public

benchmarks. Weizmann contains 81 videos of 9 people, and

UCF101 has 13220 videos with 101 action categories. For

both datasets, videos are spatially scaled to 64×64 as did in

[35, 38, 30].

4.2. Implementation Details

For the generator architecture, we use default settings

as provided by authors except for a few additional layers

of self-supervision task head. Therefore, there is only a

marginal computational overhead compared to the baseline

model. We deploy the ADAM [24] optimizer with a learn-

ing rate of 0.0002, 0.5 for β1, and 0.999 for β2. We use

the batch size as 32 for all experiments. Besides, the length

of the generated video is 16 as did [35, 38]. For weighting

parameters of self-supervision tasks, we set λG = 0.1 for

all experiments. We set λD = 1.0 for MoCoGAN for all

benchmarks. Regarding to G3AN, we use λD = 0.5 for

all of the datasets except for UCF101, in which we deploy

λD = 0.1.

Appearance contrastive learning For appearance con-

trastive loss, we additionally use data augmentation utilized

Weizmann MUG UvA UCF101

FVD ↓ FVD ↓ FVD ↓ FVD ↓ IS ↑

MoCoGAN 194.34 102.20 46.20 869.41 1.46

SVGAN 189.65 90.79 40.56 822.48 1.48

G3AN 117.69 89.73 56.97 687.67 1.93

SVGAN 105.51 67.62 39.62 643.55 1.96

Table 1. Quantitative results on action and facial expression

datasets with respect to FVD and IS. Each SVGAN denotes a self-

supervised approach applied to each above baseline.

in [8] when training the discriminator for feature learning.

Specifically, two temporally distinct frames transformed

with data augmentation are sampled for each video. Note

that, we keep the sampled frames distant enough from each

other. Also, we do not use any additional methods of pre-

serving a large set of negative samples such as a memory

bank [40] or a momentum encoder [17], to maintain the

same computational cost with the baselines [35, 38]. We

use a temperature parameter τ = 0.07.

Temporal structure puzzle For temporal structure puz-

zle, we divide 16 consequent frames into 4 segments of 4

frames, and concatenate them again with the random order.

Besides, we use all possible permutations of 4! for training.

We deploy random crop to prevent a shortcut to predict the

order as did in [43] for UCF101 [33] because they are more

likely to have simple cues from the background.

4.3. Evaluation Metric

Recently, Frec̀het Video Distance (FVD) [36] is intro-

duced to evaluate the visual quality of generated videos,

which is a temporal counterpart of Frèchet Inception Dis-

tance (FID) [18]. Specifically, FVD computes Frèchet Dis-

tance between real-world video distribution PR and fake

video distribution PG under the condition that PR and PG

are multivariate Gaussian. FVD is defined as follows:

|µR − µG|
2 + Tr(ΣR +ΣG − 2(ΣRΣG)

1

2 ), (8)

where µR and ΣR are the mean and covariance matrix of

PR and µG and ΣG are those of PG.

We also deploy Inception Score (IS) [32] as another

metric. IS mainly evaluates the diversity of the generated

videos. It can be obtained as follows:

exp(ExKL(p(y|x)||p(y)), (9)

where p(y|x) and p(y) are conditional and marginal class

distributions, respectively, and KL means Kullback-Leibler

divergence.
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UvA UCF101

FVD ↓ FVD ↓ IS ↑

Baseline 46.20 869.41 1.46

+ Appearance contrastive LA 41.56 853.89 1.49

+ Temporal structure LT 43.40 856.76 1.52

Full objectives (LA + LT ) 40.56 822.48 1.48

Table 2. Ablation study on the proposed self-supervision loss

functions with MoCoGAN in FVD and IS. Note that, UvA and

UCF101 datasets have higher diversities compared to the other

ones.

4.4. Quantitative Results

Comparison with the state-of-the-art We firstly evalu-

ate our framework on top of the state-of-the-art methods to

validate the performance gain. As shown in Table 1, our

method consistently achieves better FVD scores as well as

higher IS ones on all of the benchmarks by remarkable mar-

gins. These results confirm that SVGAN generates more

realistic samples in terms of both visual quality and diver-

sity. In other words, the synthesized videos retain more

consistent appearance with natural movements. Note that,

these benefits of SVGAN become more clear with a larger

model capacity of G3AN [38]. More importantly, we find

these performance improvements consistent with respect to

the architecture of video GANs and their training strategies.

Thus, it shows that SVGAN can be widely deployed with

video GANs to enhance their quality of generation.

Moreover, one interesting point is that the performance is

improved even in the extremely small-scale dataset such as

Weizmann, which has only 81 videos of 9 identities. It val-

idates that our framework can work with datasets in various

scales, while self-supervised approaches are usually utilized

in large-scale datasets for feature learning.

Ablation study on pretext tasks To figure out the effects

of each self-supervision task, we conduct ablation stud-

ies of loss functions on UvA and UCF101 datasets which

have higher diversities compared to the other datasets. To

this end, we measure FVD scores when removing the indi-

vidual objectives from our framework. Note that, we use

MoCoGAN as the baseline for all ablation studies and set

λG = 0.2 when applying a single self-supervision task.

In Table 2, we observe that FVD is gradually improved

when we assign more self-supervision tasks. Furthermore,

the lowest FVD score achieved with two pretext tasks em-

phasizes that they are complementary. Since appearance

contrastive learning forces the consistency of entire frames

by maximizing their similarity and temporal structure puz-

zle prompts the dynamics of motions, there are synergistic

effects in video generation performance when both tasks are

jointly deployed.

Pretext task (LA)
UvA UCF101

FVD ↓ FVD ↓ IS ↑

- 46.20 869.41 1.46

Rotation 46.05 859.30 1.38

Ours 40.56 822.48 1.48

Table 3. Comparison with appearance contrastive learning against

rotation prediction task based on MoCoGAN in terms of FVD and

IS.

Comparison with rotation prediction task For validat-

ing the effectiveness of proposed self-supervision task on

video generation, we compare our method to commonly

used pretext task, rotation prediction [15] as did in Self-

supervised GANs[9]. Since rotation prediction is an image-

level task, we replace proposed appearance contrastive

learning LA with it.

As reported in Table 3, our method outperforms the rota-

tion pretext task with respect to FVD in all tested datasets.

Interestingly, the rotation prediction task shows a marginal

improvement on the UvA dataset of facial expression. This

is a similar observation with [9] that rotation pretext task

may not enhance the generation quality in the human face

dataset, since it is hard to learn semantic information by pre-

dicting rotation for face images. Differently, we found that

the proposed appearance contrastive loss effectively works

on the UvA dataset. Furthermore, our method shows a large

enhancement in terms of FVD in UCF101 dataset while the

performance of the rotation task becomes worse in IS than

that of baseline in spite of a small improvement of FVD.

Analysis on temporal sampling in LA In appearance

contrastive learning, we sample two frames at different

times as transformations. Here, we analyze the effect of

this temporal sampling for contrasitve learning. First, we

sample a single frame from a video instead of sampling dif-

ferent ones over time. Then we apply random spatial trans-

formations for the identical image to produce two different

views as in [8]. Afterward, we compute the contrastive loss

described in Sec. 3.1 to train the video GANs.

Table 4 shows the results of analysis on temporal sam-

pling. In the table, we observe the clear drop in performance

of our framework without temporal sampling. This result

confirms that temporal sampling with contrastive learning

brings more consistency of appearance for realistic videos.

Analysis on input types in LT We also conduct experi-

ments to validate the feasibility of proposed temporal struc-

ture puzzle. To this end, we extract features of each clip of

4 frames independently by the discriminator as did in [43].

Then we concatenate these features in a pairwise way and

give them to the classifier. We expect this clip-level input
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Figure 4. Qualitative comparison with state-of-the-arts on Weizmann (left-most), MUG (left-center), UvA-NEMO (right-center) and

UCF101 (right-most). Each “SVGAN” denotes a self-supervised approach applied to each above baseline model.

Temporal sampling UvA UCF101

MoCoGAN - 46.20 869.41

Ours (LA) - 42.54 921.73

Ours (LA) X 41.56 853.89

Table 4. Analysis on temporal sampling in appearance contrastive

learning. Temporal sampling indicates sampling frames with dis-

tinct time step for contrastive learning. Reported scores are FVDs.

Input types UvA UCF101

MoCoGAN - 46.20 869.41

Ours (LT ) Clip-level 55.44 1004.68

Ours (LT ) Video-level 43.40 856.76

Table 5. Analysis on input types in temporal structure puzzle.

“Video-level” and “Clip-level” denote the input types of ours and

the original one [43], respectively. Reported scores are FVDs.

degrades the performance since this way provides a smaller

temporal receptive field compared to our video-level input.

Table 5 shows that video-level input provides better FVD

scores. Note that, when we forward each clip indepen-

dently, the performance gets even worse than that of the

baseline. Therefore, we reach conclusion that forwarding

clips separately is not proper to generate short videos since

it makes the discriminator only extract semantics of an ex-

tremely short clip.

4.5. Qualitative Results

We further analyze unconditional video generation per-

formance in a qualitative way compared to the previous

state-of-the-art methods [35, 38]. As reported in Fig. 4,

the proposed SVGAN generates more realistic videos com-

pared to the baseline models in the aspect of the visual

quality. Besides, we present videos sampled from SVGAN

based on G3AN with 12 frames in Fig. 5.

(a) MUG

(b) Weizmann

Figure 5. Generated examples of SVGAN based on G3AN in

MUG and Weizmann datasets. Each sequence is progressed from

left-top to right-bottom.

5. Conclusion

In this paper, we have proposed Self-supervised Video

GANs with two pretext tasks; appearance contrastive learn-

ing and temporal structure puzzle. Each pretext task explic-

itly encourages the discriminator to learn representations of

appearance which is time-invariant information, and tempo-

ral structure which is flow of the motions. Furthermore, we

distill the knowledge about appearance and motion to the

generator for synthesizing appearance consistent and tem-

porally coherent videos. Extensive experiments have vali-

dated the improvements of generation quality over the state-

of-the-art video GANs regardless of the architecture of gen-

erators.
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