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Abstract

Learning low-dimensional latent state space dynam-

ics models has proven powerful for enabling vision-based

planning and learning for control. We introduce a latent

dynamics learning framework that is uniquely designed

to induce proportional controlability in the latent space,

thus enabling the use of simple and well-known PID

controllers. We show that our learned dynamics model

enables proportional control from pixels, dramatically

simplifies and accelerates behavioural cloning of vision-

based controllers, and provides interpretable goal dis-

covery when applied to imitation learning of switching

controllers from demonstration. Notably, such propor-

tional controlability also allows for robust path following

from visual demonstrations using Dynamic Movement

Primitives in the learned latent space.

1. Introduction

Vision-based control is highly desirable across numer-
ous industrial applications, both in robotics and process
control. At present, much practical vision-based control
relies on supervised learning to build bespoke percep-
tion modules, prior to downstream dynamics modelling
and controller design. This can be expensive and time
consuming, and as a result there is growing interest in
developing model-based approaches for direct vision-
based control.

Model-based approaches for visual control tend to
learn latent dynamics models that are subsequently
used within suitable planning or model predictive con-
trol (MPC) frameworks, or to train policies for later use.
We argue that this decoupling of dynamics and control
is computationally expensive and often unnecessary. In-
stead we learn a structured latent dynamical model that
directly allows for simple proportional control to be ap-
plied. Proportional-Integral-Derivative (PID) feedback
control produces commands that are proportional to an

error or cost term between current system state x and
a (potentially dynamic) target state xgoal:

ut = Kp (x
goal
t − xt) +Ki

∑

t′

(xgoal
t′ − xt′) +

Kd

xt − xt−1

∆t
(1)

Gain terms (Kp,Ki,Kd) shape the controller response
to errors. PID control is ubiquitous in industry, and
broadly applicable across numerous domains, providing
a simple and reliable off-the-shelf mechanism for stabil-
ising systems. PID control is also the basis of a wide
range of more powerful control strategies, including
the more flexible dynamic movement primitives [24, 43]
that augment PD control laws with a forcing function
for trajectory following. Essentially we learn the state
encoding x(I) from images I for which robots can be
trivially controlled from pixels according to Eq 1.

We structure latent dynamics so that that PID con-
trol can be applied to move between latent states, to
remove the requirement for complex planning or rein-
forcement learning strategies. Moreover, we show that
imitation learning from demonstrations becomes a sim-
ple goal inference problem under a proportional control
model in this latent space, and can even be extended
to sequential tasks comprising multiple sub-goals.

Imitation learning from high dimensional visual data
is particularly challenging [2]. Behaviour cloning, which
seeks to reproduce demonstrations, is particularly vul-
nerable to generalisation failures for high dimensional
visual inputs, while inverse reinforcement learning (IRL)
[38] strategies are hard to train and extremely sample
inefficient. By learning a structured dynamics model,
we allow for more robust control in the presence of noise
and simplify the inverse reward inference process. In
summary, the primary contributions of this work are:
Embedding for proportional controllability We
induce a latent space where taking an action in the
direction between the current position and some target
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position, u ∝ xtarget − x, moves the system towards
the target position. Uniquely, this enables simple pro-
portional control from pixels.
Imitation learning using latent switching pro-
portional control laws We leverage the properties
of this embedding to frame imitation learning as a
goal inference problem under a switching proportional
control law model in the structured latent space for se-
quential goal reaching problems. This enables one-shot
interpretable imitation learning of switching controllers
from high-dimensional pixel observations.
Imitation learning using dynamic movement
primitives (DMPs) We also leverage the properties
of our embedding to fit dynamic movement primitives
in the structured latent space for trajectory tracking
problems. This enables one-shot imitation learning of
trajectory following controllers from pixels.

Results show that embedding for proportional con-
trollability produces more interpretable latent spaces,
allows for the use of simple and efficient controllers that
cannot be applied with less structured latent dynamical
models, and enables one-shot learning of control and
interpretable goal identification in sequential multi-task
imitation learning settings.

2. Related Work

This paper takes a model-based approach to visual
control, using variational autoencoding (VAE) [28]. La-
tent dynamical systems modelling using autoencoding
is widely used [32], and has been proposed for Bayesian
filtering [15, 27, 31], and as inverse graphics for im-
proved video prediction and vision-based control [25].
Ha and Schmidhuber [21] train a latent dynamics model
using a variational recurrent neural network (VRNN) in
the latent space of a VAE, and then learn a controller
that acts in this space using a known reward model.
Hafner et al. [22] extend this approach to allow planning
from pixels. Unfortunately, because these approaches
decouple dynamics modelling and control, they place
an unnecessary computational burden on control, either
requiring sampling-based planning or further RL policy
optimisation. We argue that this burden can be alle-
viated by imposing additional structure on the latent
space such that proportional control becomes feasible.

In doing so, we build on the control hypothesis ad-
vocated by Full and Koditschek [17], which seeks to
model complex phenonoma and systems through simple
template models and controllers, using anchor networks
to abstract the complexity away from control. This also
simplifies the challenges of imitation learning, allowing
for sequential task composition [7].

The addition of structural inductive biases into neu-
ral models has become increasingly important for gener-

alisation. Injecting knowledge of known physical equa-
tions [20, 25] has been shown to improve dynamics
modelling, while the inclusion of structured transition
matrices was essential to learn Koopman operators [1]
that model dynamical systems with compositional prop-
erties [35]. Here, a block-wise structure with shared
blocks was used to learn transition dynamics, which
highlighted the importance of added structure in linear
state space models, but this was not applied to visual
settings. Models like embed to control (E2C) [46] or
deep variational Bayes filters (DVBF) [27] recover struc-
tured conditionally linear latent spaces which can be
used for control, but, as will be demonstrated later, are
still unsuitable for direct proportional control. PVEs
[26] learn an explicit positional representation, but do
so by minimizing a combination of several heuristic
loss functions. Since these models do not use a de-
coder, it is not possible to visually inspect the learned
representations in image space.

NewtonianVAE not only provides latent space in-
terpretability, but also simplifies imitation learning.
Inverse reinforcement learning (IRL) strategies for im-
itation learning typically struggle to learn from high
dimensional observation traces as they tend to be based
on the principle of feature counting and observation fre-
quency matching [38], as in maximum entropy IRL [47].
Maximum entropy IRL has been extended to use a deep
neural network feature extractor [47], but this is highly
vulnerable to overfitting and has extensive data require-
ments. Recent adversarial IRL approaches [16, 18, 23]
avoid the challenge of learning a global reward function
by training policies directly, but these have yet to be
successfully scaled to high dimensional problems. As
a result, most imitation learning approaches tend to
assume access to low dimensional states, avoiding the
challenge of learning from pixels.

Behaviour cloning approaches using dynamic move-
ment primitives (DMP) [24, 43] have proven partic-
ularly powerful for trajectory following control, but
are typically applied to low-dimensional proprioceptive
states directly as they require proportionally control-
lable state spaces. Deep DMPs [40] learn visually task
parametrised DMPs, but the DMP itself still requires
low dimensional state measurements. Chen et al. [8]
propose VAE-DMPs, which impose DMP dynamics in
the latent space of a variational auto-encoder, allowing
for direct imitation learning. In contrast, this work
learns dynamics models independently of tasks, which
allows for more flexible downstream applications, includ-
ing DMP fitting for trajectory following and switching
multi-goal imitation learning from pixels (unlike Chen
et al. [8], which use proprioception observations).

Standard imitation learning learning strategies can
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fail in multi-goal settings or on more complex tasks. In
order to address this, many approaches frame the prob-
lem of imitation learning from these lower level states as
one of skill or options [30, 44] learning using switching
state space models. These switching models include lin-
ear dynamical attractor systems [11], conditionally lin-
ear Gaussian models [9, 33], Bayesian non-parametrics
[39, 41], and neural variational models [29]. Kipf et al.
[29] learn task segmentations to infer compositional
policies, but the model uses environment states directly
instead of images. Burke et al. [5, 6] use a switching
controller formulation for control law identification from
image, proprioceptive state and control action obser-
vations. This work applies a similar strategy for goal
inference, but, unlike the approaches above, makes use
of a learned latent state representation and does not
require proprioceptive or low level state information.

Despite this reliance on proprioceptive state informa-
tion, there is a growing interest in direct visual imitation
learning and control. Nair et al. [37] train a variational
autoencoder (VAE) on image observations of an environ-
ment, and subsequently sample from this latent space
in order to train goal-conditioned policies that can be
used to move between different goal states. In contrast,
we propose a latent dynamics model that allows for
latent proportional controllability and eliminates the
need to train a policy to move between goal states.

In addition to the works discussed above, a research
area in the unsupervised learning literature of particular
interest is that of learning physically plausible repre-
sentations (from video) by enforcing temporal evolu-
tion according to explicit or implicit physical dynamics
[4, 19, 25, 45]. Though promising, these approaches
have only been applied to very simple toy environments
where dynamics are well known, and are still to be
scaled up to real world scenes.

3. Variational models for visual control

In order to learn a compact latent representation
of videos that can be used for planning and control
we use the variational autoencoder framework (VAE)
[28, 42] and its recurrent formulation (VRNN), [10]. In
this section we briefly present a general formulation of
the VRNN, of which many recent models are particular
cases or variations [15, 22, 27, 31, 46]. For derivation
details please refer to [10].

Given a sequence of T images, I1:T , and actuations
u1:T ∈ R

du and the corresponding latent representa-
tions, z1:T ∈ R

dz , the marginal image likelihood is given
by:

p(I1:T |u1:T ) =

∫

p(I1:T |z1:T ,u1:T )p(z1:T |u1:T )dz1:T (2)
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Figure 1: Trajectory of a point mass actuated using
ut ∝ (xgoal − xt) (left) in the latent space learned by
an E2C model (right).

where we factorize the terms above as:

p(I1:T |z1:T ,u1:T ) =
∏

p(It|zt)

p(z1:T |u1:T ) =
∏

p(zt|zt−1,ut−1),

with an approximate positerior given by:

q(z1:T |I1:T ) =
∏

q(zt|It, zt−1,ut−1). (3)

The model components are trained jointly by maximiz-
ing the lower bound on (2):

L =
∑

t

Eq(zt|It,zt−1,ut−1)

[

p(It|zt)+

+ KL
(

q(zt+1|It+1, zt,ut)‖p(zt+1|zt,ut)
)]

, (4)

via the reparametrization trick, by drawing samples
from the posterior distributions, q(zt|It, zt−1,ut−1).
Under this framework, the various desired inductive
biases are usually built into the structure of the transi-
tion prior p(zt+1|zt,ut). In this work we will build on
the formulation that uses a linear dynamical system as
latent dynamics:

p(zt+1|zt,ut) = A(zt) · zt +B(zt) · ut + c(zt) (5)

which has been studied extensively in the context of
deep probabilistic models [3, 15, 27, 31, 36].

4. Newtonian Variational Autoencoder

Motivation To motivate our model, we begin by
examining the properties of an existing latent variable
model used for control. We train an E2C model [46],
since it applies a locally linear latent transition as in (5)
and is highly representative of properties obtained in
these types of model. We use a simple point mass system
that can move in the [x, y] plane and train the model on
random transitions in image space (more details in the
experiments section). Since the environment is 2D with
2D controls, we use a 4D latent space (2 dimensions
for position and 2 for velocity). Our goal is to explore
how the E2C model behaves when a basic proportional
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control law ut ∝ (xgoal − xt) is applied, where x is the
latent system configuration.

An immediate problem is that even though the la-
tent coordinates corresponding to position are correctly
learned (Fig. 1(right)), it is necessary to plot every

coordinate pair and their correlation with ground truth
positions in order to visually determine which 2 coordi-
nates correspond to the position x. Having determined
such x, we can use a random target position xgoal and
see if successively applying an action ut ∝ (xgoal − xt)
will guide the system towards xgoal (which we term
proportional controllability). Note that PID control is
trivially achievable given a P-controllable system, so we
focus on P-control for simplicity of exposition, without
loss of generality. Fig. 1(left) shows that this simple
control law fails to guide the system towards the goal
state, even though the latent space is seemingly well
structured. These problems are present in existing vari-
ational models for controllable systems, including E2C
[46], DVBF [27] and the Kalman VAE [15].

To avoid the need for ground truth data and visual
inspection, we construct a model that explicitly treats
position and velocity as separate latent variables x and
v. To ensure correct behaviour under a proportional
control law1 the change in position and velocity should
be directly related to the force applied. I.e. given an
external action u representing the force (=acceleration)
acting on a system, x and v should follow Newton’s
second law, d2x/dt2 = F/m. Although this might seem
like a trivial statement from a physical standpoint, this
type of behaviour is not built into existing neural mod-
els, where the relationship between action and latent
states can be arbitrary. This arbitrary relationship in
turn complicates control, and it becomes necessary to
learn downstream controllers or policies to compensate
for these dynamics while meeting a control objective.

We make one additional observation: in many cases
the external action u is applied along disentangled di-
mensions of the system. For example, for a 2-arm robot,
actions correspond to torques on the angles of each arm
relative to its origin2. These action dimensions corre-
spond to the polar coordinates [θ1, θ2], which are the
ideal disentangled coordinates to describe such a robot.
We use this fact to formulate a model that not only pro-
vides an interpretable and P-controllable latent space,
but also the correct disentanglement by construction.

Formulation We now formulate a model satisfying
the above desiderata. For an actuated rigid body sys-
tems with D degrees of freedom, we model the system

1For further analysis of the convergence and stability of PID
controllers, see [12, 13].

2The example also applies more generally to any robot actu-
ated with torques along its joints.

configuration (positions or angles) by a set of coordi-
nates x ∈ R

D with double integrator dynamics, inspired
by Newton’s equations of motion:

dx

dt
= v ,

dv

dt
= A(x,v)·x+B(x,v)·v+C(x,v)·u (6)

To build a discrete form of (6) into a VAE formula-
tion, we use the instantaneous system configuration (or
position) x as the stochastic variable that is inferred by
the approximate posterior, xt ∼ q(xt|It), with velocity
a deterministic variable that is simply the finite differ-
ence of positions, vt = (xt − xt−1)/∆t. The generative
model is now given by

p(I1:T |x1:T ,u1:T ) =
∏

p(It|xt) (7)

p(x1:T |u1:T ) =
∏

p(xt|xt−1,ut−1;vt) (8)

where the transition prior is:

p(xt|xt−1,ut−1;vt) = N (xt|xt−1 +∆t · vt, σ
2) (9)

vt = vt−1 +∆t · (Axt−1 +Bvt−1 + Cut−1) (10)

with [A, log(−B), logC] = diag(f(xt,vt,ut)), where
f is a neural network with linear output activation.
Using diagonal transition matrices encourages correct
coordinate relations between u, x and v, since linear
combinations of dimensions are eliminated. In order to
obtain the correct directional relation between u and x,
required for interpretable controllability, we set C to be
strictly positive (in addition to diagonal). B is strictly
negative to provide a correct interpretation of the term
in v as friction, which aids trajectory stability. During
inference, vt is computed as vt = (xt − xt−1)/∆t, with
xt ∼ q(xt|It) and xt−1 ∼ q(xt−1|It−1). This inference
model provides a principled way to infer velocities from
consecutive positions, similarly to [26]. We use Gaussian
p(It|xt) and q(xt|It) parametrized by a neural network
throughout.

We train all model components using the following
ELBO (full derivation in Appendix A):

L = Eq(xt|It)q(xt−1|It−1)[Ep(xt+1|xt,ut;vt)p(It+1|xt+1)+

+ KL (q(xt+1|It+1)‖p(xt+1|xt,ut;vt))] (11)

A crucial component of this ELBO is performing future-
rather than current-step reconstruction through the
generative process (first term above). This is known to
encourage the use of the transition prior when learning
the latent representation [22, 27, 46].
Further considerations Another key difference be-
tween a simple LDS and our Newtonian model is the fact
that we consider velocity to be a deterministic latent
variable that is uniquely determined by the stochastic

4457



positions. In contrast, independent inference through
z means that position and velocity might not have the
direct relation that is present in the physical world
(velocity as the derivative of position). Both of these
contribute to a lack of physical plausability, in the New-
tonian sense, in existing models. Though technically
our transition prior is a special case of the LDS (5),
these added structural constraints are crucial in order
to induce a Newtonian latent space that directly allows
for PID control of latent image states.

5. Efficient Imitiation with P-Control

A key benefit of the Newtonian latent space is
that it dramatically simplifies image-based imitation
learning. Given a visual demonstration sequence
DI = {(I1,u1), ..., (IT ,uT )}, we encode the frames
using the inference network q(x|I) described above
in order to produce demonstrations in latent space,
Dx = {(x1,u1), ..., (xT ,uT )}.

5.1. Learning Vision-Driven Switching P-Control

We can fit a switching P-controller3 to a set of demon-
stration sequences in latent space using a Mixture Den-
sity Network (MDN), where the action likelihood given
a state is a mixture of N proportional controllers:

P (ut|xt) =

N
∑

n=1

πn(xt)N
(

ut|Kn(x
goal
n − xt), σ

2
n

)

(12)

where Kn, x
goal
n and σ2

n, ∀n ∈ 1..N , are learnable pa-
rameters, and π(z) is a parametric function like a neu-
ral network. Intuitively, fitting this MDN to the latent
demonstrations splits the demonstrations into regions
where a specific proportional controller would correctly
fit that part of the trajectory. If the latent space is
P-controllable (such as the one produced by the New-
tonianVAE), the vectors xgoal

n will correspond to the
intermediate goals or bottleneck states in the demon-
stration sequence. As an added benefit, we can pass
the learned goals through NewtonianVAE’s decoder in
order to obtain their visual representation, providing
an interpretable control policy.
Learning a finite-state machine Having identi-
fied the latent vectors corresponding to the goals, we
determine the order in which they must be reached
by analysing their visits during the demonstrations,
directly extracting initiation sets and termination con-
ditions. This produces a simple finite-state machine
(FSM) that determines goal state transitions. The FSM
and extracted P-controllers can then be used to repro-
duce demonstrated behaviours by driving the robot to

3We use a P-controller instead of a PID-controller for simplicity
of exposition and without loss of generality.

Figure 2: Latent spaces of various models in the point
mass, reacher-2D and fetch-3D environments. Each dot
corresponds to the latent representation of a test frame,
and the red-to-green color coding encodes the true 2D
position/angle values. For E2C [46], we plot the two
latent dimensions that best correlated with the true
positions. Since the configuration space of the fetch-3D
env is 4D, we visualize only the first two coordinates.
Only for our NewtonianVAE does latent space (position)
and true space (color) correlate perfectly.

each goal in succession, but could also be used within
an options framework [44] for reinforcement learning.

5.2. Learning Visual Path Following with DMPs

It is clear that the latent space of a NewtonianVAE
can be used for switching goal-based imitation learning,
but proportionality is also a precursor for trajectory
following using DMPs. A DMP [24] is a proportional-
derivative controller with a learned forcing function

τ ẍ = α
(

β
(

xgoal − x
)

− ẋ
)

+ f . (13)

Here, τ is a time scaling constant, and α, β are propor-
tional control gain terms. The forcing function

ft =
N
∑

i=1

Φ(t)wi
∑N

i=1 Φ(t)
(x− xgoal) (14)

captures trajectory dynamics, using a weighted lin-
ear combination of radial basis functions, Φ(t) =
exp(− 1

σ2
i

(y − ci)
2), with centres ci and variances σ2

i .

The canonical system ẏ = −αyy gently decays over
time, smoothly modulating the forcing function until
reaching an end goal, xgoal. Basis functions and pa-
rameters are fit to demonstration trajectories using
weighted linear regression. Since the NewtonianVAE
embeds for proportionality, DMPs can be fit directly to
the latent space from demonstration data, allowing for
vision-based trajectory control and path following.
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Figure 3: Left: P-control trajectories for point mass, reacher-2D and fetch-3D environments. Plots are in the
latent space of Fig. 2. We can see that only NewtonianVAE produces a latent space where a P-controller correctly
leads the systems from the initial to goal state. Right: Convergence rates of PID control using various latent
embeddings for the point mass (left) and reacher-2D (right) systems, over 50 episodes. We use gain parameters
Kp = 8, Ki = 2, Kd = 0.5. For contrast, we show Model Predictive Control (MPC, using CEM planning [22]).
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Figure 4: Left: Demonstration sequence and learned
mixture of P-controllers (MDN). Each background color
and corresponding diamond correspond to a component
πn(x) and xgoal

n , ∀n ∈ {1, 2, 3}, respectively. Right:
Rollouts after imitation learning using switching P-
controllers and LSTM policy, with a single demonstra-
tion sequence. In the noisy regime each action has an
added noise N (0, 0.252). All plots are in the Newtoni-
anVAE’s latent space.

6. Experiments

We validate our model on 3 simulated continuous
control environments, to allow for better evaluation and
ablations, and on data collected from a real PR2 robot.

Point mass A simple point mass system adapted
from the PointMass environment from dm_control.
The mass is linearly actuated in the 2D plane and

its movement bounded by the edges of the frame.

Reacher-2D A 2D reacher robot adapted from the
Reacher environment in dm_control and inspired by
[29]. We alter the environment so that the robot’s
middle joint can only bend in one direction, in order to
prevent the existence of two possible arm configurations
for every end effector position. We also limit the origin
joint angle range to [−160, 160] so that the system
configuration can be described in polar coordinates by
two variables corresponding to the angle of each arm,
avoiding a discontinuity in case of full circular motion.

Fetch-3D The 3D reacher environment
FetchReachEnv from OpenAI Gym. We use this
to show that our model learns the desirable repre-
sentations even in visually rich 3D environments of
multi-joint robots with partial occlusions.

To train the models, we generate 1000 random se-
quences with 100 time-steps for the point mass and
reacher-2D systems, and 30 time-steps for the fetch-3D
system. More implementation details for each of the
environments can be found in Appendix B.

Baseline models We compare our model to E2C4

and a static VAE (each frame encoded individually).
Additionally, in order to better understand the effect of
diagonality and positivity of the transition matrices in
(10), we test Full-NewtonianVAE, where the matrices

4DBVF [27] and E2C learn similar latent spaces, as both rely
on an unstructured conditionally linear dynamical system.
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A,B,C are unbounded and full rank. Architecture and
training details can be found in Appendix B.

6.1. Visualizing latent spaces and P-controllability

In this section we compare the latent space and P-
controllability properties of the NewtonianVAE and
baseline models on the simulated enviroments: point
mass, reacher-2D and fetch-3D.
Comparing latent spaces We start by visualizing
the latent spaces learned by each models on all the
environments. Fig. 2 shows that only the Newtonian-
VAE is able to learn a representation corresponding
to the natural disentangled coordinates in both envi-
ronments (e.g. [x, y] in the point mass and [θ1, θ2] in
the reacher-2D), and that these are correctly correlated
with ground-truth values, coded in the red-green spec-
trum. This shows that the structure imposed on the
transition matrices in (10) is key to learning correct
latent spaces in both Cartesian and polar coordinates.
P-controllability Even though the models above
produce different latent spaces, most are well struc-
tured and show a clear correlation with the ground
truth state (color coded). Although their structure is
visually appealing, we are primarily interested in verify-
ing is whether they satisfy P-controllability. To do this,
we sample random starting and goal states, and succes-
sively apply the control law ut ∝ (x(Igoal)− xt(It)). A
space is deemed P-controllable if the system moves to
x(Igoal) in the limit of many time-steps. For reference,
we also apply model-predictive control to E2C.

Convergence curves in the true state space are shown
in Fig. 3, along with example rollouts in the learned la-
tent space (more examples in Appendix C). We can see
that only NewtonianVAE produces P-controllable latent
states, as all the remaining models diverge under a P-
controller. This highlights the fact that even though the
latent spaces learned by the Full-NetwtonianVAE and
E2C are seemingly well structured for the point mass
system, they fail to provide P-controllability. While
these systems can still be stabilised using more complex
control schemes such as MPC, this is entirely unneces-
sary with a P-controllable latent space, where trivial
control laws can be applied directly.

6.2. MDN goal and boundary visualization

Having trained a NewtonianVAE on a dataset of ran-
dom transitions we can use the learned representations
to fit the mixture of P-controllers in (12) to the few-shot
demonstration sequences.
Reacher-2D In this environment there are three col-
ored balls in the scene and the task is reaching the three
balls in succession, where the arm’s starting location
varies across demonstration sequences. We used the

true reacher model with a custom controller to generate
demonstration images. A full demonstration sequence
is shown in Appendix B. For this experiment we use a
linear π(x), though a MLP yields similar results.

After fitting (12) on a single demonstration sequence,
we visualize the goals xgoal and the decision boundaries
of the switching network π(x) in Fig. 4(left). The figure
shows that goal states are correctly identified (diamond
markers), and that the three sub-task regimes are cor-
rectly segmented. Decoding xgoal, confirms that the
goals are correctly represented in image space, adding a
layer of interpretability to an upstream control policy.

Imitation learning performance We now com-
pare various imitation learning methods in the simulated
task described above. A reward of 1.0 is given when the
system reaches a neighborhood of each target (as mea-
sured in the true system state), but the targets must
be reached in sequence. A more detailed description
of the task can be found in Appendix B. Our method
(switching P-controller) uses a finite-state machine in-
ferred from the MDN trained on latent demonstrations
(Fig. 4(left)). We compare it to behaviour cloning with
an LSTM with 50 recurrent units, in the Newtonian-
VAE’s latent space, and GAIL [23], a state-of-the-art
IRL method trained on ground truth proprioceptive
states. Table 1 shows the imitation efficiency for in-
creasing numbers of demonstration sequences, with ex-
ample rollouts shown in Fig. 4(right). The results show
that goal-driven P-control in a hybrid control policy
is significantly more data efficient and robust to noise
than a standard behaviour cloning policy. Additionally,
switching controllers dramatically outperform GAIL5,
even though this was trained on 5 times the number of
environment interactions used by the NewtonianVAE.

Real multi-object reacher We now apply our
model to real robot data. Here, we record a 7-DoF PR2
robot arm that moves between 6 objects in succession
in a hexagon pattern. A full sequence comprises ap-
proximately 100 frames. We use 636 frames to train the
NewtonianVAE and an additional 100 held-out frames
to train the MDN. Further model and dataset details
can be found in Appendix B.

Fig. 5 shows the image representations of the learned
goals (left) and the mode π(x) that is active for each
frame in the demonstration sequence (right). We can
see that the six goals are correctly identified by the
MDN, and that segmentations are correct in the sense
that a frame is assigned to the learned goal to which the
robot is moving at that time step. Note that the model
is able to recover correct goals and segmentations even

5Maximum Entropy IRL performed equally poorly, failing to
reach a single goal. This is unsurprising, due to the connections
between this and adversarial imitation learning [14].
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Figure 5: Decoded goals (left) and sequence segmentation (right) learned for a 6-goal visual trajectory of a PR2
robot. The sequence shows 33 equally spaced frames of a 100-frame demonstration.

Demonstration
sequences

Switching P-controller LSTM GAIL from
proprioceptionClean Noisy Clean Noisy

1 3.0± 0.0 2.17± 0.32 0.81± 0.35 0.27± 0.20 —
10 3.0± 0.0 2.01± 0.34 3.00± 0.00 1.42± 0.34 —
100 3.0± 0.0 2.06± 0.30 3.00± 0.00 1.23± 0.30 0.62

Table 1: Efficiency of imitation learning methods for vision-based sequential multi-task control. Metric: Environment
Reward (max = 3.0). The NewtonianVAE is used to encode the frames. ‘Noisy’: Added action noise N (0, 0.252)
during the rollouts. Error ranges: 95% confidence interval across 100 rollouts. GAIL is trained for 5000 episodes.

though not all of the joints are visible in every frame.

6.3. Fitting DMPs for path following in latent space

We show how the NewtonianVAE can be used to en-
able a robot to learn a vision-driven controller to follow
a demonstration trajectory, using the fetch-3D environ-
ment. To this end, we draw a ’G’-shaped trajectory in
the first 2 dimensions of the latent space and fit a DMP.
The DMP runs in 100 time-steps, spanning 4 seconds of
execution, where we feed the acceleration output by the
DMP as the action to the environment, and the new
state and velocity is inferred by the NewtonianVAE.

Fig. 6 shows that the robot correctly follows the
demonstration trajectory, showing that the latent space
induced by the NewtonianVAE enables path following
using a DMP just by virtue of its P-controlability prop-
erty, without needing to be explicitly trained to perform
well under a DMP, as done by [8].

7. Discussion

Limitations and Future Work This work assumes
that underlying systems are proportional controllable,
and follow Newtonian dynamics. Moreover, it should
be noted that vision-based torque control of high dimen-
sional robot manipulators requires high speed vision.
However, in our opinion, the most notable limitation is
the fact that the imitation learning model only learns
a fixed set of goals. Ideally, the agent would learn
a semantic goal, which would represent a command
”fetch the yellow ball”, for a variable position of the
yellow ball and not a fixed state. However, this would
require demonstration data with substantially more

1.5 1.0 0.5 0.0 0.5
1.5

1.0

0.5

0.0

0.5

Demonstration
DMP rollout
Initial state
Final state

t = 0.0s t = 0.3s t = 0.6s t = 0.8s

t = 1.1s t = 1.4s t = 1.7s t = 2.0s

t = 2.2s t = 2.5s t = 2.8s t = 3.1s

Figure 6: Left: Overhead view of demonstration and
trajectory produced by the DMP in the fetch-3D envi-
ronment. The first 2 dimensions of the NewtonianVAE’s
latent space are shown. Right: Frames seen by the
NewtonianVAE during this rollout.

variety than considered here. We have also avoided
multi-modal demonstrations for simplicity, though we
believe it would be of interest to integrate our method
with approaches like InfoGAIL [34].

Conclusion We introduced NewtonianVAE, a struc-
tured latent dynamics model designed to allow P-
controllability from pixels. Results show that this struc-
tured latent space allows for trivial, robust control in
the presence of noise and dramatically simplifies and
improves imitation learning, which can be framed ei-
ther as a switching goal-inference or as a path following
problem in the latent space. Additionally, our model
provides visually interpretable goal discovery and task
segmentation under both simulated and real environ-
ments, without any labelled or proprioception data.
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