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Abstract

MeanShift is a popular mode-seeking clustering algo-

rithm used in a wide range of applications in machine learn-

ing. However, it is known to be prohibitively slow, with

quadratic runtime per iteration. We propose MeanShift++,

an extremely fast mode-seeking algorithm based on Mean-

Shift that uses a grid-based approach to speed up the mean

shift step, replacing the computationally expensive neigh-

bors search with a density-weighted mean of adjacent grid

cells. In addition, we show that this grid-based technique

for density estimation comes with theoretical guarantees.

The runtime is linear in the number of points and exponen-

tial in dimension, which makes MeanShift++ ideal on low-

dimensional applications such as image segmentation and

object tracking. We provide extensive experimental analy-

sis showing that MeanShift++ can be more than 10,000x

faster than MeanShift with competitive clustering results on

benchmark datasets and nearly identical image segmenta-

tions as MeanShift. Finally, we show promising results for

object tracking.

1. Introduction

MeanShift [20, 22, 31] is a classical mode-seeking clus-

tering algorithm that has a wide range of applications

across machine learning and computer vision. Recent ap-

plications within computer vision include object tracking

[54, 77, 47], unsupervised image segmentation [66, 13,

96], video segmentation [56, 24, 55], image restoration

[4, 9], edge-preserving smoothing [55, 8, 12], point clouds

[46, 79, 95], and remote sensing [51, 60, 18, 50]. More

broadly in machine learning, MeanShift has been used

for semi-supervised clustering [2, 72], manifold denoising

[85, 81], matrix completion [82, 21], anomaly detection

[6, 93, 69], as well as numerous problems in medical imag-

ing [7, 68, 97, 49, 67, 53, 98, 100], wireless sensor networks

[94, 99, 88, 63, 84, 61], and robotics [44, 45, 36, 43, 91, 16].

Given a set of examples, MeanShift proceeds in itera-

tions, where in each iteration, each point is moved to the

average of the points within a neighborhood ball centered

at that point. The radius of the ball is a hyperparameter,

often referred to as the bandwidth or window size. All ini-

tial examples that converge to the same point are clustered

together and the points of convergence are estimates of the

modes or local maximas of the probability density function.

It has been shown that MeanShift implicitly performs a gra-

dient ascent on the kernel density estimate of the examples

[3]. MeanShift thus serves two purposes: mode-seeking and

clustering.

MeanShift is often an attractive choice because it is non-

parametric: unlike popular objective-based clustering al-

gorithms such as k-means [5, 42] and spectral clustering

[52, 78], it does not need to make many assumptions on the

data, and the number of clusters is found automatically by

the algorithm rather than a hyperparameter that needs to be

set. In other words, MeanShift can adapt to general prob-

ability distributions. However, one of the main drawbacks

of this procedure is its computational complexity: each it-

eration requires Opn2q computations. This is because for

each example, calculating the window around the example

is linear time in the worst case.

In this paper, we propose MeanShift++, a simple but ef-

fective procedure which first partitions the input space into

a grid. Then, at each iteration, each point is assigned to its

appropriate grid cell. We then approximate any point’s win-

dow with the average point in its and its neighboring grid

cells. Each iteration in this procedure runs in linear time to

the number of data points, with the cost of being exponen-

tial to the dimension of the feature space (since the size of

the grid is exponential in dimension). Such a trade-off is

ideal in settings with a large number of data points but low

dimensionality, which is often the case in computer vision

applications. With the growing size of modern datasets and

increasing resolution of data collected by sensors and cam-

eras, it is becoming ever more urgent to have fast versions

of classical techniques.

Our contributions are as follows:
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• We propose MeanShift++, a new mode-seeking pro-

cedure based on MeanShift that runs in Opn ¨ 3dq per

iteration vs Opn2 ¨dq for MeanShift. MeanShift++ has

no additional hyperparameters over MeanShift.

• We show that MeanShift++’s grid-based approxima-

tion attains near minimax optimal statistical consis-

tency guarantees at approximating the true density.

• An extensive empirical analysis shows that Mean-

Shift++ performs at least as well as MeanShift for clus-

tering while being significantly faster.

• Image segmentation results show that MeanShift++

delivers almost identical segmentations as MeanShift

while being as much as 10,000x faster.

• Image segmentation experiments on the Berkeley Seg-

mentation Dataset Benchmark (BSDS500) found that

MeanShift++ performed on par or better than baselines

despite being faster than most (and faster than Mean-

Shift by 1,000x).

• We present a new object tracking algorithm based on

MeanShift++ that can adapt to gradual color distribu-

tions and scene changes–something most MeanShift-

based approaches cannot do due to the computational

cost.

2. Related Works

Since MeanShift is a very popular procedure, there have

been a number of approaches to speed up the algorithm and

other mode-seeking based clustering algorithms in general.

Yang et al. (2003) [90] propose a speedup of MeanShift

by using a fast gauss transform to efficiently compute the

kernel density estimator, reducing the computational com-

plexity down to linear per iteration; however, they found

the fast gauss transform to be impractical for any dimension

higher than 3. Yang et al. (2005) [89] then applies this tech-

nique to a modified similarity function specifically for color

histograms and show its effectiveness on frame-tracking in

image sequences. Elgamma (2003) [26] also leverage fast

gauss transform for color modeling and tracking.

Then there are other computer vision application specific

speedup methods for MeanShift. Yin et al. (2011) [92]

leverage frame-differences to speed up MeanShift in the

specific application of target tracking. Carreira-Perpinan

(2006) [13] shows that a spatial discretization strategy can

accelerate Gaussian MeanShift image segmentation by one

to two orders of magnitude while attaining almost the same

segmentation. Carreira-Perpinan [14] also provides simi-

lar results for general Gaussian MeanShift; however, in this

paper, we show that our method can achieve a far better im-

provement compared to MeanShift.

Another set of approaches leverage space-partitioning

data structures in order to speed up the density estimation

calculations. Wang et al. (2007) [80] propose using a dual-

tree to obtain a faster approximation of MeanShift with

provable accuracy guarantees. Xiao et al. (2010) [87] pro-

pose a heuristic to make the computations more efficient by

approximating MeanShift using a greatly reduced feature

space via applying an adaptive Gaussian KD-Tree.

Freedman et al. (2009) [29] propose speeding up Mean-

Shift by randomly sampling data points when computing

the kernel density estimates. This approach only reduces

the runtime by small orders and does not address the under-

lying quadratic runtime issue unless only a small number of

samples are used, but this leads to high error in the density

estimates. Our method is both linear runtime and utilizes all

of the data points to construct an optimal density estimator.

Vedaldi and Soatto (2008) [75] propose a procedure

called QuickShift, which is modification of MeanShift in

which the trajectories of the points are restricted to the orig-

inal examples. The same procedure was proposed later by

Rodriguez and Laio (2014) [62]. The procedure comes with

theoretical guarantees [39], and GPU-based speedups have

been proposed for the algorithm [32]. We will show later

in the experimental results that QuickShift is indeed much

faster than MeanShift, but MeanShift++ is still orders of

magnitude faster than QuickShift.

3. Algorithm

We first introduce MeanShift in Algorithm 1 to cluster

data points Xrns :“ tx1, .., xnu. The most popular version

uses a unit flat kernel (i.e. Kpxq :“ 1r‖x‖ ď 1s [20]),

but other kernels can be used as well including the Gaus-

sian kernel [15]. At each iteration, it moves points to its

kernel-weighted mean w.r.t. the last iteration’s points until

convergence. This computation costs Opn2 ¨ dq time per it-

eration, even if space-partitioning data structures are used

to speed up the search to find the h-radius neighborhood in

the flat kernel case [87].

Algorithm 1 MeanShift [20, 22, 31]

Inputs: bandwidth h, tolerance η, kernel K, Xrns.

Initialize y0,i :“ xi for i P rns, t “ 1.

do

For i P rns:

yt,i Ð
ř

jPrns K
´

‖yt´1,i´yt´1,j‖
h

¯
yt´1,j

ř
jPrns K

´
‖yt´1,i´yt´1,j‖

h

¯ .

t Ð t ` 1.

while
řn

i“1
‖yt,i ´ yt´1,i‖ ě η.

return tyt,1, ..., yt,nu.
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We now introduce MeanShift++ (Algorithm 2). In each

iteration, it first performs a preprocessing step of paritition-

ing the input data points into appropriate grid cells, which

are hypercubes of side length h. A graphical comparison

with MeanShift is shown in Figure 1. In practice, we keep

two hash tables C (to store the count in each cell) and S (to

store the sum in each cell). C and S are defined as initially

empty mappings from lattice points in D-dimension (cor-

responding to grid cells) to non-negative integers and R
D

respectively. We show how they are updated via a single

pass through the dataset.

To compute which grid cell an example belongs to, we

first divide each entry by h and then take the element-wise

floor function, which gives a d-dimensional integer vector

index of the grids. Then, we can simply use the prepro-

cessed information in the point’s grid cell and neighboring

grid cells to compute the shifted point. As a result, each

point is moved to the average of all the points within its

cell and neighboring cells. This grid-based approach is a

much faster approximation of the density at low dimen-

sions. The runtime of MeanShift++ grows linearly with n,

while MeanShift is quadratic (Figure 2).

Algorithm 2 MeanShift++

Inputs: bandwidth h, tolerance η, Xrns.

Initialize y0,i :“ xi for i P rns, t “ 1.

do

Initialize empty hash tables C : Zd Ñ Zě0 (stores

cell count), S : Zd Ñ R
d (stores cell sum).

Cptyt´1,i{huq Ð Cptyt´1,i{huq ` 1 for i P rns.
Sptyt´1,i{huq Ð Sptyt´1,i{huq`yt´1,i for i P rns.
Next, for all i P rns:

yt,i Ð
ř

vPt´1,0,1ud Sptyt´1,i{hu ` vq
ř

vPt´1,0,1ud Cptyt´1,i{hu ` vq .

t Ð t ` 1.

while
řn

i“1
‖yt,i ´ yt´1,i‖ ě η.

return tyt,1, ..., yt,nu.

4. Theory

In this section, we give guarantees on our grid-based ap-

proach. Suppose there is some underlying distribution P
with corresponding density function p : Rd Ñ Rě0 from

which our data points Xrns “ tx1, ..., xnu are drawn i.i.d.

We show guarantees on the density estimator based on the

grid cell counts.

We need the following regularity assumptions on the

density function. The first ensures that the density func-

tion has compact support with smooth boundaries and is

lower bounded by some positive quantity, and the other en-

Figure 1. 2D example illustrating the difference between Mean-

Shift and MeanShift++. The red circle is the point we want to

shift to the mean of its neighbors. It takes Opnq for MeanShift to

find the neighbors of a single point versus Op3dq for MeanShift++

using grid cells. The location of the new point is indicated by the

red triangle.

Figure 2. Comparison of MeanShift++ and MeanShift on 2D mix-

tures of Gaussians. The runtime of MeanShift is quadratic in

the number of data points and quickly becomes infeasible to run,

whereas the runtime of MeanShift++ grows linearly with n (shown

here in log space). The clustering performances are comparable.

sures that the density function has smoothness. These are

standard assumptions in analyses on density estimation e.g.

[35, 40, 19, 64].

Assumption 1. p has compact support X P R
d and there

exists λ0, r0, C0 ą 0 such that ppxq ě λ0 for all x P X and

VolpBpx, rq X X q ě C0 ¨ VolpBpx, rqq for all x P X and

0 ă r ď r0, where Bpx, rq :“ tx1 P R
d : |x ´ x1| ď ru.

Assumption 2. p is α-Hölder continuous for some 0 ă
α ď 1: i.e. there exists Cα ą 0 such that |ppxq ´ ppx1q| ď
Cα ¨ |x ´ x1|α for all x, x1 P R

d.

We now give the result, which says that for h sufficiently

small depending on p (if h is too large, then the grid is

too coarse to learn a statistically consistent density estima-

tor), and n sufficiently large, there will be a high probability

finite-sample uniform bound on the difference between the

density estimator and the true density. The proof can be

found in the Appendix.
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Theorem 1. Suppose Assumption 1 and 2 hold. Then

there exists constants C,C1 ą 0 depending on p such

that the following holds. Let 0 ă δ ă 1, 0 ă h ă
mint

´
λ0

2¨Cα

¯1{α

, r0u, nhd ě C1. Let Gh be a partitioning

of Rd into grid cells of edge-length h and for x P R
d. Let

Gpxq denote the cell in Gh that x belongs to. Then, define

the corresponding density estimator pph as:

pphpxq :“ |Xrns X Gpxq|
n ¨ hd

.

Then, with probability at least 1 ´ δ:

sup
xPRd

|pphpxq ´ ppxq| ď C ¨
˜
hα `

a
logp1{phδq?
n ¨ hd

¸
.

Remark 1. In the above result, choosing h « n´1{p2α`dq

optimizes the convergence rate to Õpn´α{p2α`dqq, which is

the minimax optimal convergence up to logarithmic factors

for the density estimation problem as established by Tsy-

bakov [71, 70].

In other words, the grid-based approach statistically per-

forms at least as well as any estimator of the density func-

tion, including the density estimator used by MeanShift. It

is worth noting that while our results only provide results

for the density estimation portion of MeanShift++ (i.e. the

grid-cell binning technique), we prove the near-minimax

optimality of this estimation. This implies that the infor-

mation contained in the density estimation portion serves as

an approximately sufficient statistic for the rest of the proce-

dure, which behaves similarly to MeanShift, which operates

on another, also nearly-optimal density estimator. Thus, ex-

isting analyses of MeanShift e.g. [3, 17, 86, 48, 34, 33, 65]

can be adapted here; however, it is known that MeanShift

is very difficult to analyze [23] and a complete analysis is

beyond the scope of this paper.

5. Experiments

We compare Meanshift++ against MeanShift on various

clustering tasks in Table 1. These comparisons are made

using the Scikit-Learn [57] implementation of MeanShift

and our own implementation of MeanShift++ in Cython.

To measure the quality of a clustering result, we use the

Adjusted Rand Index (ARI) [37] and the Adjusted Mutual

Information (AMI) [76] scores, which compare the cluster-

ing with the partitioning induced by the labels of the data

points, a popular way of comparing clustering performance

[38]. The benchmark datasets we use are labeled datasets,

and we only cluster the features.

As stated earlier, MeanShift++ is linear with respect to

the number of data points and exponential in dimension. We

thus show results on low-dimensional datasets. In Figure 3,

Dataset n d c

a Phone Accelerometer 13,062,475 3 7

b Phone Gyroscope 13,932,632 3 7

c Watch Accelerometer 3,540,962 3 7

d Watch Gyroscope 3,205,431 3 7

e Still 949,983 3 6

f Skin 245,057 3 2

g Iris 150 4 3

h Lupus 87 3 2

i Confidence 72 3 2

j Geyser 22 2 2

k Balance Scale 625 4 3

l Vinnie 380 2 2

m Sleep Data 1,024 2 2

n Transplant 131 3 2

o Slope 44 3 2

p PRNN 250 2 2

q Wall Robot 5,456 4 4

r User Knowledge 403 5 5

Table 1. Summary of datasets used. Includes dataset size (n), num-

ber of features (d), and number of clusters (c).

we ran both algorithms on 19 benchmark datasets with 5 or

fewer dimensions, ranging from less than 100 data points to

millions of data points.

For the top five largest datasets, MeanShift failed to re-

turn a result for any setting of bandwidth despite running

for more than 24 hours. MeanShift++ consistently outper-

formed MeanShift in both clustering quality and runtime

for the rest of the datasets, as shown in Table 2. We saw a

significant speed reduction of over 100x on both small and

large datasets, showing that MeanShift++ does not have sig-

nificantly more overhead costs than MeanShift either.

We also show in Figure 3 the effect the bandwidth setting

has on clustering performance and runtime for a few of the

datasets to provide further insight into the stability of the

procedures under the bandwidth hyperparameter.

We note that MeanShift++ outperforms MeanShift on

many datasets, possibly due to a regularizing effect: by

partitioning the space into grids and assigning every point

in the same cell the same value instead of a unique value

for each point, the gradient-ascent shifting step is more sta-

ble than in MeanShift. This regularization effect, combined

with the option to tune the cell-length which essentially con-

trols the amount of regularization, allows MeanShift++ to

outperform Meanshift in some cases.

However, these results are unlikely to generalize to

higher dimensions. It is known that density-based proce-

dures perform poorly in high dimensions due to the curse of

dimensionality. Our theoretical results also show that rates

become exponentially worse in higher dimension.
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Figure 3. Comparison of MeanShift++ and MeanShift on four real-world datasets across a wide range of hyperparameter. Datasets

are shown here to illustrate how both algorithms were tuned over an appropriate range of bandwidth. Adjusted RAND index (ARI),

adjusted mutual information score (AMI), and runtime are reported for each run. MeanShift++ consistently performs as well or better than

MeanShift despite being up to 1000x faster. Additional experiments are shown in the Appendix.

6. Image Segmentation

We compare MeanShift++ to a number of baselines for

unsupervised image segmentation in Figure 4. We include

Felzenszwalb [27], QuickShift [75], and k-means, three

popular image segmentation procedures from the Python

Scikit-Image library [73], as well as Quickshift++ [41], a

recent algorithm shown to be an improvement over Quick-

shift on image segmentation. We also include MeanShift,

which often produces qualitatively better clusters than the

other baselines, but runs for so much longer that it is im-

practical for high-resolution image segmentation.

For image segmentation, we run each algorithm on a

preprocessed image with each pixel represented in a 3D

RGB color channel space, with the exception of Quick-

shift++, which takes pr, g, b, x, yq color and spatial coor-

dinates. MeanShift was run with both pr, g, bq (shown in

Figure 4) and pr, g, b, x, yq inputs, but we did not see a dif-

ference in segmentation quality or runtime. For each algo-

rithm, the returned clusters are taken as the segments.

Our image segmentation experiments in Figure 4 show

that MeanShift++ is able to produce segmentations that are

nearly identical to that of MeanShift with an up to 10,000x

speedup. We capped the sizes of our images at 187,500

pixels to allow MeanShift to finish running, so this speedup

would surely be greater on even higher resolution images.

Multiple attempts have been made to speed up Mean-

Shift for image segmentation at the cost of quality, but

MeanShift++ does not seem to trade off segmentation qual-

ity despite running in a sub-fraction of the time.

For a more quantitative comparison, we ran experiments

using the Berkeley Segmentation Dataset Benchmark

(BSDS500) of 500 images with 6 human-labeled segmen-

tations each. We ran MeanShift++, MeanShift, SLIC, and

QuickShift on each image and used the adjusted RAND

index [37] (ARI) and Fowlkes-Mallows [28] (FM) scores

to compare the clusters. Scores were averaged over the 6

ground truth segmentations. We found that MeanShift++

performed on par or better than baselines despite being

faster than MeanShift by 1,000x on average (Figure 6).

7. Object Tracking

The mode-seeking behavior of MeanShift makes it a

good candidate for visual tracking. A basic implementation

would take in a mask and/or search window of an object

and build a histogram of the colors found in that object in

RGB or HSV space. Afterwards, the histogram is normal-

ized by the colors found in surrounding, non-target points

into a probability distribution. At each step, the tracking al-

gorithm would backproject each point in the window into a

probability that it is part of the original object. The cen-

ter of the window moves in px, yq space to the mode of

the distribution within the window until convergence in the

same way that MeanShift iteratively moves each point to

the mean of its neighbors. Every frame thereafter would be

initialized with the final window of the previous frame.

MeanShift++ can be used for object tracking in a sim-

ilar, albeit more principled way (Algorithm 3). Instead

of color histograms, which need to be computed and re-

quire extra hyperparameters to determine the size of bins,

the grid cells generated by MeanShift++ during clustering

are already precomputed and suitable for tracking: we can

quickly compute which points fall into any bin belonging to

the target cluster(s).
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Figure 4. Comparison of six image segmentation algorithms. We show the results of MeanShift++, MeanShift, Quickshift++, and three

other popular image segmentation algorithms from the Scikit-Image library[73]. MeanShift returns qualitatively good results on image

segmentation but takes very long to run. MeanShift++ returns segmentations that are the most similar to MeanShift with an up to 10,000x

speedup. We expect the speedup to be far greater for high resolution images–the images shown here are low resolution (under 200k pixels).

MeanShift is also too slow to generate masks needed for

real-time tracking. It often requires the user to provide a

precomputed mask or color range. Relying on user input is

imperfect and subject to biases. MeanShift++ is fast enough

to generate masks through real-time clustering.

Off-the-shelf versions of MeanShift tracking rely on a

histogram calculated from the original frame throughout the

whole scene. This does not work well if the illumination

in the scene changes, since the algorithm cannot make fast

updates to the histogram [30, 83, 58, 59]. MeanShift++ can

adapt to changing color distributions by finding and adding

neighboring grids of points to the histogram in linear time,

making it more robust to gradual changes in lighting, color,

and other artifacts of the data.

CamShift [11, 1] improves MeanShift tracking by ad-

justing window sizes as objects move closer or farther away

and updating color histograms based on lighting changes,

among other things. Future work may involve adapting

these ideas to a MeanShift++-based tracking algorithm.

In Figure 5, we show the performance of MeanShift++
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Figure 5. Comparison of MeanShift++ and MeanShift on object tracking. Unlike MeanShift++, MeanShift is too slow to generate masks

for real-time object tracking. In practice, the user manually provides a color range that they want to track, which is often incomplete,

inaccurate, or biased. Here, we initialize both MeanShift++ and MeanShift with a mask from clustering results generated by MeanShift++

to save time. For MeanShift, we use OpenCV’s [10] implementation of color histograms to track the object in question. For MeanShift++,

we naturally use the grid cells that are returned from the clustering step. We find that MeanShift is more likely to get distracted by

backgrounds, foregrounds, and other objects in the scene. First scene: MeanShift returns less accurate object centers and search windows.

Second scene: MeanShift fails to find the object altogether due to an abundance of similar colors in the frame that cannot be decoupled

from the object of interest. Third scene: MeanShift starts tracking similar objects nearby when the original objective moves out of frame.

In contrast, MeanShift++ stops tracking when it finds the center of mass in the search window disappear. Fourth scene: MeanShift loses

the skater faster than MeanShift++ and fails to find him again (instead it starts to track another skater altogether).
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ARI AMI

MS++ MS MS++ MS

a) Phone 0.0897 DNF 0.1959 DNF

Accelerometer 29m 59s ą24h 49m 19s ą24h

b) Phone 0.2354 DNF 0.1835 DNF

Gyroscope 1h 35m ą24h 32m 32s ą24h

c) Watch 0.0913 DNF 0.2309 DNF

Accelerometer 17m 52s ą24h 43m 32s ą24h

d) Watch 0.1595 DNF 0.1336 DNF

Gyroscope 24m 45s ą24h 9m 3s ą24h

e) Still 0.7900 DNF 0.8551 DNF

13.12s ą24h 8.58s ą24h

f) Skin 0.3270 0.3255 0.4240 0.3975

16.44s 3h 41m 13.07s 3h 41m

g) Iris 0.5681 0.6832 0.7316 0.6970

ă0.01s 6.35s ă0.01s 2.36s

h) Lupus 0.1827 0.1399 0.2134 0.2042

ă0.01s 3.82s ă0.01s 3.82s

i) Confidence 0.2080 0.2059 0.2455 0.2215

0.02s 0.70s ă0.01s 0.98s

j) Geyser 0.1229 0.0886 0.2409 0.2198

ă0.01s 2.88s ă0.01s 2.88s

k) Balance Scale 0.0883 0.0836 0.2268 0.2166

0.09s 16.02s 0.09s 16.02s

l) Vinnie 0.4594 0.4383 0.3666 0.3671

0.01s 16.85s 0.01s 16.85s

m) Sleep Data 0.1181 0.1242 0.1028 0.0998

0.02s 45.25s 0.02s 45.25s

n) Transplant 0.7687 0.6328 0.7175 0.7018

ă0.01s 4.22s ă0.01s 4.22s

o) Slope 0.2777 0.2715 0.3877 0.3630

ă0.01s 0.43s ă0.01s 0.43s

p) PRNN 0.2093 0.1872 0.2912 0.2590

0.02s 10.72s ă0.01s 10.72s

q) Wall Robot 0.1788 0.1706 0.3239 0.3246

0.69s 4m37s 0.88s 2m30s

r) User Knowledge 0.3398 0.2140 0.4086 0.3278

0.06s 7.62s 0.06s 7.62s

Table 2. Summary of clustering performances. MeanShift++’s and

MeanShift’s best results for 19 real-world datasets after tuning

bandwidth. Datasets from the UCI Machine Learning Repository

[25] and OpenML [74]. In cases where the original target vari-

able is continuous, binarized versions of the datasets were used.

These experiments were run on a local machine with a 1.2 GHz

Intel Core M processor and 8 GB memory. MeanShift did not fin-

ish (DNF) within 24 hours for the top five largest datasets. ARI,

AMI, and runtime are reported for each run, and the highest score

obtained for that metric and dataset is bolded.

and MeanShift (from the Python OpenCV library [10]) on

object tracking in various scenes. In practice, we found that

MeanShift tends to be easily misled by the surroundings,

particularly when there are areas of similar color. Finally,

MeanShift++ usually finds better windows than MeanShift.

8. Conclusion

We provided MeanShift++, a simple and principled

approach to speed up the MeanShift algorithm in low-

dimensional settings. We applied it to clustering, image seg-

Average Runtime (µs)

MeanShift++ 2,675,100

MeanShift 1,765,462,893

SLIC 56,266

Quickshift 31,717,386

Figure 6. Comparison of MeanShift++, MeanShift, SLIC, and

QuickShift on BSDS500 using the ARI and FM clustering metrics.

Performance metrics are averaged over 500 images. For each base-

line, we plot MS++ wins, baseline wins, and ties (where the two

algorithms score within 1% of each other). MS++ performs on

par or better compared to baseline algorithms. In order for Mean-

Shift++ to finish running, we sample the images down by an order

of 2. MeanShift++ is still around 1000x faster than MeanShift.

Algorithm 3 MeanShift++ for Tracking

Inputs: bandwidth h, tolerance η, initial window W0,

sequence of frames X0, X1, ..., XT .

Define: W X X as pixels in window W for frame X .

Run MeanShift++ on the pixels (in color space) in W0X
X0 and manually select the cluster(s) desired to track.

Let the union of selected cluster(s) be C.

B Ð ttc{hu : c P Cu.

for i “ 1, 2, ..., T do

Initialize Wi Ð Wi´1.

do

Ri :“ tx P Wi X Xi : tx{hu P Bu.

Move Wi so that it’s centered at the average

px, yq-position of points in Ri.

while Wi’s center converges with tolerance η.

Optionally update B Ð ttx{hu : x P Wi X Xiu X
NpBq, where NpBq are all cells that are in B or adja-

cent to one in B.

emit Wi for frame Xi.

mentation, and object tracking, and show that MeanShift++

is competitive with MeanShift in low dimensions while

being as much as 10,000x faster. This dramatic speedup

makes MeanShift++ practical for modern computer vision

applications.
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