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Abstract

The Facial Action Coding System is a taxonomy for fine-

grained facial expression analysis. This paper proposes a

method for detecting Facial Action Units (FAU), which de-

fine particular face muscle activity, from an input image.

FAU detection is formulated as a multi-task learning prob-

lem, where image features and attention maps are input to

a branch for each action unit to extract discriminative fea-

ture embeddings, using a new loss function, the center con-

trastive (CC) loss. We employ a new FAU correlation net-

work, based on a transformer encoder architecture, to cap-

ture the relationships between different action units for the

wide range of expressions in the training data. The resulting

features are shown to yield high classification performance.

We validate our design choices, including the use of CC-

loss and Tversky loss functions, in ablative experiments. We

show that the proposed method outperforms state-of-the-

art techniques on two public datasets, BP4D and DISFA,

with an absolute improvement of the F1-score of over 2%

on each.

1. Introduction

Facial expressions are a primary means of conveying

nonverbal information. Some expressions are universally

understood, such as exhilaration or disappointment. How-

ever, expressions are specific to individuals, which moti-

vates a person-independent representation in the form of the

Facial Action Coding System (FACS) [1]. This system de-

scribes a taxonomy of facial action units (FAU) for encod-

ing facial expressions, based on the observed activation of

muscles or muscle groups, such as Brow Lowerer or Cheek

Raiser. Each facial expression can be mapped using this

system, and automatic FACS analysis has been applied in

domains such as healthcare, entertainment, and photogra-

phy [2]. The task of FAU detection can be formulated as a

multi-label binary classification problem for detecting each

action unit [3, 4], with some works taking into account the

degree of FAU activation [5, 6, 7].

Since action units are defined by particular muscle acti-

Figure 1: Overview. Two levels of attention are captured in the

proposed approach. (a) The first level focuses on the spatial re-

gions using an Attention Branch Network [8] and (b) the second

level of attention captures the relation between FAU feature em-

beddings using a transformer encoder. For each image, highly

correlated FAUs are shown in same color.

vations, the spatial extent of each action unit is limited. We

therefore employ attention maps to focus on regions of in-

terest. Our attention model builds on the idea of Attention

Branch Networks [8], which introduce a branch structure

for estimating attention, and have been shown to perform

well on image classification and other visual tasks [8]. In

our case, separate attention maps are learnt for each ac-

tion unit. Additionally, since the FAUs are related with

each other, the feature embeddings learnt using the atten-

tion maps are input to a correlation unit, using a transformer

encoder [3, 9, 10].

Figure 1 illustrates the two types of relationships we cap-

ture using our model. We model the spatial regions of in-

dividual action units using attention maps (Figure 1 (a)).

We then capture the relationship between different action

units by self-attention, using transformer encoders (Figure 1

(b)). In the figure, the spatial attention as well as the FAU

correlations for two images are shown. The full list of

AUs are listed to illustrate the AU correlations predicted by

our model. Two sample active AUs are highlighted in the

left and the corresponding correlated AUs (based on self-

attention) are shown with the same color on the right in each
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image. For example, in the first image, we show the corre-

lated AUs of the Brow Lowerer and Lip Corner Puller. The

correlated AUs of Brow Lowerer, as predicted by our model,

are Lid Tightener, Chin Raiser and Lip Tightener. Similarly,

the correlated AUs of Lip Corner Puller for the same image

are Cheek Raiser, Upper Lip Raiser and Dimpler.

Detecting action units can be viewed as related, but sepa-

rate tasks. Multi-task learning [11] is able to take advantage

of such task relationships, motivating this approach in our

architecture. The overall framework of our approach is il-

lustrated in Figure 2. The method performs attention learn-

ing on face images for detecting active action units. Fea-

tures are extracted with a pre-trained Inception network [12]

and are passed to attention and multi-task (per-AU embed-

dings) modules, respectively. The attention module esti-

mates attention maps for each action unit and predicts the

active action units. The multi-task module branches the

generated attention maps into one channel per action unit.

A novel loss term, center contrastive loss (ECC) is used to

make the features as discriminative as possible. The ex-

tracted discriminative features (encoded with relative po-

sitional encoding) from the multi-task module are passed

to an AU correlation unit based on transformers [10]. We

adopt a Tversky loss function [13] to improve the perfor-

mance of our model. The combined loss function for the

attention module, the multi-task module and the AU cor-

relation module is optimized directly, allowing end-to-end

model training.

In summary, we propose a new model architecture for fa-

cial action unit detection, by (1) combining attention branch

networks in a multi-task setting for focusing on the spatial

regions of action units and merging branches for individ-

ual action units, (2) an action unit correlation module us-

ing a transformer encoder, (3) using a Tversky loss function

for handling multi-label classification, and (4) using a new

center contrastive loss term to learn discriminative features.

We evaluate the resulting model on public datasets, showing

state of the art performance, and evaluate the design choices

using ablative studies.

2. Prior Work

Early work on action unit detection used landmarks to

define regions of interests and subsequently train classi-

fiers such as neural networks [14] or Support Vector Ma-

chines [15]. Image patches around detected landmarks and

multi-label classification are learned jointly in JPML [16].

Facial landmarks have also been used to generate attention

maps in different ways. For example, in EAC-Net [17] a

single, fixed, attention map is created for each image, by

combining all regions associated with action units. These

attention maps are multiplied with CNN features to help fo-

cusing on the regions of interest. JAA-Net [18] jointly esti-

mates the location of landmarks and the presence of action

Figure 2: Proposed architecture. The model includes ROI atten-

tion module, per-AU embeddings module, AU correlation module

and a classification module. The full loss function includes atten-

tion map loss, Eatt map, center contrastive loss, ECC, the label

loss obtained from the attention module, Eatt, and that from the

classification module, Einfer.

units. Landmarks are used to compute the attention map for

each action unit separately. The recent ARL [19] uses hi-

erarchical region learning to include various structure and

texture information for FAUs in different local regions with

the help of attention maps. Given the success of these ap-

proaches, we also follow an attention based approach. We

provide supervision in the estimation of attention maps us-

ing landmarks as opposed to other methods. This helps in

accurately focussing on the ROI relevant to each action unit.

Also, in contrast to the fixed attention maps in the EAC-Net

model, we predict the attention maps during inference time.

Multilabel FAU detection with imbalanced classes.

Some action units, such as Cheek Raiser and Lip Corner

Puller appear very frequently, whereas other action units,

such as Nose Wrinkler and Upper Lip Raiser appear rarely,

making FAU datasets imbalanced. SRERL [3] designed an

adaptive cross entropy loss function for imbalanced data

training based on the proportion of positive and negative

samples in the training set. Weights used in [20] are in-

versely proportional to the ratio of positives in the total

number of observations for each AU class in training. JAA-

Net [18] uses a multi-label dice coefficient loss and weights

based on the occurrence rate. Our method improves on this

loss by using Tversky loss [13], which offers the flexibility

in controlling the trade-off between false negatives and false

positives. In contrast to other approaches, we use soft bal-

ance sampling weights [21], which offers flexibility in de-

ciding whether to use class-aware or class-unaware weights.

Structure learning for AU detection. Several works ex-

plicitly take the relationships of AUs into account e.g. by us-

ing a Conditional Random Field (CRF) on top of a CNN [6].

A RNN model that learns representations and structure of
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the input image in an end-to-end fashion is proposed in [20].

Similarly, AU correlation is modeled in [9] by using a

knowledge graph of AU relationships and a Gated Graph

Neural Network. Both [9] and [20] learn the spatial rela-

tionships of the AUs in face images, whereas the correla-

tions of occurrence and intensity of AUs are learnt in [6].

The correlation between AUs is the motivation for intro-

ducing a AU correlation module based on transformer en-

coder [10] in our approach. Most recently, the work in [22]

proposed a simple self-attention mechanism for facial fea-

tures. The proposed method differs in two main points: we

input discriminant features to the transformer, and we use

full transformer encoders for estimating FAU correlations,

rather than just self-attention.

Multi-task learning. Various multi-task architectures

have been proposed for identifying facial attributes such as

gender, hair color, eye glasses and hats. For example, the

work in [23] trains individual networks on local regions for

each attribute, then fine-tunes them using a joint loss func-

tion. In contrast, we avoid the need of attribute-specific im-

age cropping. The work in [24] proposes an efficient algo-

rithm for multi-objective optimization applied to multi-task

learning, yielding good results on several tasks, including

facial attribute prediction. The work in [25] introduces con-

nections between all layers of task-specific networks, lead-

ing to improved attribute prediction. Multi-task learning is

used in [26] to train attributes in groups based on their lo-

cation and blur images outside these focus areas. Emotion

recognition and facial action unit detection are considered

two separate tasks in [27]. The work in [28] jointly learn

landmarks and expressions. Other work aims to increase

pose independence by combining pose regression with AU

prediction [29]. These methods show that multi-task learn-

ing helps solving multiple related tasks. We therefore con-

sider the estimation of separate AU embeddings as multiple

related tasks.

3. Methodology

Our proposed framework, consists of four main modules,

including a pre-trained feature extraction module, a ROI at-

tention module, a multi-task module (per-AU embedding

module) which extracts discriminative AU features and an

AU correlation module, see Figure 2. The attention mod-

ule focuses on regions of interest corresponding to each fa-

cial action unit. The multi-task module branches into NAU

different tasks, where NAU is the number of action units,

and each task is provided with the extracted features along

with the attention map corresponding to the AU. Discrimi-

native AU features are extracted from the multi-task module

using the proposed center contrastive loss. The AU corre-

lation module utilizes a transformer encoder to model the

relationships between the discriminative AU features. The

Figure 3: ROI attention and Per-AU embedding module. The

attention module and a multi-tasking module, which extracts dis-

criminative features, are shown. The generated attention maps are

compared with ground-truth maps using the loss, Eatt map. Two

other loss functions are the label loss obtained from the attention

module, Eatt, and the center contrastive loss, ECC.

network is trained in an end-to-end fashion by minimizing

the following cost function:

E(x) = λ1 Eatt(x) + λ2 Einfer(x)+

λ3 Eatt map(x) + λ4 ECC(x), (1)

where x is the input image, λ1, ..., λ4 are hyper-parameters

indicating the weights given to each cost term, Eatt(x) is the

loss from the attention branch, Einfer(x) is the loss between

the predicted AU labels and the true labels, Eatt map(x) is

the loss between the attention maps obtained from land-

marks and the attention maps generated from the network,

and ECC(x) is the center contrastive loss respectively. We

found the optimal values of the hyper-parameters as, λ1 =
λ2 = 0.33 and λ3 = λ4 = 0.15 through grid search. The

following sections describe each module in more detail.

3.1. Pre­trained feature extraction

Previous approaches [3, 30, 18] use custom feature ex-

tractors. In this work we make use of pre-trained feature ex-

tractors for the problem of AU detection. We experimented

with various pre-trained extractors and found that the fea-

tures of InceptionV3 [12] provided the best performance

among them. We take intermediate features (with a mini-

mum resolution of 12) from the pre-trained models. Choos-

ing intermediate layer features of the pre-trained models in-

stead of the final layer features results in more accurate and

explainable attention maps.
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3.2. ROI Attention module

The aim of the attention module is to focus on the regions

corresponding to active action units of the face image. As in

the Attention Branch Network (ABN) [8], we use a separate

network branch for estimating the attention maps and pre-

dicting the labels, see Figure 3. We learn the attention map

using a robust Huber loss function to capture context better.

The attention module consists of a few convolutional layers,

a 1 × 1 convolution layer with NAU filters (corresponding

to the NAU action units with output feature maps), an atten-

tion unit predicting NAU attention maps, one for each FAU,

a 1× 1 convolution layer with NAU filters, and a global av-

erage pooling (GAP) layer with a sigmoid activation func-

tion, yielding predictions of FAUs based on the predicted

attention map. To focus on relevant ROIs, we provide su-

pervision to the predicted attention maps. A ground-truth

attention map is estimated for this purpose.

The ground-truth attention map is extracted as follows.

We detect 66 facial landmarks [31] to initialize the atten-

tion maps of the AUs for a given input image. Landmarks

specific to each action unit are defined similar to [17, 18].

We fit ellipses to landmarks as the initial regions of interest

for each AU, smooth the image (Gaussian with σ = 3), thus

obtaining NAU attention maps. Eatt map constrains the at-

tention map predicted by the attention module to be similar

to the attention maps produced from action unit labels. We

use a Huber loss function Lδ:

Eatt map = Lδ (FM (f(x))−Am(x)) , (2)

where δ is the boundary between linear and quadratic

loss, f(x) is the output of the feature extraction stage,

FM (f(x)) is the output of the attention module and Am(x)
is the ground-truth attention map created from the action

unit labels. The model was trained for different values of δ

and the optimal value was found to be 0.5. Eatt(x) is the

combination of weighted Tversky loss (WTL) and weighted

cross-entropy loss (WCE) for this multi-label binary classi-

fication problem:

Eatt(x) = Eatt
wce(x) + Eatt

wtl(x). (3)

AU detection datasets are generally imbalanced in na-

ture. Hence, we use class weights along with the Tversky

and cross entropy loss functions. We use soft-balance sam-

pling for class weights [21]. The class weight of the ith AU

is given as wi =
∑NAU

i=1
Psi

Psi

, where

Psi =
(

1
NAU∗Pni

)λ
Pni

, Pni
= ni∑NAU

j=1
nj

,

and ni is the number of images with the ith AU active

and λ is a hyper-parameter, set to 0.7. Given the binary

ground-truth labels [yi0, yi1] associated with the input im-

age x and the labels predicted by the attention branch of the

model, [patti0 , patti1 ], the weighted binary cross-entropy loss

and weighted Tversky loss associated with the ROI atten-

tion module are defined as:

Eatt
wce =

1

NAU

∑

i

∑

j∈{0,1}

wiyijp
att
ij ,

Eatt
wtl =

1

NAU

∑

i

wi(αp
att
i1 yi0 + βpatti0 yi1 + ǫ)

patti1 yi1 + αpatti1 yi0 + βpatti0 yi1 + ǫ
.

(4)

Thus, the attention module predicts the attention map,

which focuses on regions for each AU and passes them to

the Per-AU Embedding module.

3.3. Per­AU Embeddings module

This module, designed as a multi-task network, estimates

discriminative AU embeddings as output of NAU tasks.

Each branch of the module consists of a few convolution

layers followed by a 1 × 1-convolution layer and a fully

connected layer. The features from the fully connected lay-

ers of NAU branches are provided as input to the AU cor-

relation module. Discriminative AU features are obtained

in this module using a novel center contrastive ECC loss

function and is defined as:

ECC(x) =

∑NAU

i=1 1yi1==1
||F i

E(f(x))− Ci||
2

∑NAU

i=1 1yi1 6=1
||F i

E(f(x))− Ci||2
, (5)

where F i
E(f(x)) denotes the feature from ith branch and Cj

denotes the learned center of jth feature of the faces with

jth action unit active. The formulation effectively reduces

the intra-class variations and increases the inter-class varia-

tions. This loss function is a variant of the center loss [32].

Similar to the center loss, the centers are updated in each

minibatch. After the weights of the model are updated for a

minibatch, the centers are updated.

3.4. AU Correlation and Inference Module

The details of this module are illustrated in Figure 4. The

AU correlation module estimates the relationships between

the discriminative features. This unit consists of a trans-

former encoder [10], which takes the discriminative AU em-

beddings as input. The transformer encoder has two main

components with normalization layers in between: Multi-

Head Attention and Feed Forward Networks [10].

The features from the FAU correlation module are passed

through a classifier with two fully connected layers to obtain

the labels. A loss term similar to Equation 4 is used here,

consisting of both WTL and WCE terms:

Einfer(x) = Einf
wce(x) + Einf

wtl(x), (6)
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Figure 4: AU correlation learning. Relationships between FAU

embeddings are learnt using a transformer encoder. The features

are passed to an MLP, which learns to predict the labels using the

label loss Einfer.

Einf
wce =

1

NAU

∑

i

∑

j∈{0,1}

wiyijp
inf
ij ,

Einf
wtl =

1

NAU

∑

i

wi(αp
inf
i1 yi0 + βpinfi0 yi1 + ǫ)

pinfi1 yi1 + αpinfi1 yi0 + βpinfi0 yi1 + ǫ
.

Here, [pinfi0 , pinfi1 ] denote the label of ith action unit predicted

by the classifier. The hyper-parameters α, β are set to 0.25

and 0.75, respectively, based on evaluation on a validation

set. Note that we get two predictions, one from the attention

branch and the other from the final classifier. The output

from the classifier is taken as the predicted label during the

time of inference.

4. Experimental Results

The proposed method is evaluated on three public

datasets, BP4D [33, 34], DISFA [35], and EmotioNet [36,

37], which contain input images and action unit labels. For

BP4D and DISFA, we set up experiments in line with prior

work [3, 18]. We evaluate using three-fold cross-validation,

and report mean values over the folds. The folds are the

same as in prior work, for fair comparison. The BP4D

dataset [33] contains images of 41 people (23 female, 18

male adults) of various ethnicity. In total, it includes ap-

proximately 140,000 face images with binary action unit la-

bels (present or absent). As in prior work, we report the F1

score of 12 action units and use the same train/test splits as

in [3, 18]. In order to avoid training and testing on images

of the same person, different partitions contain images of

different people.

The DISFA dataset [35] contains left and right views of

27 subjects, 130,815 frames in total, with AU intensities an-

notated in the range from 0 to 5. Following prior work [3,

18], we evaluate on 8 AUs and select only frames with in-

tensity values greater than 2. The BP4D pre-trained net-

work is fine-tuned on the DISFA dataset, also following the

protocol in [3, 18].

The EmotioNet dataset [36] is a significantly larger

dataset of Internet images, with a training set of approx-

imately 950K images, automatically annotated by the al-

gorithm in [36] and a validation set consisting of approx-

imately 25,000 manually annotated images. There are 12

common AUs in the training and validation sets. The dataset

is part of the EmotioNet challenge [38] with a withheld test

set. We therefore analyze the performance of the proposed

method on the validation set. We evaluate different train-

ing regimes: training the network pre-trained on ImageNet,

training the network pre-trained on BP4D, training the net-

work pre-trained on DISFA, and training the network pre-

trained on both BP4D and DISFA.

Implementation details. Face regions are detected and

resized to 224×224 grayscale images. Landmarks are used

to initialize the attention maps for each AU. The size of the

attention maps are 12×12 in order to match the dimensions

of the convolution layer. Network weights are set using

Xavier initialization [39] and optimized using Adam with

hyper-parameters β1 = 0.9 and β2 = 0.999. The network

was trained for 20 epochs per fold with learning rate 10−4

for BP4D and 10−5, for DISFA, respectively. The features

passed to our model are extracted from models pre-trained

on ImageNet [40]. We compute the F1-score over a single

fold of the BP4D dataset and select the hyper-parameters

with the best score. For the test evaluation, we fix the hyper-

parameters and evaluate by averaging over all three folds.

We use the same hyper-parameters when testing on other

datasets. Training the network takes approximately 8 hours

on the BP4D and DISFA datasets and three days on Emo-

tioNet. Inference takes 2ms per image using an RTX 2080Ti

GPU.

4.1. Results on BP4D and DISFA datasets

Table 1 shows quantitative results on the BP4D dataset.

We compare our method with published work [20, 3, 17, 9,

18, 19] in terms of F1-score. The results for other meth-

ods are taken from the papers. The methods in [17, 18] and

[19] also include an attention mechanism, and [20, 3, 9]

include correlations of action units. The proposed method

performs better than state-of-the-art methods, with an aver-

age F1-score of 64.2.

Table 2 provides quantitative results on the DISFA

dataset. The performance is evaluated for 8 action units,

in line with prior work [20, 3, 17, 9, 18, 19]. The results for

prior work is taken from the papers. In terms of F1-score,

the proposed method performs best on half of the AUs, and,
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Table 1: Results on the BP4D dataset. Comparison with state-

of-the-art methods using the F1-score metric (higher is better).

AU DSIN

[20]

LP

[9]

SRERL

[3]

EAC

[17]

JAA

[18]

ARL

[19]

Ours

1 51.7 43.4 46.9 39.0 47.2 45.8 51.7

2 40.4 38.0 45.3 35.2 44.0 39.8 49.3

4 56.6 54.2 55.6 48.6 54.9 55.1 61.0

6 76.1 77.1 77.1 76.1 77.5 75.7 77.8

7 73.5 76.7 78.4 72.9 74.6 77.2 79.5

10 79.9 83.8 83.5 81.9 84.0 82.3 82.9

12 85.4 87.2 87.6 86.2 86.9 86.6 86.3

14 62.7 63.3 63.9 58.8 61.9 58.8 67.6

15 37.3 45.3 52.2 37.5 43.6 47.6 51.9

17 62.9 60.5 63.9 59.1 60.3 62.1 63.0

23 38.8 48.1 47.1 35.9 42.7 47.4 43.7

25 41.6 54.2 53.3 35.8 41.9 55.4 56.3

Avg. 58.9 61.0 62.1 55.9 60.0 61.1 64.2

Table 2: Results on the DISFA dataset. Comparison with state-

of-the-art methods using the F1-score metric (higher is better).

AU DSIN

[20]

LP

[9]

SRERL

[3]

EAC

[17]

JAA

[18]

ARL

[19]

Ours

1 42.4 29.9 45.7 41.5 43.7 43.9 46.1

2 39.0 24.7 47.8 26.4 46.2 42.1 48.6

4 68.4 72.7 59.6 66.4 56.0 63.6 72.8

6 28.6 46.8 47.1 50.7 41.4 41.8 56.7

9 46.8 49.6 45.6 80.5 44.7 40.0 50.0

12 70.8 72.9 73.5 89.3 69.6 76.2 72.1

25 90.4 93.8 84.3 88.9 88.3 95.2 90.8

26 42.2 65.0 43.6 15.6 58.4 66.8 55.4

Avg. 53.6 56.9 55.9 48.5 56.0 58.7 61.5

Table 3: Pre-trained models. We compare the F1-score of var-

ious models (ResNet50, InceptionNet (V3) and EfficientNet (B0))

trained on ImageNet data.

Arch. ResNet50 [41] EfficientNet [42] InceptioNetV3 [12]

F1-score 63.7 62.9 64.2

as on BP4D dataset, it shows the best average F1-score of

61.5. For both the datasets, our method is at least 2% better

than the state-of-the-art methods.

4.2. Ablation Study

We carried out ablation studies on the BP4D dataset in

order to evaluate different design choices and parameter set-

tings of the proposed model. In particular, the contribution

Figure 5: Effect of attention supervision. (a) Input images

(BP4D), combined attention maps of active action units (b) cre-

ated from landmarks, (c) generated by the network without atten-

tion supervision, and (d) generated by our method with attention

supervision.

of the attention module, the multi-task architecture, the rel-

evance of each cost term and the importance of the FAU

correlation module are evaluated.

In order to assess the effect of different components we

run the same experiments using variations of the proposed

network, with and without the key components.

Table 3 shows the performance of our method with

a few architectures for feature extraction. We tried our

method with ResNet50 [41], EfficientNet [42] and Incep-

tionNetV3 [12] architectures. In all the cases we take the

intermediate features from the last layer which has a feature

resolution of 12 × 12 or more. It is seen that InceptionV3

model gave the best performance. Inception architecture

extracts features by convolution with different kernel sizes,

thus looking at various resolutions. This helps is obtaining

the features of FAUs occurring at multiple resolutions.

We test the contributions of the important components

of our model, namely, pre-trained feature extractor (PT),

multi-task architecture (MT), attention branch (AT), atten-

tion branch with attention map supervision (ATsup), center

contrastive loss (CC) and transformer encoder (E). Table 4

shows the performance of various combinations of the com-

ponents in terms of mean F1-score over all the FAUs.

The first test case is the use of pre-trained models and

multi-task module. The baseline CNN consists of just the

InceptionV3 [12]. Use of InceptionV3 model pre-trained on

ImageNet (PT) improves the F1-score by 1.4%, whereas the

use of a multi-task architecture with features extracted from

pre-trained models (PT-MT), for each action unit improves
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Table 4: Ablation study on BP4D. In this experiment we compare models with different key components: Pretrained and multi-task

architecture, attention (with and without attention map supervision), center contrastive loss, and transformer Encoder.

Model Pre-trained Multi-task Attention Eatt loss ECC Encoder F1-score

baseline CNN - - - - - - 59.0

PT ✓ - - - - - 60.4

PT-MT ✓ ✓ - - - - 61.0

PT-MT-AT (ABN-MT [8]) ✓ ✓ ✓ - - - 62.3

PT-MT-ATsup ✓ ✓ ✓ ✓ - - 62.5

PT-MT-CC ✓ ✓ - - ✓ - 62.6

PT-MT-AT-CC ✓ ✓ ✓ - ✓ - 62.6

PT-MT-ATsup-CC ✓ ✓ ✓ ✓ ✓ - 62.8

PT-MT-E ✓ ✓ - - - ✓ 63.4

PT-MT-CC-E ✓ ✓ - - ✓ ✓ 63.8

PT-MT-AT-E ✓ ✓ ✓ - - ✓ 63.5

PT-MT-ATsup-E ✓ ✓ ✓ ✓ - ✓ 63.6

PT-MT-AT-CC-E ✓ ✓ ✓ - ✓ ✓ 64.0

PT-MT-ATsup-CC-E ✓ ✓ ✓ ✓ ✓ ✓ 64.2

Table 5: Tversky and cross entropy loss. In this experiment, we

explore the performance in combinations of Weighted Tversky Loss

(WTL) and Weighted Cross Entropy Loss (WCE) in both attention

branch and MLP.

Eatt
wtl Eatt

wce Einf
wtl Einf

wce F1-score

✓ - ✓ - 61.3

- ✓ - ✓ 63.5

✓ - ✓ ✓ 64.0

- ✓ ✓ ✓ 63.3

✓ ✓ ✓ - 61.4

✓ ✓ - ✓ 63.4

✓ ✓ ✓ ✓ 64.2

Table 6: Ablation study on transformer Encoder. In this ex-

periment, we explore the contributions of the components of the

transformer.

SHSA MHSA SHSA-FFN Trig.P.E

63.2 63.8 63.5 63.9

Encoder-1 Encoder-2 Encoder-4 Encoder-5

64.1 64.1 63.3 63.7

the score by 2% (59.0 to 61.0).

The second test case is attention learning with (ATsup)

and without (AT) attention map supervision. In the lat-

ter case, the cost function only includes two loss terms,

Eatt and Einfer. The supervision of attention comes with

a overhead of computing facial landmarks. An increase of

only 0.2% is caused with the attention supervision (PT-MT-

ATsup) and our model performs very well even without the

attention supervision. However, the attention branch with

supervision improves the F1-score by 1.5% (61.0 to 62.5).

The third test case includes the center contrastive loss,

Table 7: Comparison with other loss functions. We evaluate the

existing design choices of loss functions and class weights.

Design Center

loss [32]

Dice-

loss [18]

JAA

weights [18]

Ours

F1-score 63.6 64.0 63.3 64.2

ECC (PT-MT-ATsup-CC) and is seen that ECC improves

the performance by 0.3%. As a final part of the ablation

study, we studied the effect of transformer encoder. One

observation is that the transformer encoder helps to signifi-

cantly improve the results, even without the rest of the com-

ponents. Note that the inclusion of just the transformer en-

coder (PT-MT-E) to the multi-task pre-trained model (PT-

MT) improves the PT-MT-AT model by 2.4%. This shows

the effect of the FAU correlation module in our method. All

the components together yields the best results. All other

components, such as parameters settings, training and eval-

uation procedure, remain unchanged in this experiment.

Effect of loss functions. A few visual results on the effect

of attention map supervision is shown in Figure 5. All the

input images are from BP4D dataset. The first row shows

the input images of different subjects. A combined atten-

tion map created from ground truth labels are shown in the

second row for visual comparison with the predictions. The

combined attention map is obtained by taking pixel-wise

maxima over only the active AU maps. The predicted at-

tention maps (combined) without supervised training and

our proposed model are shown in the last two rows. In

all the cases, the attention maps of only the active action

units are taken for the purpose of visualization. The pro-

posed method generates significantly more localized atten-

tion maps, focusing on the relevant face regions. Note the

similarity to the combined attention map based on ground

truth labels.
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Table 8: Results on EmotioNet. This dataset of ∼1M Internet im-

ages contains large appearance variation and training label noise.

F1-score on the manually annotated validation set are reported.

Train Strategies Ours-

Imagenet

Ours-BP4D Ours-BP4D-

DISFA

F1-score 45.7 47.3 47.1

We compare performances of combinations of Tversky

loss and cross entropy loss for attention branch (Eatt) as

well as the classifier (Einfer). Table 5 shows the various

combinations of Tversky and cross-entropy losses. It is seen

that the losses of the FC layers from the encoder are con-

tributing more to the performance. Also, WCE loss con-

tributes more to the performance.

The other design choices on loss functions, such as cen-

ter contrastive loss (ECC), Weighted Tversky loss (Ewtl)

and class weights based on soft-balance strategy (wi) are

shown in Table 7. The design choices taken similar to these

by existing methods are Center loss [32], Dice loss [18] and

class weights based on number of true positives [18]. It is

seen that all three design choices leads to a better perfor-

mance when compared to the existing choices.

Components of transformer encoder. Table 4 shows the

performance of the FAU correlation module. The two main

components of the transformer encoder are multi-head self

attention and feed-forward networks. Relative Positional

Encoding is used to encode the input features before passing

it to the Encoder. We evaluated the contribution of different

Encoder components, see Table 6. SHSA, MHSA shows the

performances of single-head and multi-head self-attention

without the feed forward layers. SHSA-FFN shows the per-

formance of the transformer encoder with single-head self

attention and feed-forward networks. MHSA performs the

best among the three (63.8). Our method (MHSA-FFN)

achieves an F1-score of 64.2, showing that feed forward

networks as well as MHSA improve the performance. We

also evaluated Trigonometric Positional Embedding for en-

coding the features (63.9). In terms of encoder layers, we

found that a 3-layer model was performing best.

We also experimented with L2 and L1 losses, which re-

sulted in F1-scores of 63.1 and 64.0, respectively, on the

BP4D dataset.

4.3. Experiments on EmotioNet

In order to evaluate the model on facial expressions ‘in

the wild’, we ran experiments on the larger and less con-

strained EmotioNet 2018 Challenge dataset [36]. It con-

tains nearly one million Internet images with large varia-

tions in illumination, pose and occlusions. The training

data of 950K images was annotated automatically with a

reported accuracy of 80% [36]. The major challenge with

this dataset is the severity of the class imbalance and the

Figure 6: Qualitative results on EmotioNet. (a) Input images,

(b) combined attention map created from landmarks and (c) atten-

tion map (combined) predicted and (d) labels predicted.

variation in the head pose and expression. Another chal-

lenge in addition to label noise is that landmark detection

using the dlib library, which works reliably on the previous

datasets, fails on approximately 3% of the EmotioNet im-

ages. We trained the model using various pre-trained mod-

els for 50 epochs on the training set, using the same param-

eters as in the previous experiments on the BP4D dataset.

We evaluated on the 25K images in the validation set, for

which manually annotated labels are provided. Note that

the test data is not publicly available at the time of submis-

sion, so the results cannot directly be compared with pre-

viously reported results [38]. Table 8 shows the results of

our experiments. We tested with ImageNet feature extrac-

tor, BP4D and BP4D-DISFA pretrained models. Based on

the number of action units used, the number of branches in

our multi-task module changes. For each dataset, we se-

lect the branches to be trained based on the AUs present

in it. Some examples of the success cases on EmotioNet

dataset are shown in Figure 6. We assume that data aug-

mentation and face alignment can improve the performance

of our model.

5. Conclusion

This paper proposed a new framework for facial action

unit detection using an attention network and transformer-

based FAU correlation model. Experiments showed that the

combination of attention branch with supervision, using a

multi-task approach with center contrastive loss and a trans-

former encoder to learn correlations leads to state-of-the-art

results on the BP4D and DISFA datasets. Experiments on

the larger EmotioNet dataset of web images, showed com-

petitive results using the same architecture, and explored

model variations for additional improvements.

7687



References

[1] Rosenberg Ekman. “What the face reveals: Basic and

applied studies of spontaneous expression using the

Facial Action Coding System (FACS)”. In: (1997).

[2] Michael A Sayette et al. “A psychometric evalua-

tion of the facial action coding system for assessing

spontaneous expression”. In: Journal of Nonverbal

Behavior (2001).

[3] Guanbin Li et al. “Semantic Relationships Guided

Representation Learning for Facial Action Unit

Recognition”. In: AAAI. 2019.

[4] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang.

“Deep region and multi-label learning for facial ac-

tion unit detection”. In: CVPR. 2016, pp. 3391–3399.

[5] Mohammad H Mahoor et al. “A framework for au-

tomated measurement of the intensity of non-posed

facial action units”. In: CVPRW. 2009.

[6] Robert Walecki et al. “Deep structured learning for

facial action unit intensity estimation”. In: CVPR.

2017.

[7] Yong Zhang et al. “Joint Representation and Estima-

tor Learning for Facial Action Unit Intensity Estima-

tion”. In: CVPR. 2019.

[8] Hiroshi Fukui et al. “Attention branch network:

Learning of attention mechanism for visual explana-

tion”. In: CVPR. 2019.

[9] Xuesong Niu et al. “Local Relationship Learning

With Person-Specific Shape Regularization for Fa-

cial Action Unit Detection”. In: CVPR. 2019.

[10] Ashish Vaswani et al. “Attention is all you need”. In:

NeurIPS. 2017.

[11] Richard A. Caruana. “Multitask Learning: A

knowledge-based source of inductive bias”. In:

(1993).

[12] Christian Szegedy et al. “Rethinking the inception ar-

chitecture for computer vision”. In: CVPR. 2016.

[13] Xiaoya Li et al. “Dice Loss for Data-imbalanced

NLP Tasks”. In: ACL. 2020.

[14] Ying-Li Tian, Takeo Kanade, and Jeffrey F Colin.

“Recognizing action units for facial expression anal-

ysis”. In: Multimodal interface for human-machine

communication. 2002.

[15] Michel Valstar and Maja Pantic. “Fully automatic fa-

cial action unit detection and temporal analysis”. In:

CVPRW. 2006.

[16] Kaili Zhao et al. “Joint patch and multi-label learning

for facial action unit and holistic expression recog-

nition”. In: IEEE Transactions on Image Processing

25.8 (2016).

[17] Wei Li et al. “Eac-net: Deep nets with enhancing and

cropping for facial action unit detection”. In: T-PAMI

(2018).

[18] Zhiwen Shao et al. “Deep adaptive attention for joint

facial action unit detection and face alignment”. In:

ECCV. 2018.

[19] Zhiwen Shao et al. “Facial action unit detection using

attention and relation learning”. In: Transactions on

Affective Computing (2019).

[20] Ciprian Corneanu, Meysam Madadi, and Sergio Es-

calera. “Deep structure inference network for facial

action unit recognition”. In: ECCV. 2018.

[21] Junran Peng et al. “Large-Scale Object Detection in

the Wild from Imbalanced Multi-Labels”. In: CVPR.

2020.

[22] Zhilei Liu et al. “Relation modeling with graph con-

volutional networks for facial action unit detection”.

In: ICMM. 2020.

[23] Yuechuan Sun and Jun Yu. “Deep Facial Attribute

Detection in the Wild: From General to Specific”. In:

BMVC. 2018.

[24] Ozan Sener and Vladlen Koltun. “Multi-task learning

as multi-objective optimization”. In: NeurIPS. 2018.

[25] Yuchun Fang et al. “Dynamic Multi-Task Learn-

ing with Convolutional Neural Network”. In: IJCAI.

2017.

[26] Sara Atito Aly and Berrin Yanikoglu. “Multi-Label

Networks for Face Attributes Classification”. In:

ICMEW. 2018.

[27] Chu Wang et al. “Multi-Task Learning of Emotion

Recognition and Facial Action Unit Detection with

Adaptively Weights Sharing Network”. In: ICIP.

2019.

[28] Terrance Devries, Kumar Biswaranjan, and Graham

W Taylor. “Multi-task learning of facial landmarks

and expression”. In: Canadian Conference on Com-

puter and Robot Vision. 2014.

[29] Yuqian Zhou, Jimin Pi, and Bertram E Shi. “Pose-

independent facial action unit intensity regression

based on multi-task deep transfer learning”. In: FG.

2017.

[30] Wei Li et al. “EAC-Net: A region-based deep en-

hancing and cropping approach for facial action unit

detection”. In: FG. 2017.

[31] Davis E King. “Dlib-ml: A machine learning

toolkit”. In: JMLR (2009).

[32] Yandong Wen et al. “A discriminative feature learn-

ing approach for deep face recognition”. In: ECCV.

2016.

7688



[33] Xing Zhang et al. “BP4D-spontaneous: a high-

resolution spontaneous 3d dynamic facial expression

database”. In: Image and Vision Computing 32.10

(2014).

[34] Michel F Valstar et al. “Fera 2015-second facial ex-

pression recognition and analysis challenge”. In: FG.

2015.

[35] S Mohammad Mavadati et al. “DISFA: A sponta-

neous facial action intensity database”. In: Transac-

tions on Affective Computing (2013).

[36] C. F. Benitez-Quiroz, Ra. Srinivasan, and A. M. Mar-

tinez. “EmotioNet: An accurate, real-time algorithm

for the automatic annotation of a million facial ex-

pressions in the wild”. In: CVPR. 2016, pp. 5562–

5570.

[37] C Fabian Benitez-Quiroz et al. “Emotionet chal-

lenge: Recognition of facial expressions of emotion

in the wild”. In: arXiv preprint arXiv:1703.01210

(2017).

[38] A. M. Martinez et al. EmotioNet Challenge. http:

/ / cbcsl . ece . ohio - state . edu /

EmotionNetChallenge / index . html. (ac-

cessed: March 1, 2020).

[39] Xavier Glorot and Yoshua Bengio. “Understanding

the difficulty of training deep feedforward neural net-

works”. In: AISTATS. 2010.

[40] Jia Deng et al. “Imagenet: A large-scale hierarchical

image database”. In: CVPR. 2009.

[41] Kaiming He et al. “Deep residual learning for image

recognition”. In: CVPR. 2016.

[42] Mingxing Tan and Quoc Le. “EfficientNet: Rethink-

ing Model Scaling for Convolutional Neural Net-

works”. In: ICML. 2019.

7689


