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Abstract

Backpropagation image saliency aims at explaining

model predictions by estimating model-centric impor-

tance of individual pixels in the input. However, class-

insensitivity of the earlier layers in a network only allows

saliency computation with low resolution activation maps of

the deeper layers, resulting in compromised image saliency.

Remedifying this can lead to sanity failures. We propose

CAMERAS, a technique to compute high-fidelity backprop-

agation saliency maps without requiring any external priors

and preserving the map sanity. Our method systematically

performs multi-scale accumulation and fusion of the acti-

vation maps and backpropagated gradients to compute pre-

cise saliency maps. From accurate image saliency to artic-

ulation of relative importance of input features for different

models, and precise discrimination between model percep-

tion of visually similar objects, our high-resolution map-

ping offers multiple novel insights into the black-box deep

visual models, which are presented in the paper. We also

demonstrate the utility of our saliency maps in adversarial

setup by drastically reducing the norm of attack signals by

focusing them on the precise regions identified by our maps.

Our method also inspires new evaluation metrics and a san-

ity check for this developing research direction.

1. Introduction

Deep visual models are fast surpassing human-level per-

formance for various vision tasks, including image classifi-

cation [15], [28], object detection [22], [23], and semantic

segmentation [17], [5]. However, they hardly offer any ex-

planation of their decisions, and are rightfully considered

black-boxes. This is problematic for their practical deploy-

ment, especially in high-risk emerging applications where

transparency is vital, e.g. in healthcare, self-driving vehicles

and smart surveillance [21]. The problem is exacerbated

by the push of ‘right to explanation’ by algorithmic regula-

tory authorities and their objection to black-box models in

safety-critical applications [1].

Addressing this issue for deep visual models, tech-

niques are emerging to offer input-agnostic [11] and input-

specific [8], [21], [25] explanation of model predictions.

This work subscribes to the latter, where the ultimate goal

is to identify the contribution of each pixel in an input to

the output prediction. The popular techniques to achieve

this adopt one of two strategies. The first, systematically

modifies the input image pixels (i.e. image regions) and an-

alyzes the effects of those perturbations on the output pre-

dictions [8], [9], [20], [33]. The underlying search nature

of this perturbation-based formulation offers high-fidelity

model-centric importance attribution to the input pixels, al-

beit at a high computational cost. Hence, tractability is

achieved under heuristics or external priors over the com-

puted importance maps. This is undesired because the

eventual maps may be influenced by these external factors,

which compromises the model-fidelity of the maps.

The second strategy relies on the activation maps of the

internal layers and gradients of the models. Commonly

known as backpropagation saliency methods [25], [21],

[27], [30], [33], [34] approaches adopting this strategy are

computationally efficient, thereby offering the possibility

of avoiding unnecessary heuristics or priors. However, for

the visual neural models, the layers closer to the input are

class-insensitive [21]. This limits the ammunition of back-

propagation saliency methods to the deeper layers of the

networks, where the size of activation maps is very small,

e.g. 10−3× of the input size. Projecting the saliency com-

puted with those maps onto the original image grid results

in intrinsically low-resolution image saliency. On the other

hand, using heuristics or priors to sharpen those projections

inadvertently compromise the sanity of the maps [2]. Not to

mention, employing activation signals of multiple internal

layers for resolution enhancement takes us back to a combi-

natorial search problem of choosing the best layers, under a

pre-specified heuristic.

Addressing the above issues, we introduce CAMERAS

- an Enhanced Resolution And Sanity preserving Class

Activation Mapping for backpropagation image saliency.
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Figure 1. (Top) CAMERAS meticulously fuses activation maps and backpropagated gradients of a layer for multi-scale copies of an input.

After passing the resulting saliency map through ReLU and normalising it (f ), the map is embedded on the original image. (Bottom) By

avoiding influence of external factors, CAMERAS easily passes the sanity checks for image saliency. Shown are the results of cascading

randomization [2] on ResNet. Progressive randomising of layer weights randomises the output right from the logits layer which identifies

preservation of sanity. Thus, the CAMERAS maps do not sacrifice their sanity for high-resolution, achieving the best of both worlds.

The proposed technique (Fig. 1-top) systematically accu-

mulates and fuses multi-scale activation maps and back-

propagated gradients of a model to construct precise

saliency maps. By avoiding the influence of any exter-

nal factor, e.g. heuristics, priors, thresholds, the saliency

maps of CAMERAS easily pass the sanity checks for im-

age saliency (Fig. 1-bottom). Moreover, the technique al-

lows saliency estimation with a single network layer, not

requiring any layer search for map resolution enhancement.

Contributions of the paper are summarised below:

• We propose CAMERAS for precise backpropagation

image saliency while preserving the sanity. Our

method outperforms the state-of-the-art saliency meth-

ods by a large margin, achieving up to 27.5% error re-

duction for the popular pointing game metric [34].

• Exploring the newly found precision saliency map-

ping with CAMERAS, we visualise differences in the

semantic understanding of different architectures that

govern their performance. We also highlight model-

centric discrimination of input features for visually

similar objects in never-before-seen details.

• Considering the equivalent treatment of deep mod-

els as differentiable programs by the fast-developing

parallel field of adversarial learning, we enhance

the widely considered strongest adversarial attack

PGD [18] with our saliency technique - drastically im-

proving the efficacy of the attack.

• The ability of precise saliency computation allowed by

CAMERAS calls for new quantitative metrics and san-

ity checks. We contribute two new evaluation metrics

and a sanity check to advance this research direction.

2. Related work

The literature has seen multiple techniques that perturb

input pixels and measure its effects on the model outputs

to identify salient regions in input images [9], [8], [20].

Perturbing every possible combination of pixels has an ex-

ponential complexity. Therefore, such techniques often

rely on fixed subsets of pixel combinations for tractabil-

ity. Moreover, high non-linearity of deep models further

restricts the saliency map to be reliable under fixed de-

vised perturbation subsets. RISE [20] and Occlusion [33]

generate attribution maps by weighing perturbation masks

corresponding to the changes in the output scores. Other

techniques, such as Meaningful perturbations [9], Extremal

perturbations [8], Real-time saliency [6] and [24] cast the

problem into an optimization objective. Though effective,

these methods face a common issue of allowing a channel

for external influence on the resulting maps in the form of

e.g. heuristics, external constraints, priors or threshold etc.
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Backpropagation saliency methods [27], [25], [33] aim

at extracting information from within the model to identify

model-centric salient regions in an input image. Relying

on layer activations and model gradients, these methods are

also known to be computationally more effective [36], [12].

Simoyan et al. [27] first used model gradients as a possi-

ble explanation of output predictions. Different adaptations

have since been proposed to mitigate the inherent noise sen-

sitivity of model gradients. Guided back prop [30] and

DeConvNet [33] alter the backpropagation rules of model

ReLU layers, while SmoothGrad [29] computes the aver-

age gradients over samples in the close vicinity of the origi-

nal one. Similarly, DeepLIFT [26], LRP [4] and Excitation

Backprop [34] recast the backpropagation rules such that

the sum of attribution signal becomes unity. Sundararajan et

al. [31] interpolated multiple attribution maps to reduce the

signal noise. There are also instances of exploring saliency

computation using various layers of deep models by merg-

ing the layer activation maps with the gradient information.

Such methods include CAM [35], its generalized adaption

GradCAM [25], linear approximation [14] and NormGrad

[21]. For such methods, it is found that the layers closer to

output generate better saliency maps because those layers

are more sensitive to the high level class features.

Beyond the visual quality of saliency maps, a few works

have also critically explored the reliability of these maps for

different methods [19], [13]. Adebayo et al. [2] first intro-

duced sanity checks for image saliency methods, highlight-

ing that visual appeal of the maps alone can be misleading.

They evaluated sensitivity of the results of popular tech-

niques to model parameters. Surprisingly, ‘model-centric

saliency maps’ computed by multiple methods were found

insensitive to the model - failing the sanity check. The tech-

niques avoiding external influences on the map, e.g. Grad-

CAM [25] easily passed the test. This finding also resonated

with other subsequent sanity checks [21].

Evaluation of image saliency methods is a challenging

problem because deep model representation is not always

aligned with the human visual system [32]. Hence, indi-

rect evaluation of image saliency is often done by analysing

its weak localization performance. For instance, Pointing

game score [34] is a commonly used metric for quantitative

evaluation of image saliency results [8], [21]. It measures

the correlation between the maximal point in a saliency map

with the semantic labels of the pixel. Its later adaptation [9]

measures the overlap in the bounding boxes from saliency

maps and the ground truth. Petsiuk et al. [20] proposed

insertion-deletion metrics to measure the impact of pertur-

bations over image patches in the order of importance to

quantify saliency accuracy. Nevertheless, these metrics are

meant to be weak indicators of saliency maps due to the im-

precise nature of the maps computed by the earlier methods,

which is no longer the case for CAMERAS.

3. Proposed Approach

Before discussing the details of our technique, we first

provide a closer look at the broader paradigm of backprop-

agation saliency computation. We use Grad-CAM [25] - a

popular technique - as a test case to motivate the proposed

method. The text below highlights only the relevant aspects

of the test case for intuition.

3.1. Saliency computation with backpropagation

Let I ∈ R
c×h×w be an input image with ‘c’ channels.

A deep visual classifier K(I) maps I to a prediction vector

yℓ ∈ R
L, where ‘L’ is the total number of classes. Here, ‘ℓ’

indicates the predicted label of I under the premise that the

ℓth coefficient of y has the largest value. It is well-known

that a neural network is a hierarchical composition of rep-

resentation layers. Rebuffi et al. [21] demonstrated that

among these layers, those closer to the input learn class-

insensitive features. Thus, the deeper layers hold more

promise for computing image saliency for a model. Grad-

CAM [25] takes a pragmatic approach to single out the last

convolutional layer to estimate the saliency map.

Let us denote the kth activation map of the last convo-

lutional layer of a network as Ak(I) ∈ R
m×n. Focusing

on Grad-CAM, the technique first computes an intermedi-

ate representation S(I) ∈ R
m×n, such that S(i,j)(I) =∑

k wkA
(i,j)
k (I), where wk is given by Eq. (1). Henceforth,

we ignore the argument (I) for clarity, unless required.

wk =
1

(m+ n)

m∑

i=1

n∑

j=1

(
∂yℓ

∂A
(i,j)
k

)
. (1)

In the above expressions, X(i,j) is the (i, j) coefficient of

X . The computed S is later extended to the final saliency

map Ψ ∈ R
h×w, as f(S) : S → Ψ, where the function

f(.) must account for interpolating an m × n matrix for a

h× w grid (along other complementary transformations).

3.2. Sub­optimality of backpropagation methods

Observing Grad-CAM (and similar methods) from the

above perspective reveals two performance drain-holes in

backpropagation image saliency computations.

(a) Over-simplification of the weights wk: Since Ak is an

activation map, individual coefficients of this matrix should

have different importance for the final prediction. Indeed,

this is also reflected in the values of individual backpropa-

gated gradients for these coefficients - computed with the

expression in the parenthesis in Eq. (1). Since the ul-

timate objective of image saliency is to compute impor-

tance of individual pixels, loosing information with over-

simplification of wk is not conducive. Grad-CAM takes an

extreme approach of representing wk with a scalar value.

The main reason for that is, it is actually detrimental to

plainly replace wk with an encoding W k ∈ R
m×n such that
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S =
∑

k W k ⊙Ak. Here, ⊙ is the point-wise product and

W k encodes individual backpropagated gradients. Gradi-

ents are extremely sensitive to signal variations. Hence,

even a small activation change can result in (a mislead-

ing) exaggerated weight alteration for the activation map,

resulting in incorrect image saliency. Grad-CAM is able to

mitigate this problem by averaging the gradients in Eq. (1).

However, this remedy comes at the cost of loosing the fine-

grained information about the gradients.

Though centered around Grad-CAM, the above discus-

sion points to a simple, yet powerful generic notion for ef-

fective backpropagation saliency computation. That is, to

better leverage the backpropagated gradients, the differen-

tial information of the gradients (in W k) is still at our dis-

posal to exploit. Fusing activation maps with this informa-

tion promises more precise image saliency.

(b) Large interpolated segments: Typically, the activation

maps of the deeper convolutional layer in visual classifiers

are (spatially) much smaller than the input images. For in-

stance, in ResNet [10], the 7 × 7 maps of the last convo-

lutional layer are 1024 times smaller than the 224 × 224
inputs. Thus, for m ≪ h and n ≪ w, a saliency map

Ψ computed with the class sensitive deeper layers must be

mainly composed of interpolated segments. To contextual-

ize, in the above ResNet example, 99.9% of the values are

generated by the function f(S) : S → Ψ in Grad-CAM.

This automatically renders Ψ a low-resolution map, leaving

alone the issue of correctness of the importance assigned

to the individual pixels in the eventual saliency map. The

low resolution of saliency maps has also spawned methods

to improve f(.) [2], [25]. However, those techniques in-

evitably rely on external information (including heuristics)

for the transform S → Ψ due to unavailability of further

useful information from the model itself. This leads to san-

ity check failures because the operands are no longer purely

grounded in the original model.

3.3. The room for improvement

From the above discussion, it is clear that whereas use-

ful techniques exist for backpropagation image saliency, the

paradigm is yet to fully harness the backpropagated gradi-

ents and resolution enhancement of the activation maps for

precise image saliency. Both limitations are rooted in the

very nature of the underlying signals. Leveraging these sig-

nals from multiple layers can potentially help in partially

overcoming the issues. However, this possibility is also

restricted by the class-insensitivity of the earlier network

layers and combinatorial nature of the problem. Moreover,

there is evidence that multi-layer fusion can often adversely

affect image saliency [21]. Hence, a technique specifically

targeting the class-sensitive last layer, while allowing min-

imal loss of differential information across backpropagated

gradients and improving activation map upsampling, holds

significant promises for better saliency computation.

3.4. CAMERAS

Building directly on the insights in § 3.3, we devise

CAMERAS - an enhanced resolution and sanity preserv-

ing class activation mapping scheme. The approach is il-

lustrated in Fig. (1-top) and explained below in a top-down

manner, keeping the flow of the above discussion.

Our method eventually computes a saliency map as:

Ψ = f

(
ReLU

(∑

k

∗

Wk ⊙
∗

Ak

)
)
, ∀k, (2)

where
∗

Wk ∈ R
h×w encodes the differential information

of the backpropagated gradients for the kth activation map

in a network layer,
∗

Ak ∈ R
h×w is an enhanced resolution

encoding for the activation map itself, and f(.) performs an

element-wise normalisation in the range [0, 1]. The
∗

Wk and
∗

Ak are defined as follows

∗

Wk = E
t

[
ϕt

(
W k(ϕt(I, ζt)), ζo

)]
, (3)

∗

Ak = E
t

[
ϕt

(
Ak(ϕt(I, ζt)), ζo

)]
,

where ϕt(X, ζt) is the tth up-sampling applied to resize X

to the dimensions ζt - provided as a tuple. We fix ζo =
(h,w) for I ∈ R

c×h×w. This will be explained shortly. We

compute the (i, j) coefficient of W k as

(
∂yℓ

∂A
(i,j)
k

)
. The

overall process of generating an image saliency map with

CAMERAS is summarized as Algorithm 1.

The algorithm computes the desired saliency map Ψ by

an iterative multi-scale accumulation of activation maps and

gradients for the κth layer of the model. In the tth iteration,

the input image I gets up-sampled to ζt based on the max-

imum desired size ζm and the number of steps N allowed

to reach that size (lines 4,5). Provided that the input up-

scaling does not alter the model prediction, the activation

maps and backpropagated gradients to the κth layer are also

up-sampled and stored. We show this on lines 6-10 of the al-

gorithm. Notice that, we use calligraphic symbols to distin-

guish 3D tensors from matrices (e.g. A instead of A for ac-

tivations) in the algorithm for clarity. The newly introduced

symbol∇J (κ, ℓ) on line 9 denotes the collective backprop-

agated gradients to the κth layer w.r.t. the predicted label

ℓ. Also notice, on lines 8, 9, up-sampling of the activa-

tion maps and gradients are performed to match the original

image size ζo. This is because, the same accumulated sig-

nals are eventually transformed into the saliency map of the

original image. We iteratively accumulate the up-sampled

activation maps and gradients, and finally compute their av-

erages on lines 12 and 13. On line 14, we compute the

saliency map by solving Eq. (2). Here, matrix notation is

intentionally used to match the original equation.
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Algorithm 1 CAMERAS algorithm

Input: Classifier K, image I ∈ R
c×h×w, maximum size

ζm, steps N , interpolation function ϕ(.), layer κ
Output: Image saliency map Ψ ∈ R

h×w

1: Initialize Ao, Wo to 0 tensors, ζo = (h,w) and t =
tm = 0, ℓ = K(I)

2: while t ≤ N do

3: t← t+ 1
4: ζt ← ζt−1 + ⌊

ζm
N
⌋(t− 1)

5: It ← ϕt(I, ζt)
6: if K(It)→ ℓ then

7: tm ← tm + 1
8: At ← At−1 + ϕt

(
A(It, κ), ζo

)

9: Wt ←Wt−1 + ϕt

(
∇J (κ, ℓ), ζo

)

10: end if

11: end while

12:
∗

A ← At/tm

13:
∗

W ←Wt/tm

14: Ψ = f

(
ReLU(

∑
k

∗

Wk ⊙
∗

Ak)

)
, ∀k

15: return

In Algorithm 1, CAMERAS is shown to expect four

input parameters, along with the classifier and the image.

We discuss the choice of ϕ(.) in § 3.4.1 where we even-

tually propose to keep this function fixed. The algorithm

optionally allows κ for computing saliency maps using lay-

ers other than the last convolutional layer of the model. For

all the experiments presented in the main paper, we keep κ
fixed to the last convolutional layer. This is due to the well-

known class-sensitivity of the deeper layers of CNNs [21].

Essentially, the only choice to be made is for the values of

parameters ζm and N , which are related as ζm = cNζo,

where c is the step size. Trading-off performance with ef-

ficiency, the choice of these parameters is mainly governed

by the available computational resources. For larger ζm and

N values, performance of CAMERAS roughly improves

monotonically - generally saturating at ζm ≈ (1K, 1K) for

ζo = (224, 224) for the popular ImageNet models. For

this ζm range, the performance is largely insensitive for

N ∈ [5, 10]. We give further analysis of parameter values in

the supplementary material. In the presented experiments,

we empirically choose ζm = (1K, 1K) and N = 7.

3.4.1 Sanity preservation and strength

In CAMERAS, we do not impose any prior over the

saliency map, nor we use any heuristic to guide its com-

putation process. The technique also preserves model fi-

delity by requiring no structural (or any other) alteration

to the original model. It mainly relies on primitive arith-

metic operations over the model signals. These attributes

also characterize those other methods that pass the popular

sanity checks for backpropagation saliency [2], [21], albeit

resulting in low-resolution saliency maps. In CAMERAS,

the only source of any ‘potential’ external influence on the

resulting map is through the interpolation function ϕ(.). We

conjecture that as long as ϕ(.) is a first-order function de-

fined over the signals originating in the model itself, CAM-

ERAS maps will always preserve their sanity because the

maps would fully originate in the model. To preclude any

unintentional prior over the maps, our formulation dictates

the use of simpler functions as ϕ(.). Hence, we choose to

fix bi-linear interpolation as ϕ(.).

To analyse the reasons of extraordinary performance of

CAMERAS (see § 4), we provide a brief theoretical per-

spective on the accumulation of multi-scale interpolated

signals exploited by our method, using the results below.

Lemma 3.1: For
∗

X ∈ R
h×w and its interpolated approx-

imation X̃ = ϕ(X) s.t. X ∈ R
m×n and

∗

X 6= X̃ ,

||
∗

X − X̃|| = f ((h−m), (w − n)) for m < h and n < w,

where ϕ(.) denotes bi-linear interpolation and f(.) is a

monotonic function over its arguments.

Lemma 3.2: For X̃z = ϕ(Xz), where Xz ∈ R
m×n and

X̃p = ϕ(Xp), where Xp ∈ R
p×q s.t. p < m and n < q,

||
∗

X − X̃z|| − ||
∗

X − X̃p|| ≤ 0.

Corollary: E
z
[||

∗

X − X̃z||] ≤ ||
∗

X − X̃p||, ∀X̃z ∪ X̃p.

The lemma 3.1 states that bi-linear interpolation tends to be

more accurate when the difference in the dimensions of the

source signal and the target grid is smaller. The lemma 3.2

can also be easily verified as X̃z is at least as accurate a

projection of
∗

X as X̃p, according to lemma 3.1. This nec-

essarily makes its error equal to or smaller than the error

of X̃p. In the light of lemma 3.2, the corollary affirms that

the expected error of a set of interpolated signals is upper-

bounded by the error of the least accurate signal in the set.

The above analysis highlights an important aspect. The

CAMERAS results will necessarily be as accurate as op-

erating our algorithm on the original input size, and will

improve monotonically thereof with the up-sampled inputs.

This is because the activations and gradients of the up-

sampled inputs would map more accurately on the original

image grid, as per the above results. This is significant be-

cause it allows CAMERAS to use the differential informa-

tion in the backpropagated gradient maps while accounting

for the noise-sensitivity of the gradients by averaging out

these signals across multiple scales. This is the key strength

of the proposed technique.

4. Evaluation

We perform a thorough qualitative and quantitative eval-

uation of CAMERAS on large-scale models and compare

the performance with the state-of-the-art methods.
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Figure 2. Visual comparison of saliency maps with the state-of-the-art methods. Representative maps are shown for random class images

for ResNet-50, DenseNet-121 and Inception-v3. Class labels are provided at the top. Results of proposed CAMERAS are in yellow box.

4.1. Qualitative results
In Fig. 2, we qualitatively compare the results of our

technique with the existing saliency methods for ImageNet

models of ResNet, DenseNet and Inception. Representa-

tive maps of randomly chosen images are provided. See

the supplementary material for more visualisations. The

high quality of CAMERAS maps is apparent in the fig-

ure. A quick inspection reveals that our technique main-

tains its performance across a variety of scenarios, includ-

ing clear objects (Loudspeaker, Mountain tent), occluded

objects (Bulbul), and multiples instances of objects (Accor-

dion, Basket). Observing carefully, CAMERAS maps pro-

vide precise maps even for small and relatively complex ge-

ometric shapes, e.g. Volleyball, Spotlight, Loafer, Hognose

snake. Interestingly, our method is able to attach appropri-

ate importance even to the reflection of the Hognose snake.

Adoption of saliency maps to complex geometric shapes is

a direct consequence of enabling precise saliency mapping

while sealing-off any external influence on the maps. CAM-

ERAS is able to maintain its characteristic precision across

different models and images. These are highly promising

results for explainability of modern deep visual classifiers.

4.2. Quantitative results
A quantum leap in performance with CAMERAS is also

observed in our quantitative results. Saliency maps are typ-

ically evaluated by measuring their correlation with the se-

mantic annotations of the image. Pointing game [34] is a

popular metric for that purpose, which considers the com-

puted saliency for every object class in the image. If the

maximal point in the saliency map is contained within the

object, it is considered a hit; otherwise, a miss. The perfor-

mance is measured as the percentage of successful hits. We

refer to [34] for more details on the metric. Table 1 bench-

marks the performance of CAMERAS for pointing game

on 4, 952 images of PASCAL VOC test set [7], and ∼ 50K

images of COCO 2014 validation set [16]. Our technique

consistently shows superior performance, achieving up to

27.5% error reduction. The gain is higher for ResNet as

compared to VGG due the better performance of the origi-

nal ResNet that permits better saliency.
The pointing game generally disregards precision of the

saliency maps by focusing only on the maximal points. Ar-

guably, crudeness of the saliency maps computed by the ear-

lier methods influenced this evaluation metric. The possibil-

ity of precise saliency computation (by CAMERAS) calls

for new metrics that account for the finer details of saliency

maps. We propose ‘positive map density’ and ‘negative

map density’ as two suitable metrics, respectively defined

as: ρ+map = P (K(I ⊙Ψ))/
∑

i

∑
j Ψ

(i,j) × (h × w), and

ρ−map = P (K(I⊙1−Ψ))/
∑

i

∑
j (1−Ψ

(i,j))× (h×w).
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VOC07 Test (All/Diff) COCO14 Val (All/Diff)

Method VGG16 ResNet50 VGG16 ResNet50

Center [8] 69.6/42.4 69.6/42.4 27.8/19.5 27.8/19.5

Gradient [27] 76.3/56.9 72.3/56.8 37.7/31.4 35.0/29.4

DeConv. [33] 67.5/44.2 68.6/44.7 30.7/23.0 30.0/21.9

Guid [30] 75.9/53.0 77.2/59.4 39.1/31.4 42.1/35.3

MWP [34] 77.1/56.6 84.4/70.8 39.8/32.8 49.6/43.9

cMWP [34] 79.9/66.5 90.7/82.1 49.7/44.3 58.5/53.6

RISE∗ [20] 86.9/75.1 86.4/78.8 50.8/45.3 54.7/50.0

GradCAM [25] 86.6/74.0 90.4/82.3 54.2/49.0 57.3/52.3

Extremal∗ [8] 88.0/76.1 88.9/78.7 51.5/45.9 56.5/51.5

NormGrad [21] 81.9/64.8 84.6/72.2 - -

CAMERAS 86.2/76.2 94.2/88.8 55.4/50.7 69.9/66.4

Table 1. Mean accuracy on pointing game over the full data (All)

splits and subset of difficult images (Diff ), as specified in [34]. The

results of other schemes are generated with TorchRay package [8],

and ‘*’ denotes an average over 3 runs for improved performance.

Positive map density (ρ+map ↑ ) Negative map density (ρ−map ↓)

Model NGrad GCAM Ours NGrad GCAM Ours

ResNet 1.67 2.33 3.20 0.96 0.86 0.81

DenseNet 1.76 2.35 3.23 1.02 0.94 0.83

Inception 2.19 2.18 3.15 0.95 1.04 0.93

Table 2. The proposed metric scores on ImageNet validation set

for the saliency maps of Norm-Grad (NGrad) [21], Grad-CAM

(GCAM) [25], and our method.

Here, P (.) is the predicted probability of the actual label

of the object. Other notations follow the conventions from

above. For an estimated saliency map, the value of ρ+map im-

proves if higher importance is attached to a smaller number

of pixels that retain higher confidence of the model on the

original label. In the extreme case of all the pixels deemed

maximally important (saliency value 1), the score depicts

the model’s confidence on the object label. On the other

hand, the value of ρ−map decreases if lesser importance is at-

tached by the saliency method to more pixels that do not

influence the prediction confidence on the original label.

Lower value of this metric is more desired.

Combined ρ+map and ρ−map provide a comprehensive quan-

tification of the quality of the saliency map. We provide

results of our technique, Grad-CAM [25] and the recent

Norm-Grad [21] on our metrics in Table 2. Due to page

limits, we provide further discussion on the proposed met-

rics in the supplementary material.

5. CAMERAS for analysis

The precise CAMERAS results allow model analysis

with backpropagation saliency in unprecedented details.

Below, we present a few interesting examples.

The label attribution problem: It is known that deep

visual classifiers sometimes learn incorrect association of

labels with the objects in input images [9], [8]. For in-

stance, for the image of Chocolate Sauce in Fig. 3, Incep-

tion is found to associate the said label to spoon instead of

the sauce in the cup [9], [8]. This revelation was possi-

ble only through the input perturbation-based methods for

attribution due to their precise nature, however, only af-

ter fine-tuning a list of parameters for the specific images.

Figure 3. Proposed CAMERAS allows verification of label attribu-

tion even more precisely than the input perturbation-based meth-

ods. Meaningful [9] and Extremal [8] perturbation methods re-

quire image-specific fine tuning of parameters. The latter is con-

fined to 8% and 9% of the image area to achieve the results.

Figure 4. Precise saliency of CAMERAS reveals similarity in the

level of attention on fine-grained features causes similarity in the

prediction confidence (given as percentages) of different models.

CAMERAS is the first backpropagation saliency method

to achieve this result, without requiring any image-specific

fine tuning. Our method verifies the original results of the

perturbation-based methods with an even better precision.

Prediction confidence: In Fig. 4, CAMERAS results re-

veal that prediction confidence on individual images is often

strongly influenced by a model’s attention on fine-grained

features. Different visual models may pay similar attention

to the same features to achieve similar confidence scores.

Discrimination of similar objects: Precise saliency map-

ping of CAMERAS also reveals clear differences of the

features learned by the models for visually similar objects.

In Fig. 5, we show the saliency maps for multiple exam-

ples of ‘Chain-link Fence’ and ‘Swing’ for two high per-

forming models. Notice how the models pay high atten-

tion to the individual chain knots (left) as compared to the

larger chain structures (right) to distinguish the two classes.

These results also reinforce the importance of ‘not enforc-

ing’ any priors on the map (e.g. smoothness [8]). The shown

results provide the first instance of clear saliency differ-

ences between similar object features under backpropaga-

tion saliency mapping without external priors.
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Figure 5. CAMERAS saliency maps reveal the differences of features learned by models to distinguish visually similar objects.

6. Adversarial Attack Enhancement

Similar to the backpropagation saliency methods, most

of the adversarial attacks on deep visual classifiers [3] treat

the models as differentiable programs. Using model gra-

dients, they engineer additive noise (i.e. perturbations) that

alter model predictions on an input. To avoid attack sus-

picion, the perturbations must be kept norm-bounded. Pro-

jected Gradient Descent (PGD) [18] is considered one of the

strongest attacks [3] that computes holistic perturbations to

fool the models. Using PGD as an example, we show that

precision saliency of CAMERAS can significantly enhance

these attacks by confining the perturbations to the regions

considered more salient by our method, see Fig. 6.

We iteratively solve for the following using the PGD

min
p

(J (Ip, ℓll) + β ||p⊙ (1−Ψ)||2) , (4)

where Ip is the perturbed image, J (.) is the cross en-

tropy loss, ℓll is the least likely label of the clean image,

p is the perturbation, and β = 50 is an empirically cho-

sen scaling factor. In (4), we allow the perturbation sig-

nal to grow freely for our salient regions while restricting it

in the other regions. By focusing only on the most impor-

tant regions, we are able to drastically reduce the required

perturbation norm. Maintaining 99.99% fooling confidence

for ResNet-50 on all images of ImageNet validation set, we

successfully reduced the PGD perturbation norm by 56.5%

on average with our CAMERAS enhancement. See the sup-

plementary material for more details. Other adversarial at-

tacks can also be enhanced similarly with CAMERAS.

6.1. Sanity test with adversarial perturbation

Gradient-based adversarial attacks algorithmically com-

pute minimal perturbations to image pixels to maximally

change the model prediction. This objective coincides with

the objective of image saliency computation, thereby pro-

viding a natural sanity check for the saliency methods. That

is, the effects of corruption with an adversarial perturbation

to image pixels should correspond to the importance of the

pixels identified by the saliency method. Leveraging this

fact, we develop a sanity check for saliency methods that

operates on pixel-by-pixel basis, which is more suited for

precise image saliency. We provide details of the test in the

supplementary material due to page limits.

Figure 6. Enhancement of PGD with CAMERAS saliency. Con-

fining the perturbation to high importance regions discovered by

CAMERAS drastically reduces visual perceptibility of the attack

while maintaining the fooling ratio and confidence on the wrong

labels. For clarity, ℓ∞-norm of 12/255 is chosen for perturbation.

7. Conclusion

We introduced CAMERAS to compute precise saliency

maps using the gradient backpropagation strategy. Our

technique is shown to preserve the sanity of the computed

saliency maps by avoiding external influence and priors

over the maps. High precision of our saliency maps allow

better explanation of deep visual model predictions. We

also demonstrated application of CAMERAS to enhance

adversarial attacks, and used this to introduce a new san-

ity check for high-fidelity saliency methods.
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