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Abstract

Recently unsupervised domain adaptation for the seman-

tic segmentation task has become more and more popular

due to high-cost of pixel-level annotation on real-world im-

ages. However, most domain adaptation methods are only

restricted to single-source-single-target pair, and can not be

directly extended to multiple target domains. In this work,

we propose a collaborative learning framework to achieve

unsupervised multi-target domain adaptation. An unsuper-

vised domain adaptation expert model is first trained for

each source-target pair and is further encouraged to col-

laborate with each other through a bridge built between

different target domains. These expert models are further

improved by adding the regularization of making the con-

sistent pixel-wise prediction for each sample with the same

structured context. To obtain a single model that works

across multiple target domains, we propose to simultane-

ously learn a student model which is trained to not only

imitate the output of each expert on the corresponding tar-

get domain, but also to pull different expert close to each

other with regularization on their weights. Extensive ex-

periments demonstrate that the proposed method can ef-

fectively exploit rich structured information contained in

both labeled source domain and multiple unlabeled target

domains. Not only does it perform well across multiple

target domains but also performs favorably against state-of-

the-art unsupervised domain adaptation methods specially

trained on a single source-target pair. Code is available at

https://github.com/junpan19/MTDA.

†The work was done in Noah’s Ark Lab, Huawei Technologies.
∗Corresponding author

1. Introduction

Semantic segmentation aims at interpreting an image by

assigning each pixel to a semantic class [33, 6, 7, 55, 63].

Recently, semantic segmentation has achieved remarkable

progress and is widely applied to intelligent systems such as

autonomous driving, human-computer interaction and other

low-level vision tasks [22, 21, 23]. Its success is mainly

attributed to the supervised learning over large amounts

of annotated data. However, human efforts on pixel-level

annotations are expensive, which substantially limits the

scalability of segmentation models. With large amounts of

low-cost and diverse synthetic data simulated with game

engines available, unsupervised domain adaptation (UDA)

draws much attention to adapt the model learned on synthetic

data to real-world data. Unsupervised domain adaptation

methods [28, 51, 59, 34, 4, 61, 36, 37] alleviate the issue

of domain mismatch by training a model on both labeled

source domain and unlabeled target domain.

However, the setting of traditional unsupervised domain

adaptation in semantic segmentation is usually restricted to

single-source-single-target pair, as shown in Figure 1 (a).

The learned model only works for a single target domain

and can not be easily extended to multiple target domains,

that is, multi-target domain adaptation (MTDA). With this

setting, it is expected to learn a single model that is able to

make full use of data from a single labeled source domain

and multiple unlabeled target domains and performs well

on multiple target domains simultaneously. This setting

has great value in real-world applications. For example, in

autonomous driving it is expected to have a model work in

various environments with different lighting, weather and

cityscapes. It is difficult to collect annotated data for such

different environments but is easy to have large amounts of

unlabeled data.
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Figure 1. Comparison between the setting of single-target domain

adaptation (STDA) and multi-target domain adaptation (MTDA).

(a) Multiple STDA models with each one corresponding to a single

target domain. (b) A single MTDA model working across multiple

target domains.

There have been several works on MTDA [14, 40, 56],

however, most of them focus on the classification task. Few

works are developed to address the semantic segmentation

task under the setting of multi-target domain adaptation. To

the best of our knowledge, this is the first work to explore

multi-target domain adaptation for semantic segmentation.

The main challenge with this task are two folds: (1) lack of

pixel-wise supervised information in multiple target domains

poses great difficulty in mining inherent and transferable

knowledge; (2) it is difficult to have a single model that

works well on multiple target domains. There are two intu-

itive ways of extending the pair-wise DA to work on multiple

target domains: (1) training multiple models individually for

each target domain and (2) training a single model on com-

bined data from multiple target domains. However, directly

using multiple models would not play the model ensem-

bling effect as in that in single domain. Inaccurate model

dispatching would increase the risk of danger in practical

applications. The model developed by direct data combina-

tion is likely to incur performance degradation due to the

discrepancy between domains. Intuitively, a generic expert

learned in a naive way might have inferior knowledge than

the specialized expert for each target domain.

In this paper, we propose a novel collaborative consis-

tency learning framework for multi-target domain adaptation,

which includes collaborative consistency learning among

multiple expert models and online knowledge distillation to

obtain a single domain-generic student model. This work

shows that once connection among domains is fully explored,

i.e., connection between each source-target domain pair and

among target domains, it can obtain even better performance

than models learned with unsupervised domain adaptation

methods for each source-target domain pair.

In the proposed collaborative consistency learning frame-

work, data from all domains are first translated to the style

of each target domain, respectively. In this way, we build a

bridge between each pair of target domains, that is, images

from the same domain are translated into different styles

corresponding to different target domains. For each style, a

semantic segmentation model is trained on both translated la-

beled data from source domain and translated unlabeled data

from multiple target domains. Each network is a domain-

specific expert and is trained with a kind of UDA loss and

an additional consistency loss that align segmentation re-

sults of images of the same content but with different styles

based on the bridge. Such collaborative consistency learning

helps knowledge exchange among domain-specific experts.

To obtain a single model that works across multiple target

domains, we design a student model whose weights are regu-

larized by the weights of multiple experts and further teach it

with multiple experts through knowledge distillation. In this

way, the student model is able to learn common semantic

knowledge from teachers across multiple domains.

To sum up, we make the following contributions:

• To the best of our knowledge, this is the first work that

explores the unsupervised multi-target domain adapta-

tion task in semantic segmentation.

• We propose a new collaborative consistency learning

framework to handle the MTDA task for semantic seg-

mentation, where unlabeled data in multiple target do-

mains is fully leveraged to train a single model that

works across all target domains.

• Experimental results demonstrate the effectiveness of

the proposed method. We can obtain a single model

that not only works well across multiple target domains

but also performs favorably against domain-specialized

models on each target domain.

2. Related Work

2.1. Unsupervised Domain Adaptation for Semantic
Segmentation

Single-target Domain Adaptation. A typical prac-

tice for UDA in segmentation is to apply a model that is

trained on a synthetic source domain to a real target do-

main. Unfortunately, the domain shift between the syn-

thetic and real data would deteriorate the performance

of model generalization [47, 64, 53]. There are three

main categories of methods to seek a bridge the gap be-

tween the source and target domain. The first category is

adversarial-based UDA [47, 35, 9, 29, 18, 19, 50, 42] ap-

proaches which reduce domain discrepancy by maximiz-

ing the confusion between source and target in the fea-

ture [47, 35, 9, 18, 19] or entropy space [50, 42]. The second

category of methods attempt to learn domain-invariant repre-

sentation by taking advantage of various image translation

techniques [62, 20], e.g. target-to-source translation in [53],

bidirectional translation in [31] and texture-diversified trans-

lation in [26]. The third category of methods attempt to apply
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self-training [64, 32, 31, 29, 52, 26, 42] or model ensem-

bling [54, 50, 8] for further improvement in the unlabeled

target domain. Despite UDA for segmentation is a broadly

studied topic, most of the previous works address address

the UDA task under the setting of single-target domain adap-

tation (STDA), which has limitation in practical applications.

Moreover, most of the previous works for STDA focus on

fully utilizing the labeled data to improve the performance in

unlabeled domain [19, 3, 53]. We argue that fully utilize the

unlabeled data is also beneficial to explore the informative

information within unlabeled data, thus improve the final

performance on target domain. Based on these observations,

multi-target domain adaptation (MTDA) is more realistic

setting in real-world.

Multi-target Domain Adaptation. There are two naive

ways of directly extending domain-specialized UDA to work

on multiple target domains, that are (1) training multiple

models individually for each target domain (2) training a

single model on combined data from multiple target do-

mains. Unfortunately, these methods are not appropriate

to handle MTDA problem because they would suffer from

performance degradation due to the mismatching of multi-

target domains. Despite several works have been done to

address the MTDA task, they just focus on addressing classi-

fication task [14, 40, 56]. MTDA for segmentation is more

challenging as it is in essence a dense pixel prediction task.

The work most related to ours is [40], which also applies

multiple teachers to obtain a common knowledge model

for each target domain. However, in [40], unlabeled data

from different target domains are not fully exploited to train

stronger teachers and there is not any regularization in online

knowledge distillation on both the student and teachers.

Domain Generalization. The task of MTDA is also re-

lated to Domain generalization (DG), which attempts to

generalize a model trained only on source domain to mul-

tiple unseen target domains by learning domain-invariant

feature of source [25, 12, 1, 58, 30, 57]. Khosla et al. [25]

proposed removing the data bias by factoring out the domain-

specific and domain-agnostic component during training

on source domains. Yue et al. [30] proposed learning

a domain-invariant feature representation via adversarial

training. In [57], domain randomization and consistency-

enforced training are both used to learn a domain-invariant

network with synthetic images. Compared to the task of DG,

where data from target domain is absent, the MTDA task

aims at training a model for multiple target domains by fully

exploring the unlabeled data.

2.2. Knowledge Distillation

Knowledge distillation (KD) has been widely studied for

learning a compacting and fasting model for edge devices

in real-world applications including face recognition, super-

resolution and object detection. The idea of KD is first

proposed by [17], in which a student model is used to mimic

the distribution of teacher’s prediction. By transferring the

knowledge from teacher to student, the student model is

on par with or even better performance than the teacher

model [13, 38, 16, 41, 24]. Rather than training a student to

distill knowledge from a pretrained teacher, Zhang et al. [60]

proposed to learn an ensemble of students which collabora-

tively teach each other throughout the training process. In

this paper, we share similar philosophy as the general KD

and adapt it to the MTDA task. Multiple domain-specific

expert models with promising performance in each target

domain are adopted as teacher, and a student is expected to

perform well across all target domains. The student is taught

simultaneously by multiple teachers, and also gives feedback

to all teachers, all of which are implemented in an online

fashion. gives rise to robust domain-invariant CNNs trained

using synthetic images.

3. Methodology

3.1. Overview

We propose a novel framework to tackle the task of

MTDA for semantic segmentation. Since only images from

source domain have annotation maps, the key to this task is

to make full use of given source domain data and to explore

the way of mining rich structured information contained in

unlabeled target domains. Our solution is to first train an

expert model for each target domain, which is further encour-

aged to collaborate with each other simultaneously through

a bridge built among different target domains. Since our

final goal is to obtain a single model that works well on all

target domains, we take the above expert models as teachers

and additionally train a student model. It learns not only to

imitate the output of each expert on the corresponding target

domain but also to pulls different expert close to each other

with regularization on their weights. The overall framework

is illustrated in Figure 2. Note that all these are done in

parallel at the same time.

Formally, we denote data from source domain as Ds =
{(Is, ys)} and data from the m-th target domain as Dtm =
{Itm}, where Is and ys represent images and the associated

pixel-wise annotation. The goal of our work is to adapt the

knowledge from Ds to M target domains Dtm which are not

associated with any annotation map.

3.2. Collaborative Consistency Learning for MTDA

Learning of multi-target domain experts. For each

source-target domain pair, we train a domain adaptation

model with most existing unsupervised domain adaptation

method [50, 47]. In this work, we train a model with a

combination of cross-entropy loss on source domain Ds

for segmentation and adversarial loss for structure adapting,

similar to [50, 47]. However, instead of directly learning
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Figure 2. Overview of the proposed Collaborative Consistency Learning (CCL) framework for MTDA in semantic segmentation. The

framework is illustrated with M = 2 as example but it also holds for other numbers of target domains. Blue, yellow and green box represents

the source, the 1-st and the 2-nd target domains, respectively.

an expert with only data from each source-target pair, the

proposed method would learn an expert with data available

from all domains. Specifically, as for an expert of a par-

ticular target domain, style transfer method is first applied

to translate data from all domains to the style of that target

domain. In this way, discrepancy between different domains

is reduced to some extent. With different semantic contexts

but the same style helps learning a UDA expert model for a

particular domain. In addition, re-styled data also works as

a bridge to connect different target domains for knowledge

exchange. The expert model for the m-th target domain is

jointly optimized with supervised segmentation loss Lm
seg

and adversarial loss Lm
adv as follows:

Lm = Lm
seg(P

tm
s , ys) + λadv Lm

adv, (1)

where P is the output of the last layer of domain-specific

expert. For I
(·)
(·) and P

(·)
(·) , superscript represents the trans-

lated style and subscript represents the corresponding do-

main. Lm
seg indicates the cross-entropy objective between

the probability map and its pixel-level annotation map ys.

λadv controls the weight of adversarial loss. Lm
adv is defined

as:

Lm
adv = E[log(1−Dm(Ptm))] + E[logD

m(P tm
s )]

+

M∑

n=1
n 6=m

E[log(1−Dm(P tm
tn

))] + E[logD
m(P tm

s )],

(2)

which enforces the model to align multiple target domains

with source domain and learn domain-invariant information

with adversarial training. Dm is a discriminator to classify

the probability map whether from the source or the integrated

target domain which is composed of multiple translated tar-

get domains. Note that all experts share the same network

architecture but each one has a different set of weights.

Knowledge exchange with collaborative consistency

learning. The above expert domain adaptation models are

able to give a reasonable performance on the correspond-

ing domain adaptation task. However, power within data

from multiple unlabeled target domains has not been fully

exploited. As for data from a certain target domain, it has

been translated into different styles of other target domains

but with the same semantic context reserved. Multiple ex-

pert models are trained to make the consistent pixel-wise

prediction for each sample with the same semantic context.

Since different expert models are learned on samples of
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different styles, they learn the pixel-wise classification abil-

ity in different ways, and their predictions vary from each

other. It is such different predictions that provide an opportu-

nity to learn complementary knowledge from other experts

and extract essential information that really matters to the

performance of semantic segmentation. Therefore, we ex-

ploit collaborative learning for knowledge exchange among

multiple expert models. The knowledge exchange with col-

laborative learning from other experts to the m-th expert can

be formulated as:

Lm
cl =

1

M − 1

M∑

n=1
n 6=m

DKL(Ptn ||P
tm
tn

), (3)

where DKL is average of Kullback-Leibler (KL)-divergence

between the probability map P tm
tn

and Ptn . The expert of the

domain m is trained to imitate the output distribution of other

M -1 domain experts by Lcl. Such knowledge exchange

encourages each expert to make full use of unlabeled data in

an unsupervised manner. The overall objective function of

the m-th domain-specific expert is optimized by:

Lexpert =
1

M

M∑

n=1

(Ln + λcl L
n
cl), (4)

where λcl leverages the importance of consistency loss.

3.3. Online Knowledge Distillation from Multiple
Experts

We have explained how to train multiple domain-

specialized experts by making full use of available labeled

and unlabeled data to improve their capability. However, our

final purpose is to obtain a single model that performs well

across multiple target domains. We propose to online distill

knowledge from multiple expert models with additional reg-

ularization on their model weights. Specifically, a student

network is added to the framework and is supervised with

the output of multiple experts.

Lstudent
okd =

1

M

M∑

n=1

DKL(Ptn ||Qtn), (5)

where Q is the output of the last layer of the domain-generic

student. Then, the overall optimization objective of domain-

generic student model can be defined as:

L
student = L

student
seg (Qs, ys) + λadvL

student
adv + λokdL

student
okd ,

(6)

where λokd is the weight factor to balance the training of

online knowledge distillation and weights regularization, re-

spectively. Lstudent
seg means the cross-entropy objective func-

tion between the probability map Qs and its pixel-level an-

notation map ys. The adversarial loss Lstudent
adv is expressed

as:

Lstudent
adv =

1

M

M∑

n=1

E[log(1−Dstudent(Qtn))]

+ E[logD
student(Qs)],

(7)

where Dstudent is a discriminator for training domain-

generic student model. However, the performance of directly

forcing a student to learn from multiple experts is limited

due to diversity among multiple experts. The student might

get confused in simultaneously distilling knowledge from

very different experts. To address this issue, we propose to

pull domain-specific experts a bit closer to the student. In

this way, the gap between experts is reduced and it is easier

for the student to distill common useful knowledge from

these experts. The gap between domain-specific experts

{Fm
expert}

M
m=1 and domain-generic student Fstudent can be

reduced with the following the weights regularization term:

Lwr =
1

M

M∑

m=1

||θm − θstudent||1, (8)

where θm and θs represents the weights of the m-th domain-

specific expert model and the domain-generic student model,

respectively. The overall optimization objective of the CCL

framework can be defined as:

L = Lstudent + Lexpert + λwrLwr, (9)

where λwr is the weighting parameters. Finally, the obtained

domain-generic model is applied across M target domains.

4. Experiments

In this section, we describe the experiment setting and

implementation details of the proposed CCL. Extensive ab-

lation studies and comparison with other MTDA and STDA

methods are also provided. We show that our method can

work well on multiple large scale urban driving datasets.

4.1. Datasets

Under the MTDA experiment setting, synthetic datasets

including GTA5 [44] and SYNTHIA [45] are used as source

domain respectively, along with multiple real-world datasets

Cityscapes [10], Indian Driving (IDD) [49] and Mapil-

lary [39] as the target domains. The proposed CCL model

is trained with labeled source data and unlabeled target data

from various domains. Results on the validation sets of the

datasets corresponding to the multiple target domains are

used to evaluate its performance.

GTA5 contains 24,966 synthetic images with a resolution

of 1914×1052 pixels that are collected from the video game

GTA5 along with pixel-level annotations that are compatible

with Cityscapes, IDD and Mapillary in 19 categories.
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Table 1. Performance comparison between our method and baseline models on adaptation from GTA5 to Cityscapes and IDD. The mIoU is

calculated by the average of the intersection-over-union (IoU) among all 19 categories. "R" represents the ResNet101-based model and "V"

represents the VGG16-based model. "C" and "I" indicate the target domain on Cityscapes and IDD, respectively. "*" represents the method

with multiple models that are individually trained for each target domain.

GTA5 → Cityscapes & IDD

Method M
o
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el
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ar
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et

ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

li
g

h
t

si
g

n

v
eg

.

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n
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o
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ik

e

mIoU

Individual Model* V
C 88.4 30.8 78.4 29.8 25.9 20.5 17.6 11.2 79.2 30.3 65.1 46.6 9.1 81.2 22.9 29.9 0.1 11.9 0.5 35.8

I 68.8 2.5 61.4 29.2 20.8 24.9 7.3 34.3 75.6 29.3 91.2 39.8 28.3 63.6 35.8 38.8 0 39.2 7.8 36.8

Source only V
C 64.0 16.8 67.0 22.6 18.9 22.1 20.6 13.3 76.8 14.8 63.9 47.9 5.7 72.5 12.3 12.9 9.5 19.1 2.3 30.7

I 50.9 2.3 45.8 21.8 20.5 26.8 6.8 39.6 76.1 28.3 82.0 38.6 28.8 69.2 38.2 16.6 0 49.1 9.7 34.3

Data Combination V
C 86.8 16.1 77.1 27.8 16.6 22.1 16.4 6.1 80.9 30.9 68.0 43.2 8.9 80.7 23.3 15.2 0 11.0 1.3 33.3

I 73.8 3.5 52.3 25.8 19.4 24.6 8.4 32.0 78.9 32.2 84.6 38.6 37.5 73.1 38.5 12.9 0 41.3 5.1 35.9

Ours V
C 89.3 33.6 79.6 26.8 22.6 25.9 25.1 17.7 81.8 32.9 72.3 49.4 15.2 82.0 22.5 16.9 9.6 10.7 4.3 37.8

I 85.4 5.8 64.2 31.8 19.2 24.9 5.6 43.2 77.3 35.04 91.3 43.9 37.6 70.1 42.2 27.5 0 46.9 9.7 40.1

Individual Model* R
C 88.8 23.8 81.5 27.7 27.3 31.7 33.2 22.9 83.1 27.0 76.4 58.5 28.9 84.3 30.0 36.8 0.3 27.7 33.1 43.3

I 94.1 24.4 66.1 31.3 22.0 25.4 9.3 26.7 80.0 31.4 93.5 48.7 43.8 71.4 49.4 28.5 0 48.7 34.3 43.6

Source only R
C 79.0 9.2 76.1 15.7 17.1 23.3 28.0 14.8 82.4 22.9 70.8 53.7 27.1 76.6 35.9 5.4 0.7 20.3 39.6 36.8

I 60.5 8.3 50.8 8.2 18.9 27.0 6.2 33.3 67.6 22.4 87.4 52.0 45.8 71.8 43.9 37.1 0 50.7 20.2 37.5

Data Combination R
C 86.1 32.0 79.8 24.3 22.3 28.5 27.9 14.3 85.1 29.8 79.9 56.1 20.5 77.7 34.4 35.2 0.7 18.2 13.1 40.3

I 92.8 23.4 60.9 25.8 23.4 24.1 8.6 32.2 77.5 26.8 92.3 48.0 41.0 74.4 48.4 17.7 0 52.5 28.2 42.0

Ours R
C 90.3 34.0 82.5 26.2 26.6 33.6 35.4 21.5 84.7 39.8 81.1 58.4 25.8 84.5 31.4 45.4 0 29.9 24.7 45.0

I 95.0 30.5 65.6 29.4 23.4 29.2 12.0 37.8 77.3 31.3 91.9 52.4 48.3 74.9 50.1 36.6 0 56.1 32.4 46.0

Table 2. Comparison of our model with SOTA UDA methods,

DG methods and MTDA methods with ResNet-101 as backbone.

The mIoU and mIoU* are evaluated over the 19 and 13 classes,

respectively. "G", "S", "C" and "I" represent "GTA5", "SYNTHIA",

"Cityscapes" and "IDD", respectively. † means the results of our

implementation. All numbers correspond to the results without

using pseudo labels or model ensembling as reported in the original

papers.

Setting Method
mIoU mIoU*

G → C G → I S → C S → I

STDA

AdaptSeg [47] 42.4 - 46.7 -

CLAN [35] 43.2 - 47.8 -

ADVENT [50] 43.8 - 47.8 -

BDL [31] 41.1 - - -

SIBAN [34] 42.6 - 46.3 -

AdaptPatch [48] 44.9 - - -

MaxSquare [8] 44.3 - 45.8 -

Kim et al. [26] 44.6 - - -

FDA [54] 44.6 - - -

IntraDA [42] 46.3 - 48.9 -

DG Yue et al.† [57] 42.1 42.8 44.3 41.2

MTDA

MTDA-ITA† [14] 40.3 41.2 42.7 39.4

MT-MTDA† [40] 43.2 44.0 45.2 42.2

Ours 45.0 46.0 48.1 44.0

SYNTHIA is another synthetic dataset. The SYNTHIA-

RAND-CITYSCAPES split of SYNTHIA, which contains

9,400 rendered images of 1280×760 resolution, is used as

Table 3. Ablation studies of the proposed CCL framework on GTA5

to Cityscapes and IDD with ResNet-101 as backbone.

Model # Lcl Lokd Lwr C I

1 42.3 42.9

2 ✓ 41.8 43.9

3 ✓ 43.1 43.5

4 ✓ ✓ 44.0 44.7

5 ✓ ✓ 42.4 45.2

6 ✓ ✓ 44.2 44.9

7 ✓ ✓ ✓ 45.0 46.0

Individual Model 43.3 43.6

another source domain. We use the 16 common categories

with Cityscapes, IDD and Mapillary for training and 13

common classes for testing.

Cityscapes is a real-world dataset with 5,000 street

scenes taken from European cities and labeled into 19 classes.

We use 2,975 images for training and 500 validation images.

IDD is a more diverse dataset than Cityscapes which

captures unstructured traffic on India’s road. It contains a

total of 10,003 images, with 6,993 images for training, 981

for validation and 2,029 for testing.

Mapillary provides 25,000 images collected from all

around the world and diverse source of image capturing

devices. It includes 18,000 images for training, 5,000 images

for testing, and 2,000 images for validation.
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Figure 3. Qualitative results for GTA5 to Cityscapes and IDD.

4.2. Training Details

Similar to [47] and [50], we use the DeepLab-v2 [5]

model with ResNet-101 [15] and VGG-16 [46] as back-

bones and initialize them with models pre-trained on Ima-

geNet [11]. For the discriminator, we also adopt the same

network architecture as [47, 50]. The semantic segmentation

model parameters are optimized with SGD optimizer [2]

where the weight decay and momentum are set to 0.9 and

5 × 10−4, respectively. The learning rate is initially set to

2.5 × 10−4. The polynomial procedure [5] is used as the

learning rate schedule. The discriminator is optimized with

Adam optimizer [27] with the momentum 0.9 and 0.99 with

the learning rate is set to 10−4. We set λadv, λcl, λokd and

λwr as 10−3. Here, we adopt a simple way to conduct image

translation in gamut of LAB color space [43].

4.3. Comparison with Baseline Models

We compare the segmentation performance of the pro-

posed CCL with three baselines: "Individual Model",

"Source Only" and "Data Combination". "Individual Model",

similar to [50], is to train multiple models for each corre-

sponding target. "Source Only" and "Data Combination"

are the MTDA setting which trains a single model across

multiple target domains. "Source Only" is to train a model

with the data only from source domain. "Data combination"

is trained by directly combine data from multiple target do-

mains as one domain. Here, we conduct the experiment

with two target domains (i.e., M=2), but our method can

be easily extended to the case of more number of target do-

mains. The results of each method are reported in Table 1.

In Table 1, the method of "Individual Model" that trains two

models individually on Cityscapes and IDD achieves 43.3%

and 43.6% mIoU on the corresponding domain. However,

it requires two models for each domain. Compared to that,

"Source only" use a single model but suffers considerable

performance drops by 6.5% and 6.1% on Cityscapes and

IDD because of the domain shift between the synthetic and

real data. By directly combining the multiple target data

as one domain, the model trained by "Data Combination"

also suffers the performance degradation lagging behind the

method of "Individual Model" by 3.0% and 1.6% mIoU

on Cityscapes and IDD. Our method with a single model

achieves 45.0% and 46.0% mIoU on Cityscapes and IDD,

which significantly outperforms the "Data Combination" by

+4.7% and +4.0%. By fully exploring unlabeled data from

multiple target domains, the proposed CCL even works bet-

ter than the "Individual Model", which adopts two models

and trained on each target domain individually, by +1.7%

and +2.4% mIoU on Cityscapes and IDD. The qualitative

comparison between different baselines and the proposed

CCL are provided in Figure 3.

4.4. Comparison with State­of­the­arts

We first compare our method with the single-target do-

main adaptation (STDA) method on GTA5-to-Cityscapes

and SYNTHIA-to-Cityscapes with using ResNet-101 as

backbone. The results are shown in Table 2. Our method per-

forms favorably against state-of-the-art domain-specialized

UDA methods on both GTA5-to-Cityscapes and SYNTHIA-

to-Cityscapes. However, it is noteworthy that with one round

of training the proposed obtains a single model that achieves

good performance on both Cityscapes and IDD. We also

compare our method with DG and MTDA on "GTA5 to

Cityscapes and IDD" and "SYNTHIA to Cityscapes and
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Table 4. Results of adapting GTA5 to different target domains with

ResNet-101 as backbone. "C", "I" and "M" represent "Cityscapes",

"IDD" and "Mapillary", respectively.

Method
Target mIoU

C I M C I M

STDA

✓ 43.3 - -

✓ - 43.6 -

✓ - - 45.8

MTDA

✓ ✓ 45.0 46.0 -

✓ ✓ 45.1 - 48.8

✓ ✓ - 44.5 46.4

✓ ✓ ✓ 46.7 47.0 49.9

IDD". Compared to the method of DG, where the unla-

beled data were not be used in [57] during training. We

surpass [57] on both Cityscapes and IDD, respectively. We

compare our method with two previous methods on MTDA.

Since the previous works on MTDA only focus on the clas-

sification task, we carefully implement these methods in

semantic segmentation with the same network. Compared to

"MTDA-ITA", our method achieves significantly better per-

formance on both domains. "MT-MTDA" is the method that

adopts multiple teachers to alternatively teach a student in an

offline knowledge distillation manner. However, the method

also not consider to explore the information from different

target domains. Our method achieves better performance

than [40] on both Cityscapes and IDD.

4.5. Ablation Study

In this section, we evaluate each component in the pro-

posed CCL framework by conducting ablation studies on

GTA5 to Cityscapes and IDD task with ResNet-101 as back-

bone. Results are shown in Table 3.

We conduct a set of ablation study to examine the role of

different components of the proposed method. A baseline

(Model 1) here is designed as a method of directly applying

adversarial loss to both target domains, i.e., λcl = λokd =
λwr = 0. When online knowledge distillation loss λokd is

switched on, Model 2 gains +1.0% mIoU improvement on

IDD but suffers from 0.5% mIoU drops on Cityscapes. That

could be explained by the confusion caused by the domain

shift with expert models. When the weight regularization

loss λwr is switched on, Model 3 gains evident improvement

of +0.8% and +0.6% mIoU than the baseline on Cityscapes

and IDD. Using λokd and λwr simultaneously improve the

Model 1 by 1.7% and 1.8% mIoU on Cityscapes and IDD,

and also outperforms "Individual Model" in both target do-

mains. Consistent improvement over Model 2, Model 3 and

Model 4 is gained when collaborative consistency learning

is employed. Specifically, Model 7 gains evident 1.0% and

1.3% improvement from Model 4 on Cityscapes and IDD,

simultaneously.

Table 5. Results for real-to-real MTDA experiments.

Souce
Target mIoU

C I M C I M

C

✓ - 51.4 -

✓ - - 49.6

✓ ✓ - 53.6 51.4

I

✓ 46.5 - -

✓ - - 49.0

✓ ✓ 46.8 - 49.8

M

✓ 57.9 - -

✓ - 52.3 -

✓ ✓ 58.5 54.1 -

4.6. Generalization to Different Datasets

Synthetic-to-real MTDA. Here, we conduct a set of ex-

periments with different target domains. We consider the

task of STDA as our baseline, that includes: (1) GTA5 to

Cityscapes, (2) GTA5 to IDD and (3) GTA5 to Mapillary.

Each STDA model is trained on the corresponding target

domain, individually. In Table 4, three STDA baselines

with three individually trained models achieve 43.3%, 43.6%

and 45.8% mIoU on Cityscapes, IDD and Mapillary, respec-

tively. It can also be extended to adaptation to all these three

datasets. Experiment results show that our method with a sin-

gle model consistently works better than the STDA baseline,

which is individually trained on the corresponding target do-

mains. Our method using a single model consistently works

better than the STDA baseline on the corresponding target

domains.

Real-to-real MTDA. In Table 5, we also conduct a do-

main experiment from real-world datasets to real-world

datasets. Here one of the Cityscapes, IDD and Mapillary is

adopted as the source domain and the rest two are taken as

the two target domains. Experimental results show that the

proposed method not only works well on syn-to-real adapta-

tion but also does a good job on the case of real-to-real.

5. Conclusion

In this work, we propose a novel collaborative consis-

tency learning framework to achieve multi-target domain

adaptation. The key idea is to first train a strong expert

model for each target domain by simultaneously imposing

consistency constraint among prediction from multiple ex-

pert models. They are further used as multiple teachers to

collaboratively teach a student model in an online fashion

such that a single model is able to work well across multiple

target domains. Extensive experiments show that our method

not only produces a single model that works well on multi-

ple target domains but also achieves favorably performance

against domain-specialized UDA methods on each domain.
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