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Figure 1: Audio-Driven Emotional Video Portraits. Given an audio clip and a target video, our Emotional Video Portraits (EVP)

approach is capable of generating emotion-controllable talking portraits and change the emotion of them smoothly by interpolating at

the latent space. (a) Generated video portraits with the same speech content but different emotions (i.e., contempt and sad). (b) Linear

interpolation of the learned latent representation of emotions from sad to happy.

Abstract

Despite previous success in generating audio-driven

talking heads, most of the previous studies focus on the cor-

relation between speech content and the mouth shape. Fa-

cial emotion, which is one of the most important features on

natural human faces, is always neglected in their methods.

∗Corresponding authors.

In this work, we present Emotional Video Portraits (EVP),

a system for synthesizing high-quality video portraits with

vivid emotional dynamics driven by audios. Specifically, we

propose the Cross-Reconstructed Emotion Disentanglement

technique to decompose speech into two decoupled spaces,

i.e., a duration-independent emotion space and a duration-

dependent content space. With the disentangled features,

dynamic 2D emotional facial landmarks can be deduced.

Then we propose the Target-Adaptive Face Synthesis tech-
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nique to generate the final high-quality video portraits, by

bridging the gap between the deduced landmarks and the

natural head poses of target videos. Extensive experiments

demonstrate the effectiveness of our method both qualita-

tively and quantitatively.1

1. Introduction

Generating audio-driven photo-realistic portrait video is

of great need to multimedia applications, such as film-

making [22], telepresence [2] and digital human anima-

tion [25, 14, 47]. Previous works have explored gener-

ating talking heads or portraits whose lip movements are

synced with the input speech contents. Generally, these

techniques can be divided into two categories: 1) image-

based methods that animate one or few frames of cropped

faces [11, 44, 33, 9, 29, 46, 7], and 2) video-based editing

methods that directly edit target video clips [34, 32, 35].

Nevertheless, most of the previous studies did not model

emotion, a key factor for the naturalism of portraits.

Only few image-based works have discussed emotional

information in talking head generation. Due to the lack

of appropriate audio-visual datasets with emotional anno-

tations, Vougioukas et al. [36] do not model emotions ex-

plicitly. Simply encoding emotion and audio content infor-

mation into a single feature, they produce preliminary re-

sults with low quality. Most recently, Wang et al. [37] col-

lect the MEAD dataset, which contains high-quality talk-

ing head videos with annotations of both emotion category

and intensity. Then they set emotion as an one-hot condi-

tion to control the generated faces. However, all of these

image-based methods render only minor head movements

with fixed or even no backgrounds, making them impracti-

cal in most real-world scenarios.

Whereas, video-based editing methods, which are more

applicable as discussed in [34, 15, 32, 35], have not consid-

ered emotion control. Most of them only edit the mouth and

keep the upper half of the video portraits unaltered, making

free emotion control unaccessible.

In this study, we propose a novel algorithm named Emo-

tional Video Portraits (EVP), aiming to endow the video-

based editing talking face generation with the ability of

emotion control from audio. We animate full portrait with

emotion dynamics that better matches the speech intona-

tion, leading to more vivid results. However, it is non-

trivial to achieve this. There exist several intricate chal-

lenges: 1) The extraction of emotion from audio is rather

difficult, since the emotion information is stickily entangled

with other factors like the speech content. 2) The blending

of the edited face and the target video is difficult while syn-

thesizing high fidelity results. Audio does not supply any

1All materials are available at https://jixinya.github.io/

projects/evp/.

cues for head poses and the global movements of a head,

thus the edited head inferred from audio may have large

head pose and movement variances with the target videos.

To tackle the challenges mentioned above, we manage to

achieve audio-based emotion control in the proposed Emo-

tional Video Portraits system with two key components,

namely Cross-Reconstructed Emotion Disentanglement ,

and Target-Adaptive Face Synthesis. To perform emotion

control on the generated portraits, we firstly propose the

Cross-Reconstructed Emotion Disentanglement technique

on audios to extract two separate latent spaces: i) a duration-

independent space, which is a content-agnostic encoding

of the emotion; ii) a duration-dependent space, which en-

codes the audio’s speech content. Once extracted, features

from these latent spaces are recombined to yield a new au-

dio representation, allowing a cross-reconstruction loss to

be computed and optimized. However, to enable the cross-

reconstructed training, paired sentences with the same con-

tent but different emotions at the same length should be pro-

vided. This is nearly unreachable in real-world scenarios.

To this end, we adopt Dynamic Time Warping (DTW) [3],

a classic algorithm in time series analysis, to help form

pseudo training pairs with aligned uneven-length speech

corpus.

Following previous methods [34, 9], an audio-to-

landmark animation module is then introduced with the de-

composed features to deduce emotional 2D landmark dy-

namics. As no pose information is provided in audio, there

is a gap to be bridged between the generated landmarks and

the large variances of head pose and movement in target

video. To this end, we propose the Target-Adaptive Face

Synthesis technique to bridge the pose gap between the in-

ferred landmarks and the target video portraits in 3D space.

With a carefully designed 3D-aware keypoint alignment al-

gorithm, we are able to project 2D landmarks into the tar-

get video. Finally, we train an Edge-to-Video translation

network to generate the final high-quality emotional video

portraits. Extensive experiments demonstrate the superior

performance of our method and the effectiveness of several

key components.

Our contributions are summarized as follows:

• We propose the Emotional Video Portraits (EVP) sys-

tem, which is the first attempt to achieve emotional

control in video-based editing talking face generation

methods.

• We introduce Cross-Reconstructed Emotion Disentan-

glement technique, to distill content-agnostic emotion

features for free control.

• We introduce Target-Adaptive Face Synthesis, to syn-

thesize high quality portrait by making the generated

face adapt to the target video with natural head poses

and movements.
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Figure 2: Overview of our Emotional Video Portrait algorithm. We first extract disentangled content and emotion information from the

audio signal. Then we predict landmark motion from audio representations. The predicted motion is transferred to the edge map of the

target video via a 3D-aware keypoint alignment module. Finally, the rendering network gives us photo-realistic animations of the target

portrait based on the target video and edge maps.

2. Related Work

2.1. Audio-Driven Talking Face Generation

The task of audio-driven talking-head generation aims

at synthesizing lip-synced videos of a speaking person

driven by audio. It is a topic of high demand in the field

of entertainment, thus has long been the research inter-

est in the area of computer vision and computer graph-

ics [4, 21, 11, 38, 34, 44, 33, 48, 8, 9, 35, 29, 46, 37, 6, 45].

We can divide these methods into two categories according

to the differences in the visualization of their results.

Image-Based Methods. One type of models focuses on

driving the cropped facial areas with one or more frames

as the identity reference. Chung et al. [11], for the first

time, propose to generate lip-synced videos in an image-to-

image translation [19] manner. Then Zhou et al. [44] and

Song et al. [33] improve their results using disentangled

audio-visual representation and recurrent neural networks.

Moreover, Chen et al. [9] leverage landmarks as interme-

diate representation and split the process into two stages.

However, these methods can only promise the synchroniza-

tion between generated mouths and audios. The results have

barely any expression or head movements. Zhou et al. [46]

successfully generate identity-related head movements, but

their model also fails to control emotions.

As for emotional talking faces, Vougioukas et al. [36]

adopt three separated discriminators to enhance synthesis

details, synchronization, and realistic expressions, respec-

tively. However, their experiments are carried out on limited

scales. Most recently, Wang et al. [37] propose the MEAD

dataset and propose to generate emotional talking faces by

splitting the manipulation for the upper and lower part of

the face, respectively. Nevertheless, their results are less

realistic and limited to only the facial areas.

Video-Based Editing Methods. Full-frame video portraits

contain not only the facial areas but also the neck and the

shoulder part of the person, together with the background. It

is without doubt that this setting is more realistic, but more

difficult to reconstruct. As a result, most methods edit only

the mouth areas. Suwajanakorn et al.[34] synthesize photo-

realistic talking videos of Obama by training an audio to

landmark RNN. A re-timing module is proposed for head-

poses. Song et al.[32] and Thies et al.[35] all regress facial

expression parameters of 3DMM models, and inpaint the

mouth regions. While high-quality results can be rendered

through these pipelines using the videos of a target subject,

it is difficult for their models to manipulate the upper face,

left alone emotions. In this work, we propose to generate

emotional manipulable full-frame talking-heads.

2.2. Conditional Emotion Generation

Inspired by the great success of unsupervised image

translation[49, 19, 24, 18, 10, 20], several methods focus-

ing on emotion conditioned generation have been proposed

in recent years. Ding et al. [13] design a novel encoder-

decoder architecture to control expression intensity contin-

uously by learning an expressive and compact expression

code. Pumarola et al. [31] introduce an unsupervised frame-

work named GANimation, which is able to generate contin-

uous facial expressions of a specified emotion category by

activating the action units (AU) to various states. However,

unsatisfying artifacts have always been a challenging prob-

lem for these methods due to the lack of explicit and ac-

curate guidance. Inspired by [9], our method also chooses

facial landmarks as a more reliable intermediary to generate

talking face sequences with high-fidelity emotions.

3. Method

3.1. Overview

As shown in Fig. 2, our Emotional Video Portrait (EVP)

algorithm consists of two key components. The first is

Cross-Reconstructed Emotion Disentanglement that learns

the disentangled content and emotion information from the
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Figure 3: Cross-reconstruction for disentanglement. The emo-

tion and content representations extracted from different audio sig-

nals are combined to reconstruct corresponding samples. Part of

the training losses are also shown on this figure.

audio signals. We use a temporal alignment algorithm, Dy-

namic Time Warping [3] to produce pseudo training pairs,

and then design a Cross-Reconstructed Loss for learning

the disentanglement (Sec. 3.2). The second part of our al-

gorithm is Target-Adaptive Face Synthesis that adapts the

facial landmarks inferred from the audio representations to

the target video. We design a 3D-Aware Keypoint Align-

ment algorithm to rotate landmarks in 3D space, and thus

the landmarks can be adaptive to various poses and motions

in the target video. Then, we subsequently use the the pro-

jected 2D landmarks as the guidance to edit the target video

via an Edge-to-Video network(Sec. 3.3). In the following

sections, we describe each module of our algorithm in de-

tail.

3.2. Cross-Reconstructed Emotion Disentangle-
ment

To achieve audio-based emotional control for talking

face synthesis, the inherently entangled emotion and con-

tent components need to be independently extracted from

audio signals. Unlike previous methods [37], which learn

one single representation from audio signals, we propose

to extract two separate latent audio spaces: i) a duration-

independent space, which is a content-agnostic encod-

ing of the emotion and ii) a duration-dependent space,

which encodes the audio’s speech content. While cross-

reconstruction [1] technique seems promising on such a

task, it can only be enabled through paired audio clips with

the same content but different emotions at the same length.

Nevertheless, this is nearly unreachable in real-world sce-

narios. To this end, we firstly build aligned pseudo training

pairs, and then adopt the cross-reconstructed training for

emotion disentanglement in audios.

Build Pseudo Training Pairs. An audio-visual dataset [37]

with various characters speaking the same corpus under dif-

ferent emotion states is leveraged to train this disentangle-

ment network. Since the speeches with the same content

but different emotions vary in speech rate, we resort to a

temporal alignment algorithm to align the uneven-length

speeches.

Specifically, we use Mel Frequency Cepstral Coeffi-

cients (MFCC) [26] as audio representations and use the

Dynamic Timing Warping (DTW) [3] algorithm to warp

the MFCC feature vectors by stretching or shrinking them

along the time dimension. Given two MFCC sequences Sa

and Sb of the same content but different lengths, DTW cal-

culates a set of index coordinate pairs {(i, j), ...} by dy-

namic programming to force Sa[i] and Sb[j] to be sim-

ilar. The optimal match between the given sequences is

achieved by minimizing the sum of a distance cost between

the aligned MFCC features:

min
∑

(i,j)∈P

d(Sa[i],Sb[j]), (1)

where d is the distance cost, P is the path for alignment.

The path constraint is that, at (i, j), the valid steps are (i+
1, j), (i, j + 1), and (i + 1, j + 1), making sure that the

alignment always moves forward each time for at least one

of the signals. These aligned audio samples can then be

used as the inputs to the disentanglement network for cross-

reconstruction.

Cross-Reconstructed Training. The cross-reconstructed

training procedure is as shown in Fig. 3. To independently

extract the emotion and content information lie in an au-

dio clip xi,m with content i and emotion m, two encoders

Ec and Ee are leveraged for embedding the two informa-

tion respectively. Intuitively, when the two representations

are completely disentangled, we can use the information

in both the content embedding Ec(xi,m) and the emotion

embedding Ec(xj,n) from audio clips xi,m and xj,n to re-

construct the clip xi,n from a decoder D. By leveraging

the pseudo training pairs we build before, we introduce two

new samples xi,n, xj,m to serve as supervisions for the re-

construction procedure. Since each sample can only pro-

vide one type of information that is beneficial to the cross-

reconstruction, the disentanglement can be finally achieved.

We supervise the training process with a loss function

including four parts: cross reconstruction loss, self recon-

struction loss, classification loss, and content loss. Given

four audio samples xi,m, xj,n, xj,m, xi,n, we formulate the

cross reconstruction loss as :

Lcross = ‖D(Ec(xi,m), Ee(xj,n))− xi,n‖2

+ ‖D(Ec(xj,n), Ee(xi,m))− xj,m‖2.
(2)

Besides, we are also able to reconstruct the original in-

put by using the encoders and the decoder, namely the self

reconstruction loss defined as:

Lself = ‖D(Ec(xi,m), Ee(xi,m))− xi,m‖2

+ ‖D(Ec(xj,n), Ee(xj,n))− xj,n‖2.
(3)
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In order to encourage the Ee to map samples with the

same emotion type into clustered groups in the latent space,

we add a classifier Ce for the emotion embedding and an

additional classification loss defined as:

Lcla = −
N
∑

k=1

(pk ∗ log qk). (4)

Here, N denotes the number of different emotion types, pk
denotes whether the sample takes emotional label k, and qk
denotes the corresponding network prediction probability.

Moreover, we also constrain the samples with the same ut-

terance to share similar content embedding:

Lcon =
∑

k=i,j

‖Ec(xk,m)− Ec(xk,n)‖1. (5)

Summing these four terms, we obtain the total loss function:

Ldis = Lcross + Lself + λclaLcla + λconLcon, (6)

where λcla and λcon are weights for the classification and

the content loss respectively.

3.3. Target-Adaptive Face Synthesis

To generate photo-realistic facial animations of the input

portrait, we first introduce an audio-to-landmark network,

following [34, 9], that predicts landmark motions from the

disentangled audio embeddings. Afterwards, video-based

editing methods normally perform facial editing on a tar-

get video clip recorded on the target person. However, this

would lead to two challenges in our setting which alter the

whole face rather than only the mouth: 1) The misalignment

of head poses. The head movements of the predicted land-

marks may differ from the target video severely, and barely

any pose information is provided in the audio. 2) The blend-

ing of the edited face and the target video is difficult while

synthesizing high fidelity results.

To cope with such challenges, we propose the 3D-Aware

Keypoint Alignment algorithm to align our generated land-

marks with guidance landmarks in the 3D space. Then we

propose to merge our generated landmarks with the edge

map of the target image. The two of them together can

serve as the guidance to train an Edge-to-Video translation

network for the final results.

Audio-to-Landmark Module. Our first goal is to learn

landmark displacements from emotional audio clips, thus

requiring the facial shape, or identity information from the

aligned landmark la unchanged. So we extract the land-

mark identity embedding fa with a multi-layer perceptron

(MLP) as shown in Fig 2. Then fa is sent into an audio-

to-landmark module along with the two disentangled au-

dio embeddings Ec(x) and Ee(x). The audio-to-landmark

module predicts the landmark displacements ld by a long

short-term memory (LSTM) network followed by a two-

layer MLP.

In terms of the loss function, we minimize the distance

between the reference landmarks l and the predicted ones l̂

defined below:

La = ‖l̂ − l‖2 = ‖la + ld − l‖2. (7)

3D-Aware Keypoint Alignment. For aligning head poses,

we first perform a landmark detection on the target video

using an off-the-shelf method [42]. Then we operate in the

3D space, where the pose information is explicitly defined.

A parametric 3D face model [5] is utilized to recover the

3D parameters from 2D landmarks by solving a non-linear

optimization problem. Utilizing the 3D geometry and ex-

pression parameters, we get a set of pose-invariant 3D land-

marks L3d
p (See supplementary for details). The pose pa-

rameters p contains a 3× 3 rotation matrix R, 2 translation

coefficients t, and 1 scaling coefficient s. By replacing the

pose parameters of the predicted landmark with the detected

ones in the target video (Rt, tt, st), we obtain the adapted

3D key points and then project them to the image plane with

scale orthographic projection:

lp = st ∗ Pr ∗Rt ∗L
3d
p + tt, (8)

where lp is the projected 2D landmark and Pr is the ortho-

graphic projection matrix

(

1 0 0
0 1 0

)

. Since the geometry

and expression parameters remain unchanged, the projected

landmarks lp naturally share consistent identity and facial

expressions with the predicted landmarks. While the head

pose, scale and position are set the same as the face in the

target video frame.

Note we use 3D models only for pose alignment. An

alternative way is to directly predict 3D facial parameters

for facial reconstruction [23, 43]. However, inaccurate fit-

ted facial expressions are not sufficient for representing the

detailed emotions in our work.

Edge-to-Video Translation Network.

Given the adapted landmarks and the target frame, we

merge the landmarks and the edge map extracted from this

frame into a guidance map for portrait generation. In par-

ticular, we extract edges outside the face region using an

edge detection algorithm [16], and replace the original land-

marks with our aligned ones. Then we connect adjacent fa-

cial landmarks to create a face sketch.

Following [39], we adopt a conditional-GAN architec-

ture for our Edge-to-Video translation network. The gener-

ator part G is designed as a coarse-to-fine architecture [40],

while the discriminator part is designed to guarantee both

the quality and the continuity of the generated frames.

Please refer to [39] for more details about the network ar-

chitecture.
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Figure 4: Qualitative comparisons with the state-of-the-art methods. We show three examples with different speech content and

emotions. Note that we choose the same target video with frontal face for Song et al.[32] and ours, and we use the first frame of the target

video for Chen et al.[9] and Wang et al.[37] as they edit a target image rather than a target video.

Method/Score M-LD ↓ M-LVD ↓ F-LD ↓ F-LVD ↓ SSIM ↑ PSNR ↑ FID ↓
Chen et al.[9] 3.27 2.09 3.82 1.71 0.60 28.55 67.60

Wang et al.[37] 2.52 2.28 3.16 2.01 0.68 28.61 22.52

Song et al.[32] 2.54 1.99 3.49 1.76 0.64 29.11 36.33

Ours 2.45 1.78 3.01 1.56 0.71 29.53 7.99

Table 1: Quantitative comparisons with the state-of-the-art methods. We calculate the landmark accuracies and video qualities of the

results of different solutions by comparing them with the ground truth. M- represents mouth and F- stands for face region.

4. Experiment

Implementation Details. We evaluate our method on

MEAD, a high-quality emotional audio-visual dataset with

60 actors/actresses and eight emotion categories. The mod-

els are trained and tested on the train/test splits of the

dataset. All the emotional talking face videos are converted

to 25 fps and the audio sample rate is set to be 16kHz. For

the video stream, we align all the faces based on the de-

tected facial landmarks. As for the audio stream, we follow

the design in [9] to extract a 28×12 dim MFCC feature cor-

responding to each frame in the video. Before training the

disentanglement module, the emotion encoder is pretrained

through an emotion classification task [30]. Meanwhile, the

content encoder is pretrained on LRW [12], a lip-reading

dataset with barely any emotion. Then we discard the de-

coder and use the two pretrained encoders in our training

process. More implementation details can be found in the

supplementary materials.

Comparing Methods. We compare our work with three

prior works [9, 37, 32]. The method of Chen et al. [9] is

an image-based method, which synthesizes facial motions

based on landmarks and employs an attention mechanism

to improve the generation quality. The method of Song

et al. [32] is a video-based method which applies 3D face

models to realize audio-based video portrait editing. Then

we compare our work with Wang et al. [37], the most rel-

evant work that proposes the first talking face generation

approach with the capacity of manipulating emotions. We

believe these three works are the most representative works

to compare with.

4.1. Experimental Results

Qualitative Comparisons. We make comparisons with

other methods on various sequences as shown in the ac-

companying video. We also select some frames as shown

14085



(a) (b)

Figure 5: Emotion latent space clusters with and without the

cross-reconstruction part. (a) Emotion latent codes of the pre-

trained emotion encoder. (b) Emotion latent codes of the encoder

trained by cross-reconstruction. Different colors indicate different

emotion types.

in Fig. 4. Our method is able to generate high-fidelity emo-

tional talking face video which is better than others. Con-

cretely, Chen et al.[9] and Song et al.[32] do not consider

emotions, so they generate plausible mouth shapes but al-

ways with the neutral emotion. Wang et al.[37] is able to

generate desired emotions. However, the emotion of the

predicted mouth shape is sometimes inconsistent with the

facial expression (left) since it directly learns mouth shapes

from audio signals where the emotion and content infor-

mation are closely entangled. In addition, the algorithm in

Wang et al.[37] is not robust enough to data with large head

movements and background variations, leading to implau-

sible facial expressions (middle) and changes with charac-

teristics like hairstyles (right).

Quantitative Comparisons. To quantitatively evaluate

different methods, we extract facial landmarks from the

aligned result sequences and the ground truth sequences.

The alignment is also for compensating head motions.

Then, the metrics of Landmark Distance(LD) and Land-

mark Velocity Difference(LVD)[9, 46] are utilized to eval-

uate facial motions. LD represents the average Euclidean

distance between generated and recorded landmarks. Ve-

locity means the difference of landmark locations between

consecutive frames, so LVD represents the average velocity

differences of landmark motions between two sequences.

We adopt LD and LVD on the mouth and face area to eval-

uate how well the synthesized video represents accurate lip

movements and facial expressions separately. To further

evaluate the quality of the generated images of different

methods, we compare the SSIM [41], PSNR, and FID [17]

scores. The Results are illustrated in Table 1. Our method

obviously outperforms others in audio-visual synchroniza-

tion (M-LD, M-LVD), facial expressions (F-LD, F-LVD)

and video quality (SSIM, PSNR, FID).

User Study. To quantify the quality (including the accu-

racy of emotion and facial motion) of the synthesized video

clips, we design thoughtful user studies to compare real data

with generated ones from EVP, Wang et al.[37] , Chen et

al.[9] and Song et al. [32] . We generate 3 video clips for

each of the 8 emotion categories and each of the 3 speakers,

0 0.1 0.2 0.3 0.4 0.5

Ours

Wang et al.

Song et al.

Chen et al. Emotion Accuracy

0 0.2 0.4 0.6 0.8 1

Real

Ours

Wang et al.

Song et al.

Chen et al. Audio-visual Sync

Video Quailty

Figure 6: User study. User study results of audio-visual synchro-

nization, video quality and emotion accuracy.

hence 72 videos in total. They are evaluated w.r.t three dif-

ferent criteria: whether the synthesized talking face video

is realistic, whether the face motion sync with the speech,

and the accuracy of the generated facial emotion. The eval-

uation consists of two stages. First, the attendees are asked

to judge the given video upon audio-visual synchronization

and video quality and score from 1 (worst) to 5 (best). Then

we show them real emotional video clips without back-

ground sound. After that they need to choose the emotion

category for the generated video without voice. 50 partic-

ipants finished our questionnaire and the results are shown

in Figure 6. As can be seen, our method obtains the highest

score on visual quality and audio-visual sync apart from the

real data. We also achieve the highest accuracy on emotion

classification compared with other methods.

More Results. We show image results of our EVP algo-

rithm in Figure 1 and more results can be found in our sup-

plementary video2. Our method can synthesize high-quality

emotional video portraits adaptive to various head poses and

backgrounds. What’s more, during inference different au-

dio signals or even learned features can be taken as content

and emotion encoder inputs, leading us to more applications

described in Sec. 4.2.

4.2. Disentanglement Analysis

As illustrated in Sec. 3, our network disentangles content

and emotion information from audio signals. To validate

this, we feed different audio inputs to the content encoder

and the emotion encoder. As shown in part (a) of Fig. 1, the

mouth motion in the generated video is in accordance with

the audio fed into the content encoder, while the generated

facial expression matches the emotion of the audio of the

emotion encoder. Extensive experiments (shown in the ac-

companying video) also indicate that the speech content and

emotion are successfully decoupled from the audio signals.

Moreover, to quantitatively evaluate the generated emo-

tions in the final video, we adopt an off-the-shelf emotion

classification network [28] in our experiments. We trained

the classification network on the training set of MEAD

and calculated the numerical emotion accuracy of a face

video by comparing its emotion classification result with

2The materials are available at https://jixinya.github.io/

projects/evp/.
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Method/Score M-LD M-LVD F-LD F-LVD

Ours w/o Lcla 2.72 1.83 3.68 1.63

Ours w/o Lcon 2.65 1.86 3.03 1.60

Ours w/o Lself 2.47 1.83 3.02 1.62

Ours w/o Lcross 2.54 1.80 3.19 1.59

Ours 2.45 1.78 3.01 1.56

Table 2: Quantitative ablation study for Cross-Reconstructed

Emotion Disentanglement component. We show quantitative re-

sults of landmarks with different losses.

the ground truth label. Since the videos in MEAD have

ground truth emotion labels, quantitative evaluation can be

performed here. The testing set of MEAD gets 90.2% ac-

curacy, indicating the classification network outputs reason-

able emotion labels. Our method gets 83.58% accuracy ex-

ceeding the 76.00% accuracy of Wang et al.[37], showing

that our method better maintains the emotion.

Emotion Editing. As our method encodes emotion fea-

tures in a continuous latent space, alternating features in the

latent space is able to achieve emotion manipulation includ-

ing emotion category as well as the intensity manipulation

. In particular, we perform emotion category manipulation

by calculating the mean latent feature of each emotion clus-

ter and interpolating between the mean codes. Results are

shown in part (b) of Fig. 1. By tuning the weight α between

the source emotion Es and the target emotion Et, we get im-

age sequences conditioned on a linear interpolated emotion

feature: αEs+(1−α)Et. We can find that the emotion trans-

formation between frames is consistent and smooth, which

means our work is capable of continuously editing emotion

via speech features.

4.3. Ablation Study

Cross-Reconstructed Emotion Disentanglement. The

cross-reconstruction is the key to our disentanglement. To

evaluate the disentanglement, in Fig. 5, we compare the

emotion latent spaces obtained by networks with and with-

out the cross-reconstruction training. We use t-SNE [27]

to visualize the latent codes. Different colors represent au-

dio with eight different emotion categories. It can be seen

that by using the cross-reconstruction, the samples with the

same emotion class are more clustered than those obtained

without it. This indicates that the cross-reconstruction

does contribute to decoupling emotion information from

audios. We also evaluate the effectiveness of our cross-

reconstruction by comparing the emotion classification ac-

curacy of the final synthesized video clips. Without the re-

construction part, our method gets an accuracy of 69.79%,

lower than results with it(83.58%). It demonstrates that the

reconstruction module enhances the emotion correctness of

the final talking head videos and facilitates the emotion con-

trol of our technique. Moreover, we conduct experiments to

demonstrate the contributions of the four losses introduced
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Figure 7: Ablation study for 3D-aware keypoint alignment

module. We show cases with (left) and without (right) 3D key-

point alignment. The red arrows point out the displacements be-

tween landmarks and the face contour, while the red boxes show

the artifacts in the synthesized frame.

in Sec. 3.2. Quantitative results are shown in Table 2, which

prove that each loss contributes to the component.

Target-Adaptive Face Synthesis. Fig. 7 shows the qual-

itative results of the 3D alignment in face synthesis. 3D

landmark alignment enables us to change head motions to

be consistent with the target portrait video, so that the Edge-

to-Video Translation network generates smooth and realis-

tic frames. On the other hand, directly using 2D facial land-

marks brings displacements between the synthesized face

and the face contour of the input video in the edge map,

which results in noticeable artifacts in the final synthesized

video.

5. Conclusion

In this paper, we present an audio-driven video editing

algorithm to synthesize emotional video portraits via

effective learning in the decoupled representation space.

We propose Cross-Reconstructed Emotion Disentangle-

ment to decompose the input audio sample into a pair of

disentangled content and emotion embeddings, based on

which, 2D facial landmarks with emotion dynamic can

be generated. Then, we propose Target-Adaptive Face

Synthesis to produce the video portraits with high fidelity

by aligning the newly generated facial landmarks with

the natural head poses of target videos. Qualitative and

quantitative experiments have validated the effectiveness of

our method.
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