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Figure 1: We introduce a novel method for reconstructing fine geometry of non-Lambertian objects from passive observations

under the sky. The method fully leverages the polarimetric properties of sky and sun light encoded in the reflection by the

surface to recover the surface normal at each pixel.

Abstract

The sky exhibits a unique spatial polarization pattern by

scattering the unpolarized sun light. Just like insects use

this unique angular pattern to navigate, we use it to map

pixels to directions on the sky. That is, we show that the

unique polarization pattern encoded in the polarimetric ap-

pearance of an object captured under the sky can be de-

coded to reveal the surface normal at each pixel. We de-

rive a polarimetric reflection model of a diffuse plus mir-

ror surface lit by the sun and a clear sky. This model is

used to recover the per-pixel surface normal of an object

from a single polarimetric image or from multiple polari-

metric images captured under the sky at different times of

the day. We experimentally evaluate the accuracy of our

shape-from-sky method on a number of real objects of dif-

ferent surface compositions. The results clearly show that

this passive approach to fine-geometry recovery that fully

leverages the unique illumination made by nature is a viable

option for 3D sensing. With the advent of quad-Bayer po-

larization chips, we believe the implications of our method

span a wide range of domains.

1. Introduction

Methods for 3D reconstruction have been of central in-

terest in computer vision since its inception. A robust solu-

tion to it underlies a wide range of applications within vi-

sion and in surrounding areas including robotics, extended

reality (XR), and medicine. The challenge of this 2D to 3D

inverse problem lies in the combination surface reflectance

and incident illumination that generates the complex ap-

pearance of a given geometry.

In this work, we are interested in recovering the fine ge-

ometry represented by per-pixel surface normals. Surface

normal recovery can be interpreted as decoding the incident

illumination from its reflectance-modulated pixel intensity.

If we know the spatial pattern of the illumination (e.g., three

point sources) and the reflectance dictated by the object ma-

terial properties (e.g., Lambertian), we can “demodulate”

the pixel intensity to obtain the surface normal.

Consider two simple models of the interaction of light

at a surface. On one hand, the appearance of a Lamber-

tian surface lit by a point source can be perfectly modeled

with simple linear equations from which we can recover

per-pixel surface normals. On the other hand, the appear-

ance of an ideal mirror surface captured under a rainbow-

like angularly unique illumination directly tells us per-pixel

surface normals by simple lookup.

The reality, however, lives somewhere in between a set

of simple point source illumination and an angularly unique

one, and we generally do not know the exact reflectance. As

a result, we are forced to solve an ill-posed problem blindly.

This has led to numerous methods in the space such as pho-

∗ Equal contribution.
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tometric stereo of objects with reflectance of varying com-

plexity and inverse rendering with strong statistical priors.

Is there any real-world situation in which we can assume

a known illumination pattern that is sufficiently unique

across its spatial or angular span? If so, we could reduce this

disentanglement problem to decoding the unknown modu-

lation by the reflection while simultaneously recovering the

surface normal. Is there such a unique imaging setup that

is readily accessible, and how can we fully leverage it to

recover fine geometry, namely per-pixel surface normals of

arbitrary material objects?

In this paper, we show that indeed there exists a very con-

venient lighting setup right above us: the sky. The sky, on a

clear day, has an angular polarization distribution uniquely

defined by the latitude and longitude centered around the

sun. The Rayleigh sky model conveniently predicts both

the angle of polarization (AOP) and the degree of polariza-

tion (DOP) across the sky as illustrated in Figure 2 [28].

We show that this everyday, but special angular polariza-

tion pattern readily gives us sufficient incident cues that are

modulated by the unknown reflectance and unknown sur-

face normals so that we can robustly decode it to recover

spatially varying reflectance and per-pixel surface normals.

We conduct a number of experiments using real im-

ages taken outdoors with a linear polarizer at the camera or

with a quad-Bayer polarization camera. The results clearly

demonstrate that our method can recover accurate fine ge-

ometry of objects with complex reflectance from a single

or a few polarimetric images taken completely passively.

The implication of this work is far-reaching. With the ad-

vent of polarization cameras using quad-sensor chips, the

proposed work gives the ability to perform 3D reconstruc-

tion under natural lighting without point matching. Further-

more, while specular surfaces are typically challenging to

reconstruct with geometric methods, these surfaces are par-

ticularly well-suited for shape-from-sky.

2. Related Work

As light interacts with a surface, its polarization state

is altered. The light is transformed depending on sur-

face properties including local geometry and material type.

This effect has been modeled and utilized in Shape-from-

Polarization (SfP) to estimate the geometry of a surface.

Early works constrain the problem by estimating the geom-

etry of only dielectric materials and assume a solely diffuse

reflection polarization model [1, 18, 20]. Other works use

polarization characteristics of specular reflection to recon-

struct specular surfaces such as metallic objects [19, 23].

Realistically, light is reflected off of a material surface as

a mixture of diffuse and specular reflections. As such, meth-

ods that utilize a mixed diffuse and specular model gener-

ate more faithful representations of objects [16, 24, 26, 29].

These methods include both reflectance types into their

models by imaging the object at specific orientations in or-

der to capture a diffuse polarized image or by classifying

each pixel as diffuse or specular dominant. Riviere et al.

separate the specular component of the reflected light by

imaging the planar surface several times near the Brew-

ster angle of incidence [24]. It is unclear how to extend

this imaging procedure to objects with less planar struc-

tures. Baek et al. develop a complete pBRDF model that

can model both diffuse and specular polarized reflections

from a single projector and camera setup [2]. Other meth-

ods [6, 8] use polarized color gradient illumination for sur-

face normal estimation.

In many previous works, SfP is computed on objects

in possibly unknown but controlled illumination environ-

ments. Smith et al. reconstruct 3D geometries of objects

outside of a controlled setting by estimating the illumina-

tion source as a point source with 1st or 2nd order spheri-

cal harmonics [26]. Similar methods alternatively optimize

the surface geometry and illumination orientation to resolve

the Bas-relief ambiguity [25]. SfP is often combined with

methods such as Shape-from-Shading or photometric stereo

in order to resolve the ambiguity but require additional

imaging devices or procedures [15,20,30,34]. Zhu et al. re-

quire an RGB stereo pair for 3D estimation [34] while Ngo

et al. require several illumination views at sufficiently large

distances [20]. SfP combined with multi-view stereo re-

quires polarimetric images from multiple viewpoints [4,33].

Prior work that estimates surface normals in uncontrolled

outdoor illumination [10] assumes a simple model of an un-

polarized overcast sky.

In contrast, we take advantage of the polarization of sky-

light and its hemispherical pattern that can be expressed by

the Rayleigh sky model [9, 27]. This distinct sky polariza-

tion pattern is important to insects and animals for naviga-

tion [12, 13, 17, 31, 32]; and for recognizing bodies of wa-

ter via sky reflections [7, 14]. In this work, we show that

the angular variation of polarization under the blue sky is a

key for surface normal estimation. Analogous to the use of

multiple polarized sources in polarization multiplexing for

reflectance estimation [5, 6], the sky provides a hemisphere

of distinctly polarized sources. We use a mixed polarization

reflectance model (diffuse and specular) with a monocular

polarized camera setup to reconstruct the geometry of an

object under uncontrolled natural illumination.

3. Linear Polarization and Reflection

Let us first review basic properties of light polarization

and how it is modulated by surface reflection including mir-

ror and diffuse reflection. We then review how we can

model polarization of sky light. Table 1 summarizes pri-

mary notations.
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Figure 2: The polarization pattern and geometry of sky re-

flection. Left. The angle of polarization of the sky, de-

picted with double-sided arrows is constant along great cir-

cles passing the sun (longitudes). The degree of polarization

is constant on the small circles perpendicular to the solar di-

rection (latitudes), where different thicknesses indicate their

magnitudes. Nomenclature is defined in Table 1. Right.

The hemispheres are real images captured at two times of

a day by the on-chip polarizer camera with a fisheye lens.

Our proposed method makes use of the unique and often

overlooked polarization pattern of the sky.

3.1. Polarization

Light as an electromagnetic field propagates as a col-

lection of plane waves whose orientations can be defined

on the plane perpendicular to the direction of propagation

[3, 11]. For unpolarized light, these plane waves are ran-

domly oriented. However, for linearly polarized light, they

are aligned in one direction. Light is often composed of

various magnitudes of such linearly polarized light of dif-

ferent orientations. We call such light partially (linearly)

polarized. When viewed on the plane perpendicular to the

traverse direction, these plane waves carve out an ellipse

which can be collectively expressed with a single cosine

wave in the angular domain ν

I(ν) = I + ρI cos (2ν − 2φ) , (1)

where I is the radiance of the light, ρ is the degree of po-

larization (DoP), and φ is the angle of polarization (AoP).

Light can also be circularly polarized in which case the

plane-of-vibration rotates with a unique period. In this pa-

per, we only consider linear polarization, as regular surface

reflection primarily only causes linear polarization. In this

case, linearly polarized light can also be conveniently ex-

pressed with the first three entries of the Stokes vector as

S =









2I
2ρI cos 2φ
2ρI sin 2φ

0









. (2)

v viewing direction

n(x) surface normal corresponding to pixel x

s sun direction

ℓ(x) directional vector to the sky in mirror direction

from pixel x
(

ℓ(x) = v − 2
(

vTn(x)
)

n(x)
)

γ angle between ℓ and s

θ angular coordinate of incident and exitant light

(e.g., θi = (θi, ϕi))
Tℓ tangent plane of sky at ℓ, whose up vector yTℓ

points opposite to the camera’s up vector

nTℓ
normalized projection of n onto the tangent

plane at ℓ

ϕTℓ
angle the projected normal makes with the up

vector of tangent plane (cos−1 nTℓ
· yTℓ

) 1

φℓ angle of polarization of sky at ℓ (ℓ × s) from

Rayleigh sky model

nΠ normalized projection of n onto image plane Π

ϕΠ angle the image projected normal (nΠ) makes

with the up vector of image plane (yΠ)

Table 1: Nomenclature

3.2. Polarimetric Reflection

The linear polarization and intensity of an incident polar-

ized light Si to a surface is modulated by reflection before

observed as exitant polarized light So. This modulation can

be expressed with a Mueller matrix M

So = MSi. (3)

Equation 3 provides relationship between the known

Stokes vectors of the sky (from the Rayleigh sky model)

to the observed Stokes vectors at the camera (observable

using a rotating polarizer at the camera or by using a quad-

Bayer polarization camera) via the Mueller matrix with the

local surface normal as the primary surface parameter that

we seek to recover.

For a mirror reflection the Mueller matrix can be ex-

pressed with a series of transformations

M = kC(ϕo)R(θ)C(−ϕi) , (4)

where k denotes a scalar coefficient depending on the nor-

mal n, C is a rotation matrix

C(ϕ) =









1 0 0 0
0 cos (2ϕ) − sin (2ϕ) 0
0 sin (2ϕ) cos (2ϕ) 0
0 0 0 1









, (5)

and R denotes polarization transformation by reflection.

The light is first rotated into the incident plane coordinate

1This is abbreviated from φnTℓ
.
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frame with C(−ϕi) where ϕi is the angle between the plane

of incident light and the y-axis of the coordinate frame in

which the incident light is defined. After reflection ex-

pressed by R, the polarization state is coordinate trans-

formed into the outgoing (viewing) direction ϕo.

The polarization transform by reflection R can consist of

different components. A full polarization BRDF model has

been derived in [2]. In this paper, we assume the material

surface of interest exhibits a linear combination of specular

(mirror) and diffuse reflection.

Specular Reflection Polarization transform by specular

reflection can be fully expressed with Fresnel equations

R(θ) =

[

R+ R− 0 0
R− R+ 0 0
0 0 R× cos δ 0
0 0 0 R× cos δ

]

, (6)

where R± =
Rs±Rp

2 , R× =
√

RpRs, θ is the incident

angle of the light, and cos δ is -1 when θ is less than Brew-

ster’s angle and 1 otherwise. Rs and Rp are the Fresnel

coefficients defined as

Rs(θ) =

(

sin(θ − θt)

sin(θ + θt)

)2

, Rp(θ) =

(

tan(θ − θt)

tan(θ + θt)

)2

,

(7)

respectively. Here θt is given by Snell’s law as

θt = sin−1

(

µa

µm

sin θ

)

, (8)

where µa and µm denote the indices of refraction of air and

the object material, respectively.

Diffuse reflection Diffuse reflection is slightly more in-

volved as the polarized light enters the object surface, gets

depolarized by scattering, but then becomes polarized again

when exiting from the interface to air. Assuming Lamber-

tian reflection, the diffuse reflection observed by a viewer

for an infinitesimally small solid angle of an incident polar-

ized light Si is

dSo =
n · ℓ

2π
C(ϕo)T (θo)D(ζ)T (θi)C(−ϕi)Sidω , (9)

where θo denotes the transmittance angle from the inte-

rior of the object surface to the viewer given as θo =

sin−1
(

µa

µm
sin θ

)

, ζ is the diffuse albedo, n is the surface

normal, and ℓ is the direction of the incoming light (direc-

tion to a sky patch is used for example). D(ζ) is the 4×4
depolarization matrix

D(ζ) =









ζ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









. (10)

The polarization transform by transmission when enter-

ing and exiting the interface is

T (θ) =

[

T+ T− 0 0
T− T+ 0 0
0 0 T× 0
0 0 0 T×

]

, (11)

where T± =
Ts±Tp

2 , T× =
√

TpTs and θ is the incident

angle of the light. Ts and Tp are the Fresnel coefficients

defined as

Ts(θ) = 1−Rs(θ) , Tp(θ) = 1−Rp(θ) , (12)

respectively.

The total irradiance of diffuse reflection to the observer

(e.g., camera) is the integration of this differential polarized

light (Eq. 9) over the upper hemisphere Ω of incident light

around the surface normal

So =
1

2π
C(ϕo)T (θo)

∫

Ω

(n · ℓ)D(ζ)T (θi)C(−ϕi)Sidω .

(13)

4. Sky Polarization

As depicted in Fig. 2, the sky exhibits a unique pattern

of linear polarization. When observing an object surface

captured on a clear day sky with a polarization camera, we

are essentially observing this sky polarization pattern mod-

ulated by the surface reflection and geometry.

Sky Polarization Distribution The sky can be geomet-

rically modeled as a directional light distribution over the

upper hemisphere with its zenith aligned with the surface

normal of the ground. Let us denote the sun direction with

s. While the sun is unpolarized, Rayleigh showed that

Rayleigh scattering of sun light induces unique symmetry

in its polarization over the sky [28].

The angle of polarization form iso-contours (great cir-

cles, meridians) passing through the sun (i.e., in longitude).

That is, the polarization direction on the tangent plane Tℓ is

ℓ × s. We consider a right-hand coordinate frame with the

z-direction pointing towards the viewing direction.

As depicted in Fig. 2, the camera coordinate frame in the

tangent plane coordinates becomes

CTℓ
=
[

ℓ×[0 −1 0]
‖ℓ×[0 −1 0]‖

T

ℓ× xTℓ
ℓ

]T

. (14)

The sky polarization direction in the tangent plane coordi-

nate frame then becomes

τ = CTℓ
ℓ× s , (15)

and the observed angle of sky polarization is

φℓ = tan−1 (τy/τx) . (16)
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The degree of polarization of the sky ρℓ, in contrast, form

iso-contours (parallels) around the sun (i.e., in latitude)

ρℓ = ρmax
sin2 γ

1 + cos2 γ
, (17)

where ρmax is an unknown scaling factor2 and γ =
cos−1 ℓTs.

Sky Intensity Distribution In addition to the polarization

characteristics, we must also take into account the radiance

distribution of the sky. The Perez sky model [22] expresses

the sky intensity distribution relative to a sampled reference

intensity at a known direction. Let us denote the zenith vec-

tor of the sky in the camera coordinate frame with g. The

sky intensity of the direction ℓ(x) is then given by

Iℓ(x) =
f(g, s, ℓ(x))

f(g, s, ℓ(x0))
Iℓ(x0) , (18)

where

f =
(

1 + a exp
(

b/(g⊤ℓ)
)) (

1 + c exp (dγ) + e(s⊤ℓ)2
)

.
(19)

The values of the coefficients a, b, c, d and e depend on the

conditions of sky.

5. Polarimetric Shape from Sky

We are now ready to derive a method for recovering the

surface normals of an object whose polarimetric image is

captured under the sky. Regardless of the image capturing

setup (e.g., rotated filter, quad-Bayer polarization camera,

etc.), we show that polarimetric observations at each pixel

can be turned into surface normals.

We make a few moderate assumptions about the target

surface and the imaging setup. We assume that the surface

reflection consists of a linear combination of Lambertian

diffuse reflection and perfect mirror reflection. This does

limit the applicability of our method to specular objects. We

leave extensions to glossy surfaces as our future work. We

assume that the camera model can be approximated with or-

thographic projection and that the polarimetric images are

taken under a clear sky. Clouds attenuate the sky polariza-

tion affecting the degree of polarization in addition to the

spatial intensity pattern. We plan to extend our method to

non-clear skies in our future work.

5.1. Polarimetric Sky Reflection

Let us first derive a generative model of the forward

imaging process of the sky polarization via object surface

reflection. For this, we denote the surface normal of the

object surface captured at image coordinates x with n(x),
which we recover in the 3D camera coordinate frame.

2It is set to 1.0 in textbooks in general.

We assume orthographic projection. The angle this sur-

face normal makes with the y-axis of the image plane is

ϕΠ(x) = cos−1(nΠ(x)
T yΠ ). (20)

The sky direction in perfect mirror direction to the ortho-

graphic viewing direction by this surface normal is

ℓ(x) = v − 2
(

v⊤n(x)
)

n . (21)

For any sky direction, we can compute its Stokes vector

Sℓ(x) from its intensity, angle, and degree of polarization,

Eq. 19, Eq. 16 and Eq. 17, respectively,

Sℓ(x) = 2Iℓ(x)









1
ρℓ cos 2φℓ

ρℓ sin 2φℓ

0









. (22)

This Stokes vector Sℓ(x) is transformed into the observed

Stokes vector Sx by surface reflection. For the coordinate

transforms between the incident sky light tangent plane Tℓ

and the plane of reflection, as well as that between the plane

of reflection and the camera coordinate frame, we need the

angle the surface normal makes on the sky light tangent

plane ϕTℓ
and the angle it makes on the image plane ϕΠ,

respectively

ñTℓ(x)
(x) = CTℓ(x)

n(x) , (23)

ϕTℓ
(x) = tan−1

(

ñTℓ(x)
(x)y

ñTℓ(x)
(x)x

)

−
π

2
, (24)

ϕΠ(x) = cos−1 nΠ(x)
TyΠ , (25)

where yΠ = [0 1 0]T and ñTℓ(x)
(x) is n(x) in the tangent

plane coordinate frame.

Let us now derive each of the polarimetric reflection

components of an object surface captured under the sun and

sky. In the following, we drop pixel-dependency x from the

notation for brevity.

Diffuse Reflection of Sky Theoretically speaking, we

should integrate Eq. 18 in the upper hemisphere around the

surface normal. This, however, would necessitate evalua-

tion of the integral for each pixel in each step, causing an

unnecessary computational burden since, especially after

hemispherical integration, assuming uniform sky intensity

would only cause 1% error in the diffuse reflection intensity.

Instead, for diffuse reflection, unlike for specular reflection,

we assume that the sky has uniform intensity, which signif-

icantly simplifies our model without sacrificing accuracy.

The diffuse reflection then becomes

S
d
Π
=

C(ϕΠ)

2π
T (θΠ)

∫

Ω

(n·l)D(ζ)T (θl)C(−ϕl)Sldω .

(26)
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The integral of Eq. 26 yields a non-zero value only in the

first component due to the matrix D(ζ):

S
d
Π
= C(ϕΠ)T (θΠ) · 2IdζdS0 , (27)

where S0 = [1, 0, 0, 0]⊤, Id is the uniform intensity of the

sky, and ζd is a positive scalar value depending on the distri-

bution of Sl. Note that ζd represents the “effective” diffuse

albedo including the effects of depolarization by ζ and pre-

ceding and following transmittance. We thus recover ζd as

the diffuse albedo. Here we assume that the (1, 2) compo-

nent of T (θl) is sufficiently small when compared with its

(1, 1) component. In this case, the polarization of Sl does

not contribute to ζd. This physically means that it does not

contribute to the DC component of light transmitted into the

object subsurface.

As a result, ζd is represented by

ζd = ζ

∫

Ω

(n · l)T+(θl)dω , (28)

and depends only on ζ and µ.

Diffuse Reflection of Sun The sun is unpolarized

Ss = 2Esδ(l− s)S0 , (29)

where Es is the sunlight irradiance. When the upper hemi-

sphere around the surface normal includes the sun s, polar-

ization by diffuse reflection of the sun thus becomes

S
∗
Π
= 2(n · s)ζdT+(θs)IsC(ϕΠ)T (θΠ)S0 , (30)

where θs is the angle between the sun and the surface nor-

mal, and Is is

Is =
Es

∫

Ω
(n · l)T+(θl)dω

. (31)

Specular Reflection of Sky We assume that, except for

the sun, the specular reflection Ss
Π

consists of mirror reflec-

tion of the sky. In this paper, specular reflection of the sun

is ignored as it is a single saturated point with unreliable

Stokes vector. We can simply fill this point’s surface nor-

mal with surrounding estimates. For a given surface nor-

mal, we can compute the mirrored sky direction (Eq. 21),

whose specular reflection can be computed as a Stokes vec-

tor using Eq. 4.

The reflected light then would be the total of diffuse re-

flection of the sky and sun and also specular reflection of

the sky

SΠ = S
d
Π
+ S

∗
Π
+ S

s
Π

= 2(Id + (n · s)IsT+(θs))ζdC(ϕΠ)T (θΠ)S0

+ ζs(n
⊤ℓ)C(ϕΠ)R(θΠ)C(−ϕℓ)Sℓ , (32)

where ζs is the specular albedo.

5.2. Surface Normal Recovery

Given the generative model of observed polarization SΠ

for a given surface normal n(x) (Eq. 32), our goal is to

estimate the surface normal n for each pixel from as few as

a single observation of the object captured under the sky.

Let us first assume that we know the sun direction s,

maximum degree of polarization of the sky ρmax, refrac-

tive index µ, the parameters of Perez sky model a, b, c, d,

e, and sky zenith direction g. The unknowns in Eq. 32 are

then the intensity Id, Is, Iℓ(x0) in Sℓ, albedo values ζs and

ζd, and surface normal n.

If we assume that the object surface consists of homo-

geneous material, only the surface normal n(x) will de-

pend on pixel x in Eq. 32 and the other unknowns Id, Is,

Iℓ(x0), ζd, and ζs will be shared among all pixels. To fur-

ther reduce the number of parameters, we can define Iζs
as Iζs = Iℓ(x0)ζs without loss of generality. At the end, N
pixel observations will have 3+2N degrees of freedom and

3N constraints when n(x) is unique to the observed Stokes

vectors SΠ(x). In addition, polarimetric object appearance

with N pixels captured from the same viewpoint but at M
different times of the day will have 2M+2N+1 degrees of

freedom and 3M×N constraints. As we can safely assume

N ≫ M , this suggests that, given a few images of the same

object taken at different time instances (i.e., changing solar

direction) we can robustly estimate the object geometry.

We achieve this by alternating between estimating the

pixel-shared parameters from a few pixels and then using

those values to estimate the per-pixel parameters including

the surface normals and albedo values. Assuming Is = tId
with a constant t for all the M images, unknowns Id, t, ζd
and Iζs are obtained by minimizing an L2 Stokes error with

the observed Stokes vector ŜΠ as

arg min
Id,t,ζd,Iζs

√

∑N
x

∑M
i ||ŜΠ − SΠ||

2 . (33)

Using these estimates, we then estimate the surface nor-

mals

arg min
n

√

∑M
i ||ŜΠ − SΠ||

2 . (34)

These two steps are iterated until convergence.

For the homogeneous material case with known sun di-

rection, we can recover per-pixel surface normals from a

single polarimetric image M = 1. In this case, we have

3+2N unknowns and 3N equations and the same alternat-

ing minimization algorithm can be used.

When assuming homogeneous material, even when we

only have one polarimetric observation, we can further re-

lax the requirement of known sky parameters: solar and sky

zenith directions and Perez sky model parameters since, in

general, the problem is well-conditioned (N > 3). The

losses (Eq. 33 and Eq. 34) are, however, non-convex. To
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Input GT Normal Our Normal Normal by [30] GT Shape Our Shape Shape by [30]

12.16 / 11.75 / 6.63 21.76 / 20.79 / 7.01

11.27 / 8.65 / 8.85 30.47 / 31.38 / 7.74

16.08 / 14.31 / 8.46 40.29 / 41.35 / 19.33

14.61 / 10.94 / 12.59 32.11 / 31.57 / 15.54

Figure 3: Quantitative results. Polarimetric input images were captured with an on-chip polarization camera. See color

wheel in first row GT normal for normal directions. Quantitative analysis is shown with the three numbers under each surface

normal map representing mean, median, and standard deviation of the angular errors from ground truth in degrees. Our

method achieves quantitatively and qualitatively accurate geometry reconstructions of real objects with both homogeneous

and spatially varying materials.

avoid local minima, we manually initialize these two direc-

tions (e.g., by specifying the brightest point as the reflection

of sun) and let the alternating minimization also estimate

them as part of the pixel-shared parameters.

Finally, we can solve for texture, i.e., spatially varying

diffuse albedo ζd(x), for the general case of unknown sun

and sky parameters. Object surfaces are often coated with

the same material but can have underlying texture. In this

case, for M images of an object surface occupying N pix-

els, we have 2M + 3N parameters for 3M ×N equations,

and thus multiple polarimetric observations become essen-

tial. The required minimum number of observations at dif-

ferent times of the day are, however, just two ( 3N
3N−2 < M

holds for any positive integer M larger than 1 for N > 2).

We typically use 2 or 3 polarimetric images captured one or

two hours apart in our experiments.

6. Experimental Results

We experimentally evaluate the effectiveness of our

method with a number of real objects of different materi-

als. We captured polarimetric images of these objects under

a clear sky using a monochrome polarization camera with

four on-pixel polarization filters of different angles (LUCID

PHX050S-P) or a color digital SLR with a rotated polariza-

tion filter in front of the lens. For each image, we compute

the Stokes vector at each pixel from these angular polari-

metric observations. For some experiments, we captured

the same object from the same viewpoint at different times

of the day (i.e., different sun directions).

The ground truth sun direction was computed by cap-

turing a chrome sphere with the target, and the Perez sky

parameters were set to represent the CIE standard clear sky

[21]. The ground truth shape and normal of the target ob-

jects were computed by photometric stereo and structured

lighting in a separate imaging session indoors.

Quantitative Evaluation We applied our method to real

objects with different material compositions, including ho-

mogeneous and spatially varying diffuse albedo as well as

different combinations of specular and diffuse reflection.

Figure 3 shows the estimated surface normals and depths.

Reconstructions are shown for surface regions reflecting

the sky with manually specified masks. The overall shapes

are visualized with shaded renderings of surfaces computed

by integrating the normal maps for qualitative evaluation.

We also show results of applying the method by Tozza et

al. [30] to the same input images, which were computed

with the code disseminated by the authors. Note that we

chose this shape-from-polarization method as a baseline for

comparison, but to our knowledge our method is the first

to recover shape from sky polarization, so additional SOTA

comparisons are not possible. The three errors for each nor-

mal estimate are the mean, median, and standard deviation

of the angular errors between the ground truth in degrees.

For these experiments, we used ground truth sun and sky

parameters. For the first two objects, we further assumed

homogeneous diffuse albedo. For each object, we used up

to 3 polarimetric images (black fish: 1, turtle, cup: 2, and

clownfish: 3) captured at different times of the day (e.g.,
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Figure 4: Grayscale images and reconstructions of ob-

jects of the same shape with different diffuse albedo

corresponding to diffuse-dominant, mixed, and specular-

dominant polarization from left to right, respectively.

The mean/median/standard deviation of the normal er-

rors in degrees are 14.69/14.44/6.10, 16.38/16.22/5.72, and

14.48/14.49/5.28, respectively. These results demonstrate

the robustness of our method to different combinations of

diffuse and specular reflection magnitudes.

2 hours apart). The results show quantitatively and quali-

tatively that our method can recover accurate fine geome-

try, except for areas that suffer from cast shadows or satu-

ration by sun light, and significantly outperforms the base-

line method. Even from a single polarimetric observation,

we are able to reconstruct the complex shape for the black

fish, and only up to 3 images are necessary to reconstruct

fine geometry of texture objects (e.g., clownfish). For the

clownfish, the estimated normals have larger errors in the

top center of the image. These errors are caused by insuffi-

cient separation in time between the input images.

Effect of Larger Diffuse Magnitude We also quantita-

tively evaluate the effect of varying magnitudes of diffuse

reflection. Although our method can handle arbitrary com-

binations of diffuse and specular albedo at each pixel, as

diffuse reflection is depolarized in the subsurface and its

transmittance polarization is perpendicular to that of spec-

ular reflection, stronger diffuse reflection would retain less

of the unique sky polarization pattern. As a result, surface

normal estimation becomes more challenging as diffuse re-

flection becomes more dominant in magnitude (e.g., white

surfaces). Figure 4 shows reconstructions of three objects

of the same shape (turtle) but in different colors, i.e., black,

green, and white, each representing predominantly specu-

lar, mixed, and diffuse object surfaces, respectively. The

results show, both quantitatively and qualitatively, that our

method is robust to changes in diffuse and specular relative

magnitudes. These results demonstrate that our method can

robustly handle a wide range of materials.

Fig. 1 and Fig. 5 show reconstruction results of differ-

ent objects made of various materials ranging from natural

to man-made, and strong diffuse to predominantly specu-

lar. Polarimetric input images were captured with either an

on-chip polarization camera or a DLSR with a hand-rotated

filter. The results show that our method can achieve fine

geometry recovery for various types of real objects.

Figure 5: Reconstructed geometry of other real objects of

complex materials and shapes. Reconstructions are shown

for surface regions reflecting the sky with manually speci-

fied masks.

7. Conclusion

In this paper, we introduced a novel method for recover-

ing surface normals from polarimetric images captured un-

der the sky. Our method estimates the surface normal at

each pixel by decoding the unique polarization pattern of

the sky from its surface reflection. We demonstrated its ef-

fectiveness on a number of objects with different material

compositions and showed that it can recover accurate fine

geometry of a complex object even from a single polarimet-

ric image. Especially with the advent of quad-Bayer po-

larization cameras, our method provides a simple and easy,

completely passive tool for outdoor 3D sensing that would

likely benefit a wide range of application domains.
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