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Abstract

We present a novel framework for contrastive learning of

pixel-level representation using only unlabeled video. With-

out the need of ground-truth annotation, our method is ca-

pable of collecting well-defined positive correspondences

by measuring their confidences and well-defined negative

ones by appropriately adjusting their hardness during train-

ing. This allows us to suppress the adverse impact of am-

biguous matches and prevent a trivial solution from being

yielded by too hard or too easy negative samples. To ac-

complish this, we incorporate three different criteria that

ranges from a pixel-level matching confidence to a video-

level one into a bottom-up pipeline, and plan a curriculum

that is aware of current representation power for the adap-

tive hardness of negative samples during training. With the

proposed method, state-of-the-art performance is attained

over the latest approaches on several video label propaga-

tion tasks.

1. Introduction

Learning pixel-level representation for visual correspon-

dence can facilitate numerous downstream applications [26,

5, 31]. In contrast to the image-level representation which

demands a semantic invariance among object instances of

the same category, the pixel-level representation further re-

quires the fine-grained localization ability to discriminate a

distinctive match from all possible matching candidates.

Supervising the representation for pixel-level correspon-

dence, however, often requires costly annotations defined

for all pixels. Constructing such dense annotations be-

come even more problematic in the presence of occlusions

and non-rigid object deformations. Synthetically generated

data [34, 4, 43] would be an alternative of high-quality an-

notation maps, but it has the downside of limiting general-

ization to real scenes.

Several methods [51, 52, 30, 29, 28, 20] have attempted
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(a) image pair

(b) collected positive correspondences
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Figure 1. Visualization of collected samples used in our con-

trastive learning: given (a) an image pair, we collect (b) positive

correspondences that are aware of matching uncertainty, and (c)

negative ones that are neither too easy nor too difficult.

to alleviate this by leveraging abundant unlabeled videos as

a source of free supervision. Unlike to the synthetic su-

pervisions [34, 4, 43], richer appearance and shape varia-

tions captured from real world strengthen their generaliza-

tion ability. Furthermore, the nature of temporal coherence

in video allows the correspondences likely to exist across

adjacent frames, providing useful constraints for training.

Standing on these bases, they first track points over time

and then learn from the inconsistency between the original

points and tracked ones in a form of reconstruction.

Establishing correspondences in the unconstrained

videos, however, imposes additional challenges due to the

existence of temporal discontinuities. For frames sampled

with a large temporal stride, the self-supervised loss often

1034



becomes invalid in the presence of complex object defor-

mations, illumination changes, and occlusions. This could

be partially addressed by considering more matching candi-

dates over additional adjacent frames that are likely to con-

tain valid correspondences, e.g. tracking cycle with multi-

ple lengths [52] or augmenting the model with a memory

bank [28]. However, the number of ambiguous matches in-

creases at the same time due to the larger candidates, which

is problematic as the loss is evenly influenced by them.

Very recently, the concurrent work [20] casts this task

into a probabilistic inference of a path through the graph

constructed from an input video. In contrast to the previous

works [51, 52, 30, 29, 28] that learn from a reconstruction-

based loss, their consideration of negative correspondences

produce better performances through the contrastive objec-

tive [37]. However, the formulation of assigning graph

nodes only within an image is still challenged by occlusions

where the correspondences disappear to be out of the given

nodes. Furthermore, composing negative examples with all

pairs of nodes that do not meet cycle-consistency constraint

may let too easy negative samples to degrade the contribu-

tion of harder ones that are useful for contrastive learning.

In this work, we present a novel contrastive learning ap-

proach that is capable of collecting well-defined positive

correspondences by measuring their uncertainties and well-

defined negative ones by controlling their hardness during

training, as exemplified in Fig. 1. Unlike previous works,

our approach is able to suppress the adverse impact of am-

biguous matches and simultaneously prevent a trivial solu-

tion from being yielded by too easy negative samples.

Specifically, to measure reliable matching confidence

without ground-truth annotation, we formulate a bottom-

up pipeline by incorporating three different criteria; Start-

ing from checking forward-backward consistency, the ini-

tial scores are further optimized by solving the optimal

transport problem, which enforces the total uncertainty for

all possible matches over an image to be minimized, and

then imposing a temporal coherence constraint to be less

susceptible to background clutters and repetitive patterns.

Furthermore, from the observation in metric learning liter-

ature [53, 46] that using too hard or too easy negative sam-

ples may produce worse representations, we collect semi-

hard negative samples by specifying the upper and lower

thresholds of their hardness. These thresholds are dynam-

ically reconfigured during training with the proposed cur-

riculum that is conditioned on the capability of the current

representation. With the proposed method, state-of-the-art

performance is attained over the latest approaches on sev-

eral video label propagation tasks.

2. Related Work

Self-supervised learning of visual representation Tech-

niques for self-supervised representation learning have re-

cently provided remarkable results closing the gap to super-

vised methods [18, 8, 16]. Generally, they generate super-

visory signals by holding part of the input data for defining

a fixed target and then minimizing the discrepancy between

the target and the predicted missing parts [39, 7, 35, 13, 14].

Yet, the rapid progress of self-supervised representa-

tion learning on an image or video has not translated

into equivalent advances in learning pixel-level represen-

tation [51, 52, 30, 29, 28]. The key idea is similar to the

approaches for an image or video; The proxy task is de-

fined as tracking along video frames, and the model learns

by reconstructing the attributes between given query points

and the tracked ones. While these reconstruction-based ap-

proaches are often challenged due to false positive targets

defined at occluded regions, we explicitly disambiguate and

discard them from being utilized in the objective.

Negative mining Most recently, contrastive methods [37]

have shown great performance gains by utilizing randomly

sampled negative examples to normalize the objective.

Though numerous variants have shown improved perfor-

mances [18, 8, 16], selection strategies for negative samples

has not been deeply explored. Meanwhile, it has a rich line

of research in the metric learning community. Most of the

literature [53, 46] observed that it is helpful to use negative

samples, while showing that mining the very hardest nega-

tives can hurt performance. Similar margin-based approach

also have been popularly employed in pixel-level represen-

tation learning, including patch matching [17], depth esti-

mation [57], and optical flow [9]. In the unsupervised set-

ting where the annotation of correct matches is unavailable,

some methods [25] attempted to heuristically set the nega-

tive matching candidates within a local window that is cen-

tered at the point assumed to be positive. However, the de-

gree of difficulty cannot be regulated in their formulation,

and choosing the negatives as the nearest candidates may

be too difficult to learn, thus limiting the performance.

Optimal transport Optimal transport (OT) provides a

way to estimate an optimal distance between two distribu-

tions. An advantage of OT is its robustness to noise which

is useful for many computer vision applications, mainly for

domain adaptation [10, 3], generative model [1, 15], and

graph matching [55, 54]. OT also has been employed in re-

cent literature for visual correspondence, such as 3D shape

matching and surface registration [49], scene flow estima-

tion [42], and semantic correspondence [32]. To ensure the

reliability of initial matching costs (i.e. dissimilarities) dur-

ing the optimization, they require ground-truth supervisions

or pre-trained network parameters with ImageNet [12]. In

contrast, the proposed bottom-up pipeline can yield reliable

confidence scores without the need of annotations by incor-

porating tailored criteria for self-supervised learning includ-

ing OT formulation.
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Figure 2. Illustration of the self-supervised loss by means of: (a) reconstruction in [51, 52, 30, 29, 28], (b) contrast in [20], and (c) our

method. We denote by blue, green, red, and gray circle, respectively, query, positive, negative, and occluded sample. Unlike previous

works, our approach is capable of collecting well-defined positive correspondences by computing their confidence scores and well-defined

negative ones by appropriately adjusting their hardness.

3. Problem Statement

Given a video sequence with an interval K as a col-

lection of images {It, ..., It+K}, self-supervised learning

of pixel-level representation involves first tracking a pixel

i = [ix, iy]
T from It to It+K and then minimizing the dis-

crepancy between the original pixel and the tracked one.

Analogously to the classical matching pipeline [41], track-

ing begins with encoding the similarity S between two

pixels i and j from a pair of images It and It+k where

k ∈ [1,K]. To this end, dense feature maps F t and F t+k

are first extracted through the shared parameters W and its

cosine distance is then computed as

Sk
ij = 〈F t

i , F
t+k
j 〉/‖F t

i ‖2‖F
t+k
j ‖

2
∈ R

n×n (1)

where n denotes the number of pixels in an image.

Following a pioneering work of [51], several works [29,

28] proposed to learn their model by reconstructing the

color of original pixel j from the tracked ones as illustrated

in Fig. 2 (a):

Lk
rec =

∑

j
||φk

j −
∑

i
P k
ij · φi||

2
2, (2)

where φ is the color of reconstruction target and P is the

matching probability converted from similarity scores as

P k
ij = exp(Sk

ij)/
∑

l exp(S
k
lj). Similar to the soft argmax

operator in [24], they conducted tracking by computing the

weighted sum of the attributes with corresponding matching

probabilities. For an another way of tracking, some meth-

ods [52, 30] employed deterministic localizer modules with

cycle-consistency constraint1 [38, 23], e.g. a spatial trans-

former network [52] and an object-level tracker [30].

While these approaches consider various kinds of at-

tributes for the reconstruction target, as summarized

in Tab. 1, the reconsturction often becomes invalid when

faced with temporal discontinuity as the target disappears

due to occlusions. A possible approach to address this

is to consider additional matching candidates from multi-

ple adjacent frames that are likely to contain valid corre-

spondences, such as augmenting the model with memory

1Fig. 2 (a) illustrates the methods [51, 29, 28] that track only in a

forward direction of time. Meanwhile, other reconstruction-based meth-

ods [52, 30] track first forward and then backward to leverage cycle-

consistency constraint.

Methods
Training objective Curricular

policyAtt. Confid. Negative

Colorization [51] RGB ✗ ✗ ✗

CorrFlow [29] Lab ✗ ✗ Fixed

MAST [28] Lab ✗ ✗ ✗

TimeCycle [52] F&L ✗ ✗ ✗

UVC [30] F&L ✗ ✗ ✗

CRW [20] F ✗ All ✗

Ours F ✓ Semi-hard Dynamic

Table 1. Comparison of recent related work. The table indicates

employed training objective and curriculum. The abbreviation of

“Att.” and “Confid.” denotes attribute and confidence estimation,

respectively. For the type of the attribute, we denote by “F” and

“L”, embedded feature and location, respectively.

component [28] or tracking cycles of different lengths [52].

However, the number of ambiguous matches increases at

the same time due to larger candidates, and they are not ex-

plicitly treated to be discarded during training.

Recent concurrent work [20] proposed to learn by find-

ing probabilistic paths in a graph constructed from an input

video. As shown in Fig. 2 (b), the pathfinding is conducted

in a contrastive setting where a query pixel itself is assumed

to be a positive correspondence with cycle-consistency con-

straint and all other ones belong to be a negative set. Denot-

ing P a→b
ij as a long-range matching probability from Ia to

Ib, the loss function is defined as

Lk
con = −

∑

ij
[In×n logP

t→t+kP t+k→t]ij (3)

where In×n is a n × n identity matrix and P t→t+k =
∏t+k−1

m=t Pm→m+1.

However, their formulation assumes that total matching

probabilities are conserved within a graph, i.e. a cycle of

time, which is often violated when matches disappear due to

occlusions, cutting off intermediate correspondence trajec-

tory. Furthermore, contrasting the positive correspondence

with all remaining candidates may not be the best choice

for yielding a good representation. As the negative samples

become mixed with hard and easy ones, the easy ones can

reduce the contribution of harder ones by means of softmax

normalization, causing the gradients to be vanished.
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4. Method

4.1. Overview

We address the forementioned limitations effectively by

collecting well-defined positive correspondences based on

their uncertainties and well-defined negative ones that are

neither too easy nor too difficult, as shown in Fig. 2 (c).

Fig. 3 overviews the proposed method. From a pair of

query and kth key feature maps, we first compute similarty

scores of all possible matches with Equ. (1), and then col-

lect positive samples by computing their confidence scores

and negative samples by appropriately adjusting their hard-

ness with the curriculum. Finally, we learn our model by

contrasting the positive samples with the semi-hard nega-

tive ones collected across K time steps.

4.2. Mining Positive Correspondence

We design a bottom-up pipeline to measure the matching

uncertainty consisting of three different criteria; Forward-

backward consistency in a pixel-level, optimal transport op-

timization in an image-level, and temporal coherence con-

straint in a video-level.

Checking consistency To establish an initial set of con-

fidence scores, we start from classic uncertainty measure-

ment; checking forward-backward consistency [38, 23].

This can be done by applying the argmax operator to the

similarity scores twice for forward and backward direction,

respectively. Yet, assigning binary labels (0 or 1) may pro-

duce true-negative matches, i.e. true matches that do not

meet the criterion due to the disorganized representations in

early training. We alleviate this by adopting a soft consis-

tency criterion of [44], such that

Qk
ij =

(Sk
ij)

2

maxiSk
ij ·maxjSk

ij

(4)

where Qij equals one if and only if the match between i and

j satisfies the forward-backward consistency constraint, and

becomes less than one otherwise.

Solving optimal transport problem The confidence

score in Q is computed in a pairwise manner, i.e. individu-

ally for each pixel, and does not care about mutual relation

between pixels, often leading to the many-to-one matching

problem. To address this, we refine the initial scores in a

non-local manner by solving the optimal transport problem

such that the total uncertainty in an image is minimized as

min Tk [
∑

ij
T k
ij(1−Qk

ij)]

subject to T k1 = 1, (T k)T1 = 1,
(5)

where T is the transport plan and 1 is n× 1 vector of ones.

To avoid the many-to-one matching problem, both row-wise
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Figure 3. Visualization of the proposed learning framework:

given a query and corresponding key images with an interval K,

their feature maps are extracted through shared embedding net-

works with parameter W. From a pair of query and kth feature

maps, we compute their similarity scores and then collect positive

and negative correspondences to learn in the contrastive setting.

and column-wise sums of T are constrained with the reg-

ularization term that prevents too large values from being

assigned to some rows or columns of T . By introducing ad-

ditional regularization of the negative entropy term, we ef-

ficiently solve Equ. (5) using Sinkhorn algorithm [11] that

allows us to scale to massive pixels from video sequences.

Note that the solution described in Alg. 1 only consists of

matrix multiplication and exponential operations.

The optimal transport has been also adopted in recent

correspondence estimation approaches [32, 42, 45], but they

require strong supervisions or guaranteed representation

from pre-trained network to yield reliable matching costs

during optimization. In contrast, we incorporate tailored

criteria for self-supervised learning with optimal transport

into the proposed bottom-up pipeline, enabling us to obtain

reliable confidence scores in the absence of ground-truth an-

notation.

Imposing temporal coherence constraint Lastly, we

employ the nature of temporal coherence as a video-level

constraint to further make the refined confidence scores T
less susceptible to ambiguous matches due to background

clutter or repetitive patterns. Specifically, we retain only

the matches within a local window Mi(w
k) centered at the

query pixel i with a radius wk:

Ck
ij = W k

ij · T
k
ij s.t. W k

ij =

{

1, if j ∈ Mi(w
k)

0, otherwise
(6)

where the radius wk is dilated with respect to the temporal

distance k.

Selection Selection of positive correspondence set p can

be done by simply picking the best match, a pair of two

pixels (i, j), whose confidence score is one, such that

pk = {(i, j)|Ck
ij = 1}. (7)

Without the additional network parameters or heavy com-

putational loads, our bottom-up pipeline allows plausible

matches to be retained as shown in Fig. 4 and Fig. 5.
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(a) Q = 1 from W
0 (b) C = 1 from W

0 (c) Q = 1 from W (d) C = 1 from W

Figure 4. Visualization of the matches: when (a) Q = 1, and (b) C = 1 computed from randomly initialized parameters (denoted by

W0), and when (c) Q = 1, and (d) C = 1 computed from learned parameters through our method (denoted by W).
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Figure 5. Visualization of the confidence scores in matrix Q and

T : (a),(b) with randomly initialized parameters (denoted by W0),

and (c),(d) with learned parameters (denoted by W). Due to the

space limit, we visualized a partial matrix (a quarter of original).

4.3. Mining Negative Correspondence

Semi-hard negatives The employment of negative sam-

ples for contrasting positive ones has shown improved re-

sults in representation learning literature [53, 37]. However,

naively using too hard or too easy negative samples may

degrade the contribution of moderate ones, yielding worse

representation [46]. To alleviate this, we collect semi-hard

negative samples by specifying the lower and upper bound-

aries of their hardness. Concretely, given a query pixel u
and its positive correspondence (u, v) ∈ p, negative sam-

ples n are collected with two thresholds m1,m2 ∈ [0, 1]
as

nk(u, v) = {(u, q)|m1
k < rank(Sk

uq) < m2
k, q 6= v},

(8)

where rank(Suv) ∈ [0, 1] operation returns a normalized

rank of similarity score Suv sorted in descending order.

Dynamic Curriculum As the degree of hardness is rel-

atively defined with respect to the current capability of the

embedding networks, it is necessary to determine appropri-

ate hardness while the training progresses. However, in the

unsupervised setting, it is nontrivial to assess the represen-

tation capability due to the lack of ground-truth annotation.

We address this by measuring the discriminability of the

representation with a spatial variance of confidence score

distribution, i.e. how distinctively a positive correspon-

dence is established among all possible matching candi-

dates. Accordingly, the hardness can be determined to be

inversely proportional to the variance of given positive cor-

respondence:

mk ∝ 1/
∑

(u,v)∈pk
varv(T

k
uv), (9)

where varv operator computes the variance over the spatial

coordinates j with respect to a position v, and can be effi-

ciently implemented in parallel using the algorithm of [47].

Algorithm 1: Training procedure of the proposed method

Input: images {It, ..., It+K}, Output: network parameter W

1 : Extract features {F t, ..., F t+K}
for k = 1 : K do

2 : Compute pairwise similarity scores Sk

3 : Compute Qk by checking consistency

4 : Compute T k by solving optimal transport problem

∗ Sinkhorn algorithm ∗

Initialize a = 1n−1, U = exp(−(1−Qk)/ǫ)
for l = 1 : lmax do

b = 1n−1/(Ua)
a = 1n−1/(UTb)

end for

T k=diag(a)Udiag(b)

5 : Compute Ck with window kernel of radius wk

6 : Collect positive set pk from Ck

7 : Set boundary mk

1 following curriculum

8 : Collect negative set nk from Sk with mk

1 ,m2

end for

9 : Compute gradients by minimizing Equ. (10)

As exemplified in Fig. 5 (b), the distribution of confidence

scores in early training is sparsely dispersed with the high

variance, thus we provide less hard negatives by setting

lower thresholds. On the contray when the variance is small

later in training, e.g. Fig. 5 (d), a higher threshold is as-

signed to encourage the model to overcome more difficult

examples. Note that the intermediate confidence scores T
are utilized here since discarding the confidence scores out-

side of the local window in Equ. (6) may also remove the

information needed to compute the current representation

power. In practice, we fixed the upper threshod m2 during

training and adaptively controlled the lower one m1 follow-

ing the curriculum.

As shown in Tab. 1, previous works paid little attention

on learning with curriculum. Though [29] used the sched-

uled sampling strategy [2], their curriculum is fixed during

training. Some of them [52, 20] attempted to learn from

multiple cycles as shorter ones may ease learning, but the

number of cycle is not guided by the curriculum.

4.4. Contrastive Learning

Finally, we minimize the following objective:

L =
∑

k

∑

(i,j)∈pk

− log
exp(Sk

ij/τ)
∑

l exp(S
k
n(i,j)/τ) + exp(Sk

ij/τ)
,

(10)
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Methods Backbone Supervised Dataset (Size) J&Fmean Jmean Jrecall Fmean Frecall

Colorization† [51] ResNet-18 ✗ Kinetics (800 hours) 34.0 34.6 34.1 32.7 26.8

CorrFlow† [29] ResNet-18 ✗ OxUvA (14 hours) 50.3 48.4 53.2 52.2 56.0

MAST† [28] ResNet-18 ✗ YT-VOS (5.58 hours) 65.5 63.3 73.2 67.6 77.7

TimeCycle [52] ResNet-50 ✗ VLOG (344 hours) 48.7 46.4 50.0 50.0 48.0

UVC [30] ResNet-18 ✗ Kinetics (800 hours) 60.9 59.3 68.8 62.7 70.9

CRW [20] ResNet-18 ✗ Kinetics (800 hours) 67.6 64.8 76.1 70.2 82.1

Ours ResNet-18 ✗ YT-VOS (5.58 hours) 70.3 67.9 78.2 72.6 83.7

ResNet [19] ResNet-18 ✓ I (1.28M, 0) 62.9 60.6 69.9 65.2 73.8

OSVOS [6] VGG-16 ✓ I/D (1.28M, 10k) 60.3 56.6 63.8 63.9 73.8

FEELVOS [50] Xception-65 ✓ I/C/D/YT-VOS (1.28M, 663k) 71.5 69.1 79.1 74.0 83.8

STM [36] ResNet-50 ✓ I/D/YT-VOS (1.28M, 164k) 81.8 79.2 - 84.3 -

Table 2. Quantitative results for video object segmentation on DAVIS-2017 validation set. For the datasets, we denote as I=ImageNet,

C=COCO, D=DAVIS, P=PASCAL-VOC, and a tuple by the numbers of image-level and pixel-level annotations. The methods denoted by

† use its own label propagation algorithm. Result of [19, 30, 52] is borrowed from [20].

1 49 49 49 49 49

1 391 399 391 39 39

1

(a) first frame

37

(b) TimeCycle [52]

37

(c) UVC [30]

37

(d) MAST [28]

37

(e) CRW [20]

37

(f) Ours

Figure 6. Qualitative results for video object segmentation on DAVIS-2017 validation set: (a) first frame with given annotation, and

propagated label using correspondences obtained from (b) TimeCycle [52], (c) UVC [30], (d) MAST [28], (e) CRW [20], and (f) our

method. The number at the right upper corner of each image indexes corresponding frame order.

where l denotes a number of collected negative samples and

τ is a temperature. Unlike [51, 52, 30, 29, 28, 20], our loss

computes the gradients only at the collected positive corre-

spondences p thereby preventing the distraction of ambigu-

ous matches. Furthermore, we avoid the gradient vanishing

problem due to too easy negative ones by adjusting the hard-

ness of negative samples n. Alg. 1 summarizes the overall

training procedure of our method.

4.5. Implementation Details

As our backbone, we adopt the ResNet-18 network ar-

chitecture [19] modified to increase the spatial resolution

of the convolutional feature map by a factor of four, i.e.

downsampling factor of 1/8. The parameters of sinkhorn

algorithm [11] are set following [32], such that a weight-

ing term of additional entropy regularization ǫ to 0.05 and

max iteration lmax to 30. The temperature τ is set to 0.03.

The number of interval K is determined as 5 according to

the ablation study in Sec. 5.3. A set of window radii wk

are dilated with respect to the temporal length k such that

{2, 2, 3, 5, 5}. For training data, raw video sequences from

YouTube-VOS [56] training set are utilized, which contains

3, 471 videos for 94 different object categories with the total

length of 5.58 hours. The input images are all resized into

256 × 256, and the resulting feature maps have a size of

32×32. We train our model using Adam optimizer [27] for

1M iterations with 12 sequences per batch and a learning

rate of 10−4. The boundaries for negative mining are ini-

tially set to {m1,m2} = {0, 0.9} when the training starts,

and the maximum threshold for m1 is set to 0.8.

5. Experiments

5.1. Experimental Settings

The evaluation of the learned representation is conducted

on video label propagation tasks; Given the ground-truth

annotation at the first frame, labels are propagated to the

rest of the frames using the representation of our model to

compute dense correspondences. Due to the rapid progress

in this research line, the label propagation algorithm of the

state-of-the art methods is not standardized. For a fair com-

parison, we simply follow the same label propagation algo-

rithm of the best approach for each evaluation task. Gener-

ally, the algorithms average the inferences from additional

spatial and temporal context in video to obtain the final

propagated label. The details of each algorithm are de-

scribed in the supplemental material, including more quali-

tative results and performance analyses of our method.
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Figure 7. Qualitative results for part segmentation and pose tracking on VIP (top) and JHMDB (bottom) validation set, respectively:

(a) first frame with given annotation, and propagated label using correspondences obtained from (b) UVC [30], and (c) our method.

Methods Sup. Overall
Seen Unseen

J F J F

Colorization [51] ✗ 38.9 43.1 38.6 36.6 37.4

CorrFlow [29] ✗ 46.6 50.6 46.6 43.8 45.6

MAST [28] ✗ 64.2 63.9 64.9 60.3 67.7

Ours ✗ 67.3 66.2 67.9 63.2 71.7

OSVOS [6] ✓ 58.8 59.8 60.5 54.2 60.7

PreMVOS [33] ✓ 66.9 71.4 75.9 56.5 63.7

STM [36] ✓ 79.4 79.7 84.2 72.8 80.9

Table 3. Quantitative results for video object segmentation on

Youtube-VOS validation set. Following the protocol of [56], we

categorize the performances into “Seen” and “Unseen” classes.

5.2. Results

Video object segmentation We first evaluate our model

on two widely-used datasets for video object segmentation

task, DAVIS-2017 [40] and Youtube-VOS [56]. The per-

formances are reported with two standard metrics, namely

region overlapping (J ) and contour accuracy (F).

For the evaluation on DAVIS-2017 [40] validation set,

we use the label propagation algorithm of [20] and resize

the input images into 480× 480 resolution. As summarized

in Tab. 2, despite of using smaller training dataset, the pro-

posed model clearly outperforms all other self-supervised

methods, exhibiting even competitive performances to the

fully-supervised techniques. This indicates that collecting

informative positive and negative samples for contrastive

learning greatly effects the quality of the representations.

The qualitative results in Fig. 6 also demonstrate that the

representation from our model can effectively deal with

the ambiguities between temporally distant frames such as

large illumination change, complex object deformation and

motion-blurred region.

We also examine our method on Youtube-VOS [56] vali-

dation set by hiring the label propagation algorithm of [28].

Compared to the methods [51, 29, 28] that only consider re-

construction targets to learn, a large gain reported in Tab. 3

confirms that employing hard negative samples for con-

trastive learning enables us to learn stronger representation.

Methods Sup.
VIP [58] JHMDB [22]

mIoU AP α = 0.1 α = 0.2

TimeCycle [52] ✗ 28.9 15.6 57.3 78.1

UVC [30] ✗ 34.1 17.7 58.6 79.8

CRW [20] ✗ 36.0 - 59.0 83.2

Ours ✗ 37.8 19.1 60.5 82.3

ResNet-18 [19] ✓ 31.8 12.6 53.8 74.6

ATEN [58] ✓ 37.9 24.1 - -

TSN [48] ✓ - - 68.7 92.1

Table 4. Quantitative results for part segmentation and pose

tracking on VIP and JHMDB validation set, respectively. We

denote α by the used threshold for PCK values.

Part segmentation and pose tracking We also evaluated

our model on the validation set of video instance parsing

(VIP) dataset [58] for semantic human part segmentation,

and JHMDB benchmark [22] for human keypoints track-

ing. Compared to the other datasets described above, these

benchmarks [58, 22] enable us to validate more precise cor-

respondence. We follow the evaluation protocol of [52, 30],

resizing images into 560 × 560 for part segmentation, and

320× 320 for pose tracking. For the evaluation metrics, we

use the mean intersection-over-union (IoU) and mean aver-

age precision (AP) to measure instance-level human pars-

ing, and probability of correct keypoint (PCK) metric to

measure the accuracy between tracked keypoints and the

ground-truth one with a threshold α.

Fig. 7 shows that our method can localize fine-grained

details of the object in both semantic part segmentation and

keypoint tracking tasks. In particular, as reported in Tab. 4,

our results show better performances in terms IoU, AP and

PCK at α = 0.1 metrics compared to the method [20] that

consider all possible negative samples during training. This

reveals that adjusting hardness of negative samples with re-

spect to the current capability of representation can help

guide a representation to be more discriminative.

5.3. Ablation study

To examine the effects of our components, we conduct

a series of ablation studies on the validation set of DAVIS-

2017 [40] by giving variety to one component at a time.
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Figure 8. Convergence analysis: (a) the performance with respect to various numbers of key frames K, and (b) with respect to various

curricula used in training. The convergence of threshold m1 is also visualized in (c).

Consistency Optimal transport Coherence
J&Fmean

(S → Q) (Q → T ) (T → C)

✓ ✓ ✗ 68.7

✓ ✗ ✓ 65.1

✗ ✓ ✓ 63.7

✓ ✓ ✓ 70.3

(a) uncertainty criteria

p n m1,m2 Curriculum J&Fmean

✓ ✗ ✗ - 64.6

✓ ✓ ✗ - 66.4

✓ ✓ ✓ ✗ 67.6

✓ ✓ ✓ linear 68.9

✓ ✓ ✓ dynamic 70.3

(b) curricular negative mining

Table 5. Ablation study on DAVIS-2017 validation set: for different components in (a) uncertainty criteria and (b) curricular negative

mining. Note that, in (a), the input of the removed criterion is directly provided as an input for the following criterion. In (b), when only

positive samples p are used during training, we utilize a reconstruction-based loss function (Equ. (2)) with the attribute of “feature space”.

Interval length To study the effect of using different in-

terval of time, we evaluate our model with varying the num-

ber of key frames K from 1 to 7 and the frame-rate from

6 fps to 3 fps. As shown in Fig. 8 (a), the measurement

of matching uncertainty allows us to learn from the frames

that are temporally distant. As the performance converges

within 4 − 6 lengths, we choose to use 5 frames with 3 fps

rate due to its efficiency and optimal performance.

Uncertainty criteria We also report the quantitative as-

sessment when one of criteria is removed from our bottom-

up pipeline in Tab. 5 (a). As shown in 3rd row, directly

applying optimal transport problem to the similarity scores

similar to [32, 42, 45] degrades the performance due to the

unguranteed matching costs in the self-supervised setting.

However, our bottom-up formulation enables us to yield re-

liable confidence scores in the absence of ground-truth an-

notation, highlighting the importance of incorporating those

constraints in a unified fashion.

Curricular negative mining To validate the effectiveness

of our negative mining strategy, four different baselines are

considered here; 1) learning only with positive correspon-

dences p by minimizing Equ. (2), learning in the contrastive

setting 2) with all possible negative samples similar to [20],

with semi-hard negatives n collected 3) by fixing m1 and

m2, and 4) by linearly increasing the lower threshold m1

to the upper one m2. As shown in Tab. 5 (b), the proposed

curricular negative mining method leads to substantial per-

formance gain over these baseline approaches.

We also validate the assumption of our dynamic curricu-

lum that the current representation power can be measured

by the distinctiveness of positive correspondence. For this

end, we additionally suppose there exists an oracular cur-

riculum with the access to the annotation of validation set,

thereby the actual capacity of embedding networks can be

monitored. Accordingly, the oracular curriculum adaptively

increases lower threshold m1 with respect to the perfor-

mance on a validation set. Fig. 8 (b) compares the ac-

curacies over 0.5M iterations when training with the pro-

posed curriculum, including two baseline curricula. We

find that the oracular and proposed curriculum converge

to roughly the same accuracy, while the linear curriculum

appears to converge more slowly to the lower accuracy.

From Fig. 8 (c), we observe that the proposed method nat-

urally pushes the threshold up to 0.8 (the highest allowed

threshold) around 0.4M iterations. These phenomena con-

firm our two conjectures that 1) assigning a higher threshold

later in training is desirable as the model is encouraged to

overcome more difficult examples and 2) the evaluation of

the representation can be replaced by measuring its discrim-

inability.

6. Conclusion

We presented a novel self-supervised framework for
learning pixel-level representation from only unlabeled
videos. Our approach is able to collect well-defined posi-
tive correspondences by measuring their uncertainties and
well-defined negative ones by controlling their hardness
during training. The outstanding performance was validated
through extensive experiments on various label propagation
tasks.
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