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Abstract

Despite the data labeling cost for the object detection

tasks being substantially more than that of the classifica-

tion tasks, semi-supervised learning methods for object de-

tection have not been studied much. In this paper, we

propose an Interpolation-based Semi-supervised learning

method for object Detection (ISD), which considers and

solves the problems caused by applying conventional In-

terpolation Regularization (IR) directly to object detection.

We divide the output of the model into two types accord-

ing to the objectness scores of both original patches that

are mixed in IR. Then, we apply a separate loss suitable for

each type in an unsupervised manner. The proposed losses

dramatically improve the performance of semi-supervised

learning as well as supervised learning. In the super-

vised learning setting, our method improves the baseline

methods by a significant margin. In the semi-supervised

learning setting, our algorithm improves the performance

on a benchmark dataset (PASCAL VOC and MSCOCO) in

a benchmark architecture (SSD). Our code is available at

https://github.com/soo89/ISD-SSD

1. Introduction

A dataset for object detection is much harder to create

than the one for classification. While there is only one class

in a single image for the classification task, there are multi-

ple objects with different class labels in a single image for

the object detection task. Therefore, the dataset for super-

vised object detection requires a pair of a class label and

bounding box information for each object. Labeling each

object takes more than a few seconds, and creating these

datasets requires hundreds of hours [19, 1, 9].

Due to the higher time and resource complexity for cre-

ating object detection datasets, recently, methods for learn-

ing with weakly labeled data (DW )1 or unlabeled data
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Figure 1. Supervised Learning (SL), Semi-supervised Learning

(SSL), Weakly-Supervised Learning (WSL) and Weakly Semi-

Supervised Learning (WSSL) for Object Detection. In this paper,

we deal with SSL.

(DU ) have been studied as opposed to learning with the

labeled data (DL) only. There are mainly three types

of object detection methods: weakly-supervised, semi-

supervised, and weakly-semi-supervised learning. Weakly-

supervised learning trains a model with a dataset that has

only class information but no location information (DW )

[34, 20, 12, 28, 13]. On the other hand, weakly-semi-

supervised learning is a learning method which uses DW

as well as DL [22, 30]. Weakly-semi-supervised detec-

tor improves its performance compared to that of weakly-

supervised learning, but it still needs to label classes for

DW . In the setting of semi-supervised object detection, in-

stead of DW , unlabeled data DU is utilized in combination

with the labeled data (DL) [29, 18, 11] (See Fig. 1.).

In this paper, we address the semi-supervised ob-

ject detection problem and propose a new method called

Interpolation-based Semi-supervised learning for object

Detection (ISD) whose loss terms can also be applied to

the supervised learning framework. Interpolation Regu-

larization (IR) which mixes different images and learns
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Figure 2. (a) Mixed image created by random interpolation between images A and B (b) Type-I : both patches are from object classes. (c)

Type-II : one of the patches is from the background class.

to predict the combined label rather than one hot vec-

tor performs outstandingly in supervised learning as well

as in semi-supervised learning for classification problems

[32, 25, 26, 4, 27]. However, it is challenging to apply IR

directly to object detection because the background class

consists of a very diverse and irregular texture. Fig. 2 shows

an example of applying IR to the object detection problem.

In Fig. 2(a), we mix image A and B using the mixing pa-

rameter λ = 0.5 as shown in the middle. Obviously, the

mixed green box has 50% of a dog and 50% of a bird as

we can see in Fig. 2(b). However, when an object is mixed

with a background as in Fig. 2(c), the mixed image appears

to be an 100% object corrupted by noise. If the detector is

trained by the conventional IR, any blurred or noisy mix-

ture images contribute to increasing the confidence of the

background class, and it will degrade performance. On the

other hand, if that sample is trained as a foreground object,

it is expected to be robust to noise and to learn about various

backgrounds around the object.

To tackle this problem, in this paper, we divide the

mixed images into two types (Type-I and II) depending on

whether one of the original images is the background or not.

Then, we apply a different IR algorithm suitable for each

type. The proposed ISD method which will be detailed in

Sec. 3 can be combined with conventional semi-supervised

learning methods such as CSD (consistency-based semi-

supervised learning) [11] to improve the semi-supervised

object detection performances. Also, the proposed scheme

can be used to enhance the detection performance in the su-

pervised learning framework. Our main contributions can

be summarized as follows:

• We show the problem in applying interpolation reg-

ularization directly to the object detection task and

propose a novel interpolation-based semi-supervised

learning algorithm for object detection.

• In doing so, we define two types of interpolation in

the object detection task and propose efficient semi-

supervised learning methods suitable for each type.

• We experimentally show the effectiveness of the pro-

posed method for each type by demonstrating a sig-

nificant performance improvement over the conven-

tional algorithms achieving SOTA semi-supervised ob-

ject detection performance.

2. Related Work

2.1. Interpolation­based Regularization (IR)

Interpolation-based Regularization is a promising ap-

proach due to its state-of-the-art performances and virtually

no additional computational cost. These methods construct

additional training samples by combining two or more train-

ing samples. Mixup [32] and Between-class learning [24]

are the earliest works that took steps in this direction. These
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methods are based on the principle that the output of a su-

pervised network for an affine combination of two training

samples should change linearly. Such kind of inductive bias

can be induced in a network by training it on the synthetic

samples constructed by mixing two samples and their cor-

responding targets. Manifold Mixup [25] mixes features in

the deeper layers instead of input images. Other works such

as CutMix [31] construct the synthetic samples by mixing

the CutOut [8] versions of two samples. Overall, these ap-

proaches can be interpreted as a form of data-augmentation

technique that seeks to construct additional training sam-

ples by combining two or more samples. In the unsuper-

vised learning setting, interpolation-based regularizers have

been explored in ACAI [5] and AMR [2]. These meth-

ods learn better unsupervised representations by enforcing

a constraint that the representations obtained by mixing the

representations of two samples should correspond to a data

point on the data manifold.

2.2. Semi­Supervised Learning (SSL)

Semi-Supervised Learning (SSL) is a dominant ap-

proach for machine learning when the annotated data is

scarce. There has been recent surge of interest in deep learn-

ing based on SSL for object classification [26, 4, 27]. These

methods can be broadly categorized into: (1) consistency

regularization methods and (2) generative adversarial net-

works (GAN) based methods. We describe below focusing

on consistency regularization methods, which is highly rel-

evant to out research.

The central idea of the consistency regularization meth-

ods is to enforce that the model predictions should not

change under reasonable permutations to the input. For ob-

ject classification, such permutations entail random transla-

tion, random cropping and horizontal flipping etc. Let us as-

sume that x and x′ are the original and the permuted inputs,

d(·, ·) be a distance function, w(t) be a weighting function

over iterations t and f(·) be a function on which consistency

loss is measured, then the consistency loss LU is computed

in an unsupervised manner and consequently the total loss

Ltotal is given by a linear combination of the consistency

loss and the supervised loss LS as follows:

LU = d(f(x), f(x′)) (1)

Ltotal = LS + w(t) · LU . (2)

Some notable examples of consistency training include

Π model [14], virtual adversarial training [17] and Mean

Teacher [23]. The recent advances in this direction includes

interpolation consistency training (ICT) [26] (its variants

MixMatch [4], ReMixMatch [3]) and FixMatch [21].

ICT, which is a specific type of consistency regulariza-

tion, constructs additional training samples through random

interpolation of two different unlabeled images. The con-

sistency loss of ICT consists of the output of interpolated

image and the interpolated output of two images. In addi-

tion to this, ICT predicts their outputs with a teacher model

(Mean-teacher [23]), which is an exponentially moving av-

eraged network during training.

FixMatch uses another form of consistency regulariza-

tion, where the model’s prediction on “weak augmenta-

tion” are encouraged to be consistent with the “strong aug-

mentation”. For weak augmentation, FixMatch uses hor-

izontal flipping, random translation and cropping, and for

strong augmentation it uses Cutout [8], RandAugment [7]

and CTAugment [3].

2.3. IR for Object Detection

Interpolation Regularization for Object Detection has re-

cently been studied in [33, 6]. They applied IR to object

detection in a supervised manner, and they focused on the

distribution and the mixed object region. However, they did

not consider the relationship between a foreground object

and the background (Our Type-II). In this paper, different

from the previous algorithms, we propose a method that ap-

plies IR to semi-supervised learning while considering the

relationship between an object and the background.

2.4. SSL for Object Detection

Semi-Supervised Learning for Object Detection has

recently been studied in [11] where CSD, the first

consistency-regularization-based semi-supervised object

detection method, was proposed. They exploited the consis-

tency between the output predictions from the original im-

age and the horizontally flipped one. Using the horizontal

flip perturbation, it easily computes the consistency losses

of classification and box regression at each position. To

prevent the ‘background’ class from dominating the consis-

tency loss in Eq. (2), they proposed the Background Elimi-

nation (BE) method which excludes boxes with high back-

ground probability in the computation of the consistency

loss. In this paper, we also utilize the BE using the class

probability of each candidate box. Also, the proposed ISD

is combined with CSD to produce the SOTA SSL object de-

tection performance.

3. Method

We denote a horizontally flipped version of an image A

as Â, and the image created by random mixing, λ · A +
(1− λ) ·B, of two images A and B as Mixλ(A,B). Sim-

ilar to Mixup, the mixing coefficient λ is drawn from the

Beta(α, α) distribution. In our method, we use SSD [16],

one of the most popular single-stage object detectors, as

a baseline detector. In the training of SSD, we add the

newly proposed interpolation-based consistency regulariza-

tion loss in combination with the flip-based consistency reg-

ularization loss in [11] to enhance the performance. The

network output of SSD fp,r,c,d is denoted as the output of
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Figure 3. The proposed ISD loss for each type. Mixλ(a, b) = λ · a+ (1− λ) · b

the pth layer of the pyramid, rth row, cth column and dth

default box, and (p, r, c, d) is expressed as k for brevity.

Each fk is composed of fk
cls and fk

loc which are the soft-

max output vector and the localization offsets of the cen-

ter and the size of the box, [∆cx,∆cy,∆w,∆h], at posi-

tion k, respectively. The mask m(I), which is computed by

fcls(I), is used in background elimination and interpolation

type categorization for image I and has the binary object-

ness value at each location k:

m(I)k =

{

1, if argmax(fk
cls(I)) 6= background

0, otherwise.
(3)

3.1. Interpolation­based Semi­supervised learning
for Object Detection (ISD)

3.1.1 Type categorization.

We determine the type of a pair of patches by the back-

ground elimination method [11] that only extracts patches

with a high objectness probability. Then we apply differ-

ent methods appropriate for each type of patches. Eq. (4)

is how we calculate each type of a mask. The Type-I mask,

mI , is calculated by element-wise multiplication of m(A)
and m(B). In other words, it becomes 1 when both patches

of m(A)k and m(B)k are 1, and otherwise it is 0. On the

other hand, the Type-II mask mA
II is calculated by element-

wise multiplication of m(A) and ∼ m(B), which means it

is 1 when the patch in image A has a high objectness score

while the corresponding patch at the same location in image

B has a high background score, and vice versa for mB
II .

Type-I mask: mI = m(A)⊗m(B),

Type-II(A) mask: mA
II = m(A)⊗ ∼ m(B),

Type-II(B) mask: mB
II =∼ m(A)⊗m(B).

(4)

3.1.2 Type I loss

When the patches in image A and B are all likely to be ob-

jects (Type-I), we define a Type-I loss inspired by the ICT

loss [26]. Note that there are two differences compared to

the conventional ICT. First, we used α-Jensen-Shannon di-

vergence (JSD / for α=1) as the consistency regularization

loss (function d(., .) in Eq. (2)). In the CSD, JSD shows

better performance because L2 loss equally weights all the

classes, including the background class. Second, we use

the same network to feed-forward inputs like CSD, distinct

from ICT which uses different networks for mixed and orig-

inal inputs using MeanTeacher [23]. Eq. (5) shows the loss

function of Type-I, which is the distance between the mixed

output of f(A)kcls and f(B)kcls and the output of the mixed

image of A and B, f(Mixλ(A,B))kcls.

lI = JS(Mixλ(f(A)
k
cls, f(B)kcls)||f(Mixλ(A,B))kcls)

(5)

The overall Type-I loss LI is the average of patches whose

Type-I mask is 1, i.e. LI = EI{mI=1}[lI ]. Here, E and I are

the expectation and the indicator function, respectively.

3.1.3 Type II loss

As shown in Fig. 3, in Type II, one patch has a high proba-

bility of foreground, while the other has a high probability

of background. In this case, instead of using the Type I loss

described above, we train the network to have similar pre-

dictions on the mixed patch and the patch with a high prob-

ability of foreground. This kind of loss can be interpreted as

a form of FixMatch loss [21] which encourages consistency

between the predictions on the strong augmentation and the

weak augmentation of an input. More specifically, in our

case, the mixed patch is considered as a strong augmenta-

tion while the patch with a high foreground probability acts

as no-augmentation. Note that, for classification, FixMatch

is trained with targets by creating pseudo-labels of samples
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Figure 4. Combination of ISD with CSD. The original images

(A) are flipped (Â) and the mixed images (M) are obtained

by combining the two. First, the order of flipped images are

changed by shuffling (B = shuffle(Â)), then A and B are mixed

(M = Mixλ(A,B)). CSD loss is calculated between A and Â

and ISD loss is computed between M and (A and/or B). In the

original set (A), the blue box (S) is labeled, to which the super-

vised loss is applied.

that exceed a threshold, whereas we do not need to set a spe-

cific threshold and the target is set according to the output

distribution of no-augmentation patch.

We set f(A) or f(B) as a target, and train the mixed out-

put (f(Mixλ(A,B))) to be close to f(A) or f(B). In doing

so, Kullback-Leibler (KL) divergence and L2 loss are used

as the classification and localization losses, respectively as

follows:

lAII cls = KL(f(A)kcls||f(Mixλ(A,B))kcls) (6)

lAII loc =
1

4
‖f(A)kloc − f(Mixλ(A,B))kloc‖

2

2
. (7)

The overall Type-II loss when patch A is foreground, LA
II ,

is calculated as the average of the sum of two individual

losses as LA
II = EI{mA

II
=1}[l

A
II cls + lAII loc]. Likewise, LB

II

is also calculated by applying the above loss, and the total

loss of Type-II is calculated as LII = LA
II + L

B
II .

Finally, the overall ISD loss is computed by Type-I loss

(LI ) and Type-II loss (LII ) as follows:

LISD = γ1 · LI + γ2 · LII . (8)

Here, γ1 and γ2 are set appropriately to balance both loss

terms.

3.2. Combination of ISD with CSD

For ISD training, three sets of image batches, A, B, and

M = Mixλ(A,B) should be inferred by the network. For

efficient training, we set B as the horizontally flipped ver-

sion of A, i.e, Â = flip(A), as shown in Fig. 4. We calcu-

lated the CSD loss with those two batches. However, the

mixed image Mixλ(A, Â) of A ∈ A and its horizontal

Algorithm 1 Training procedure of the proposed ISD

Require: DL,DU : labeled and unlabeled datasets

Require: w(t): weight scheduling function

Require: f(·): trainable object detection model

Require: h(·): horizontal flip function

Require: m(·): objectness masks

1: for each t ∈ [1, max iterations] do

2: Data Preparation

3: A ← DL ∪ DU , Â ← h(A)
4: B ← shuffle(Â)
5: C ←Mixλ(A,B)
6: Compute the outputs

7: f(A), f(Â), f(C)
8: f(B)← shuffle(f(Â))
9: Compute the objectness mask

10: mA ← f(A), mB ← f(B) (Eq. 3)
11: Compute the supervised & CSD losses

12: LS ← f(A ∈ DL ∩ A)
13: LCSD ← f(A ∈ DU ∩ A), f(Â),mA

14: Compute the ISD loss using the type mask (Eq. 4)

15: LI ← EI{mI=1}[lI ] (Eq. 5)
16: LA

II ← EI{mA

II
=1}[l

A
II cls + lAII loc] (Eq. 6, 7)

17: LB
II ← EI{mB

II
=1}[l

B
II cls + lBII loc]

18: LII ← L
A
II + L

B
II

19: LISD ← λ1 · LI + λ2 · LII

20: Compute the total loss

21: LTotal ← LS + w(t) · (LCSD + LISD)
22: Update f(·) using LTotal

23: end for

flipped version Â ∈ Â would have similar backgrounds and

predict the same class in the center of the image. Therefore,

as shown in Fig. 4, we make the mixed images by com-

bining the original batch (A) with the half-shuffled flipped

batch (B = shuffle(Â)). The total loss consists of super-

vised loss (LS), CSD loss (LCSD), and ISD loss (LISD) as

follows:

LTotal = LS + w(t) · [LCSD + LISD], (9)

where w(t) is a weight scheduling function. The over-

all process of the proposed semi-supervised learning is de-

scribed in Algorithm 1

4. Experiments

4.1. Experimental Settings

Our experiments are based on pytorch. We have used a

third-party code for SSD2 and an official code for CSD3. We

experimented on the PASCAL VOC dataset and MS COCO

2https://github.com/amdegroot/ssd.pytorch
3https://github.com/soo89/CSD-SSD
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Table 1. Detection results for PASCAL VOC2007 test set under the supervised and the semi-supervised training setting. Lcls and Lloc are

the consistency classification and localization loss with BE (Eq. 3) in CSD. The following experiments use VOC07 (labeled) and VOC12

(unlabeled) data. Blue and Red are represented as the Baseline score and Best score, respectively. The numbers in the parentheses are the

performance increments compared with the baseline.

Semi-Supervised Loss Labeled data Unlabeled data mAP (%)

Supervised Learning – Trained only with labeled data

None (Supervised Learning) VOC07 - 70.2

[16, 11] VOC07 + VOC12 - 77.2

CSD [11]

VOC07

- 69.3

Ours (ISD only) - 72.3

Ours (ISD + CSD) - 73.1

Semi-Supervised Learning

CSD [11] (Lcls)

VOC07 VOC12

71.7 (1.5)

CSD [11] (Lloc) 71.9 (1.7)

CSD [11] (Lcls + Lloc) 72.3 (2.1)

Ours (ISD (Type-I only))

VOC07 VOC12

71.9 (1.7)

Ours (ISD (Type-II only)) 73.8 (3.6)

Ours (ISD (Type-I,II)) 74.1 (3.9)

Ours (CSD + ISD (Type-I,II)) 74.4 (4.2)

dataset with SSD300 model. VGG-16 pre-trained model is

used as our backbone network. PASCAL VOC [10] and

MS COCO [15] data consist of 20 and 80 classes, respec-

tively. For VOC dataset, we followed the settings from the

conventional semi-supervised learning methods for object

detection. Similar to [29, 11], we trained our model with

PASCAL VOC07 trainval (5k images) dataset as labeled

data and PASCAL VOC12 trainval (12k images) as unla-

beled data. Then, we tested with PASCAL VOC07 test

dataset. For MS COCO dataset, we divided the MS COCO

2014 dataset into the existing categorized Train2014 (83k

images) and Val2014-35k (35k images) dataset because mi-

nor classes may not be in the labeled dataset with random

sampling. We trained our model with Val 35k dataset as la-

beled data and Train 83k as unlabeled data. Then, we tested

with MS COCO test-dev dataset.

We sample the mixing parameter λ from Beta(α, α) at

every iteration. The parameters are set to (γ1, γ2) = (0.1,

1) in Eq. (8) and α = 100 in the beta distribution. Other

learning parameters such as the learning rate and the batch

size are the same as [11].

4.2. PASCAL VOC

4.2.1 Supervised Learning

We start by examining the effect of ISD on SSD in the su-

pervised training setting, i.e, the proposed losses in 9 are ap-

plied to labeled data. The results are presented in Table 1. In

the first row block, SSD (base) trained with VOC 07 (train-

val) data shows 70.2 mAP performance, while that of SSD

(CSD) decreases to 69.3 mAP, which shows a clear side ef-

fect of over-regularization 4. On the other hand, SSD300

(ISD) and SSD (ISD + CSD) show 2.1% and 2.9% improve-

ments in accuracy compared to SSD (base), respectively.

This shows that combining ISD with a strong CSD regular-

izer stabilizes the training, making the network more robust.

4.2.2 Semi-Supervised Learning

We evaluate the performance of ISD in the SSL setting.

As shown in Table 1, the performance of the SSD model

trained only with VOC07 labeled data is 70.2%. Type-I

and Type-II show 1.7% and 3.6% of enhancement, respec-

tively. The Type-I consists of only classification loss, and

it shows better result than the score of only classification

loss in CSD. Type-II shows much better performance than

CSD and jointly using both Type-I and Type-II losses shows

3.9% of enhancement. In addition, when CSD and ISD

are combined, it shows even greater performance improve-

ment. This demonstrates the effectiveness of our approach

in the SSL setting. Moreover, ISD+CSD with VOC07 la-

beled data and VOC12 unlabeled data on SSD (Table 1, last

row) shows 1.3% performance improvement in comparison

to the fully supervised setting with VOC07 labeled data on

SSD (Tabel 1, row 7). This explains that the combined loss

of ISD+CSD not only on labeled data, but also on unlabeled

data contributes to better performance. The results shown

in Table 1 demonstrate that our ISD+CSD approach out-

performs the baseline CSD-only approach by a significant

margin.

4We reported the score for the supervised CSD [11] in the their sup-

plementary material
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Table 2. Detection results for MS COCO test-dev set. The following experiments use Val35k (labeled) and Train80k (unlabeled) data. The

numbers in the parentheses are the performance improvements from the baseline model (SSD trained on Val35k). All experiments are

tested by ourselves.

Method
Labeled Unlabeled Avg. Precision, IoU:

data data 0.5:0.95 0.5 0.75

SSD [16]
Val35k - 18.8 34.8 18.6

Val35k + Train80k (trainval35k) - 23.9 40.8 24.7

CSD [11]
Val 35k Train 80k

19.8 (1.0) 35.8 (1.0) 19.8 (1.2)

Ours (CSD + ISD) 21.0 (2.2) 37.7 (2.9) 21.1 (2.5)

Table 3. Ablation study for α and each type in VOC07(L) +

VOC12(U) training dataset and VOC07 testing dataset. The row

represents the α of the beta distribution, and the column repre-

sents each type. All the experiments in this table are performed by

adding each loss to the CSD.

β(α, α) SSD300 + ISD Method (mAP (%))

α Type-I Type-II Type-I + Type-II

1 72.3 72.8 72.9

10 72.4 73.8 74.0

100 72.4 74.2 74.4

1000 72.2 74.2 74.3

Table 4. Ablation study of Type-II losses on PASCAL VOC2007

test set. All the experiments in this table are performed by adding

each loss to the CSD. (α is 100).

VOC07(L)+VOC12(U) mAP (%)

Type-II (cls) 74.0

Type-II (loc) 73.1

Type-II (cls + loc) 74.2

4.3. MSCOCO

Table 2 shows the results of experiments on the

MSCOCO dataset. The supervised performances of SSD

using Val35k and Trainval35k show 18.8 mAP and 23.9

mAP, respectively. CSD with Val35k labeled data and

Train80k unlabeled data on SSD shows 1.0% of enhance-

ment. Our proposed algorithm (CSD+ISD) shows 2.1%

performance improvement in the same experimental setting

for COCO dataset.

5. Discussion

5.1. Ablation studies for Type­I and Type­II losses

We experiment to verify the performance of the two

types of loss we proposed in Table 1. Each loss shows a

significant performance improvement compared to the su-

pervised learning. Furthermore, we report the combination

of CSD and the different types of ISD losses in Table 3. In

the table, for all the cases, the Type-II loss performed better

than of Type-I loss. There are three reasons for this results.

First, the numbers of Type-I and Type-II samples are differ-

ent. With a trained model, the number of Type-II samples

was 5 times that of Type-I samples, which indicates that the

influence of Type-I loss is relatively small. Second, Type-

I only considers the classification loss while Type-II uses

the localization loss as well. Because the two objects in

Type-I have different bounding boxes, the boundary of their

mixed patch is not equal to the interpolation of their bound-

ing boxes. Therefore, the localization loss cannot be applied

in Type-I cases. Third, two objects that are mixed may not

be aligned well. More research is needed for the alignment

in Interpolation Regularization, which remains as a future

work.

In Table 4, we analyzed the effect of the classification

and the localization loss in Type-II when α is 100. The clas-

sification loss on Type-II samples showed more remarkable

performance improvement than the localization loss, and by

combining them, we can obtain better performance.

5.2. Beta distribution

In ISD, the mixing coefficient λ is sampled from the

Beta(α, α) distribution. Table 3 shows the performance

of ISD using various values of α across different types of

ISD losses. We observe that a large range of α gives im-

proved performance in comparison to the baseline (CSD

with 72.3% mAP). In general, we recommend to set α to

a sufficiently large value. The reason for choosing rela-

tively large α is as follows: With a smaller values of α

(e.g. α < 1), λ will be close to either 0 or 1 with high

probability, thus most of the mixed images will be closer

to either of the original images being mixed. In this case,

the mixed image M will be extremely weak (for one image)

or strong (for the other) augmentation resulting in lowered

performance with high variance. In contrast, increasing the

values of α increases the probability of λ being closer to

0.5, which provides an appropriate level of regularization.

Note that if the value of α is too large, λ will be concen-

trated too much around 0.5 and all the augmented samples

will be too different from the original images resulting in

degraded performance with high variance at test time.
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Figure 5. Qualitative results for the PASCAL VOC2007 test set using supervised SSD, semi-supervised CSD and CSD+ISD models in

table 1. The first, middle, and last rows are the resulting images of the SSD, CSD, and CSD+ISD models, respectively. A score threshold

of 0.3 is used to display these images. The images from the second column to the fourth column are the result when the image of the object

is similar to the background or there is distortion. Our proposed algorithm shows that it works robustly in this situation. The results of the

last column show that ISD does not detect all samples that look like objects.

5.3. Training model size

For ISD training, image batches are inferred by the net-

work three times over conventional SSD. Also, due to the

calculation of additional losses, it requires more than three

times the conventional SSD memory. We used Nvidia

1080Ti GPU, and we assigned 4 GPUs for SSD model with

ISD training. With fewer GPUs, our implementation was

not trainable because of limited memory budget. However,

at testing, it has the same network size and inference time

as the base network and can improve the performance.

5.4. Object detector

In this paper, we have used the SSD model among var-

ious single stage detectors. In the case of other detectors,

algorithm-specific modifications should be made to suc-

cessfully apply interpolation regularization, while the basic

idea of separating Type-I and Type-II samples and apply-

ing a different loss for each case is still valid. In the case

of a Two-Stage detector, generally, Region of Interest (RoI)

is obtained by Region Proposal Network (RPN) and clas-

sification of that location is performed for object detection.

Since the RoIs of A, Â, B, and Mixλ(A,B) are all dif-

ferent, in order to apply our algorithm, one of RoIs should

be applied to other images for one-to-one correspondence.

If the RoI of A is applied to other images, Type-II loss be-

tween B and Mixλ(A,B) cannot be obtained, and if each

RoI of A, B, Mixλ(A,B) is applied individually to other

images, a lot of computation will be required. Thus how to

apply interpolation-based regularizer for Two-stage detec-

tors is an interesting avenue for further research.

6. Conclusion

In this paper, we have proposed ISD, a simple and ef-

ficient Interpolation-based semi-supervised learning algo-

rithm for object detection using single-stage detectors. We

started by investigating the challenges that occur when

the Interpolation Regularization methods for the classifica-

tion task are applied directly to an object detection task,

and have addressed these challenges by proposing differ-

ent types of interpolation-based loss functions. Our method

shows significant improvement in both semi-supervised and

supervised object detection tasks over the previous meth-

ods, compared over the same dataset and the same archi-

tecture settings. We further demonstrate that combining

ISD with the previous method of CSD can further improve

the performance. We leave the exploration of Interpolation

Regularization for Two-stage detectors as a future work.
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